首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 228 毫秒
1.
High levels of the plasminogen activators, but also their inhibitor, plasminogen activator inhibitor 1 (PAI-1), have been documented in neovascularization of severe ocular pathologies such as diabetic retinopathy or age-related macular degeneration (AMD). AMD is the primary cause of irreversible photoreceptors loss, and current therapies are limited. PAI-1 has recently been shown to be essential for tumoral angiogenesis. We report here that deficient PAI-1 expression in mice prevented the development of subretinal choroidal angiogenesis induced by laser photocoagulation. When systemic and local PAI-1 expression was achieved by intravenous injection of a replication-defective adenoviral vector expressing human PAI-1 cDNA, the wild-type pattern of choroidal angiogenesis was restored. These observations demonstrate the proangiogenic activity of PAI-1 not only in tumoral models, but also in choroidal experimental neovascularization sharing similarities with human AMD. They identify therefore PAI-1 as a potential target for therapeutic ocular anti-angiogenic strategies.  相似文献   

2.
Sphingosine-1-phosphate (S1P) is a bioactive lipid molecule that stimulates endothelial cell migration, proliferation, and survival in vitro, and tumor angiogenesis in vivo. In this study, we used a humanized monoclonal antibody (sonepcizumab) that selectively binds S1P to investigate its role in retinal and choroidal neovascularization (NV). Intraocular injection of sonepcizumab significantly reduced macrophage influx into ischemic retina and strongly suppressed retinal NV in mice with oxygen-induced ischemic retinopathy. In mice with laser-induced rupture sites in Bruch's membrane, intraocular injection of sonepcizumab significantly reduced the area of choroidal NV and concomitantly reduced fluorescein leakage from the remaining choroidal NV. Four weeks after intraocular injection of up to 1.8 mg of the sonepcizumab in non-human primates, electroretinograms and fluorescein angiograms were normal, and light microscopy of ocular sections showed no evidence of structural damage. These data show for the first time that S1P stimulates both choroidal and retinal NV and suggest that sonepcizumab could be considered for evaluation in patients with choroidal or retinal NV.  相似文献   

3.
TM601 is a synthetic polypeptide with sequence derived from the venom of the scorpion Leiurus quinquestriatus that has anti‐neoplastic activity. It has recently been demonstrated to bind annexin A2 on cultured tumor and vascular endothelial cells and to suppress blood vessel growth on chick chorioallantoic membrane. In this study, we investigated the effects of TM601 in models of ocular neovascularization (NV). When administered by intraocular injection, intravenous injections, or periocular injections, TM601 significantly suppressed the development of choroidal NV at rupture sites in Bruch's membrane. Treatment of established choroidal NV with TM601 caused apoptosis of endothelial cells and regression of the NV. TM601 suppressed ischemia‐induced and vascular endothelial growth factor‐induced retinal NV and reduced excess vascular permeability induced by vascular endothelial growth factor. Immunostaining with an antibody directed against TM601 showed that after intraocular or periocular injection, TM601 selectively bound to choroidal or retinal NV and co‐localized with annexin A2, which is undetectable in normal retinal and choroidal vessels, but is upregulated in endothelial cells participating in choroidal or retinal NV. Intraocular injection of plasminogen or tissue plasminogen activator, which like TM601 bind to annexin A2, also suppressed retinal NV. This study supports the hypothesis that annexin A2 is an important target for treatment of neovascular diseases and suggests that TM601, through its interaction with annexin A2, causes suppression and regression of ocular NV and reduces vascular leakage and thus may provide a new treatment for blinding diseases such as neovascular age‐related macular degeneration and diabetic retinopathy. J. Cell. Physiol. 225: 855–864, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

4.
BackgroundThe accumulation of advanced glycated end products (AGEs) in retinal blood vessels is one of the major etiological factors contributing to diabetic retinopathy. Aminoguanidine (AG) is one of the most extensively used inhibitors of AGEs formation. The aim of this study was to investigate whether AG could protect the development of diabetic retinopathy through inhibition of AGEs.MethodsRat diabetes was induced by intraperitoneal injection with streptozotocin (STZ). AG was given to rats in drinking water. Retina was extracted 3 and 6 months following STZ and AG administration. Immunochemistry and transmission electron microscope were used to detect the expression of AGEs and retina morphology.ResultsExtensive staining of AGEs was detected in retinal blood vessels of 3- and 6-month diabetic rats, while no significant staining was found in the control non-diabetic retina or AG treated groups. Pericyte loss, endothelial cell proliferation, increased ratio of endothelial cells/pericytes, acellular capillaries and capillary occlusion were observed in the retina of 6-month diabetic rats. The increased electron density of retinal capillary basement membrane, mitochondrial swelling in pericytes and endothelial cells were also found in 6-month diabetic rats. The 3-month diabetic rats and the AG-treated rats did not have similar morphological changes compared to control group. The AGEs staining in AG-treated rats was still weakly positive.ConclusionsAGEs plays pivotal roles in diabetic retinopathy. AGE deposition occurs prior to retinal microvasculature changes. AG could prevent the onset and development of diabetic retinopathy through inhibition of AGEs.  相似文献   

5.
In this study, we investigated whether overexpression of pigment epithelium-derived factor (PEDF) by gene transfer can inhibit neovascularization by testing its effect in three different models of ocular neovascularization. Intravitreous injection of an adenoviral vector encoding PEDF resulted in expression of PEDF mRNA in the eye measured by RT-PCR and increased immunohistochemical staining for PEDF protein throughout the retina. In mice with laser-induced rupture of Bruch's membrane, choroidal neovascularization was significantly reduced after intravitreous injection of PEDF vector compared to injection of null vector or no injection. Subretinal injection of the PEDF vector resulted in prominent staining for PEDF in retinal pigmented epithelial cells and strong inhibition of choroidal neovascularization. In two models of retinal neovascularization (transgenic mice with increased expression of vascular endothelial growth factor (VEGF) in photoreceptors and mice with oxygen-induced ischemic retinopathy), intravitreous injection of null vector resulted in decreased neovascularization compared to no injection, but intravitreous injection of PEDF vector resulted in further inhibition of neovascularization that was statistically significant. These data suggest that sustained increased intraocular expression of PEDF by gene therapy might provide a promising approach for treatment of ocular neovascularization.  相似文献   

6.
Age-related macular degeneration, diabetic retinopathy, and retinal vein occlusions are complicated by neovascularization and macular edema. Multi-targeted kinase inhibitors that inhibit select growth factor receptor tyrosine kinases and/or components of their down-stream signaling cascades (such as Src kinases) are rationale treatment strategies for these disease processes. We describe the discovery and characterization of two such agents. TG100572, which inhibits Src kinases and selected receptor tyrosine kinases, induced apoptosis of proliferating endothelial cells in vitro. Systemic delivery of TG100572 in a murine model of laser-induced choroidal neovascularization (CNV) caused significant suppression of CNV, but with an associated weight loss suggestive of systemic toxicity. To minimize systemic exposure, topical delivery of TG100572 to the cornea was explored, and while substantial levels of TG100572 were achieved in the retina and choroid, superior exposure levels were achieved using TG100801, an inactive prodrug that generates TG100572 by de-esterification. Neither TG100801 nor TG100572 were detectable in plasma following topical delivery of TG100801, and adverse safety signals (such as weight loss) were not observed even with prolonged dosing schedules. Topical TG100801 significantly suppressed laser-induced CNV in mice, and reduced fluorescein leakage from the vasculature and retinal thickening measured by optical coherence tomography in a rat model of retinal vein occlusion. These data suggest that TG100801 may provide a new topically applied treatment approach for ocular neovascularization and retinal edema.  相似文献   

7.
Diabetic retinopathy is the leading cause of visual dysfunction in working adults and is attributed to retinal vascular and neural cell damage. Recent studies have described elevated levels of membrane attack complex (MAC) and reduced levels of membrane associated complement regulators including CD55 and CD59 in the retina of diabetic retinopathy patients as well as in animal models of this disease. We have previously described the development of a soluble membrane-independent form of CD59 (sCD59) that when delivered via a gene therapy approach using an adeno-associated virus vector (AAV2/8-sCD59) to the eyes of mice, can block MAC deposition and choroidal neovascularization. Here, we examine AAV2/8-sCD59 mediated attenuation of MAC deposition and ensuing complement mediated damage to the retina of mice following streptozotocin (STZ) induced diabetes. We observed a 60% reduction in leakage of retinal blood vessels in diabetic eyes pre-injected with AAV2/8-sCD59 relative to negative control virus injected diabetic eyes. AAV2/8-sCD59 injected eyes also exhibited protection from non-perfusion of retinal blood vessels. In addition, a 200% reduction in retinal ganglion cell apoptosis and a 40% reduction in MAC deposition were documented in diabetic eyes pre-injected with AAV2/8-sCD59 relative to diabetic eyes pre-injected with the control virus. This is the first study characterizing a viral gene therapy intervention that targets MAC in a model of diabetic retinopathy. Use of AAV2/8-sCD59 warrants further exploration as a potential therapy for advanced stages of diabetic retinopathy.  相似文献   

8.
探讨TSP1表达在糖尿病视网膜病变中的作用和机制,为治疗和预防糖尿病视网膜病变提供新的实验和理论依据。用链脲佐菌素(STZ)腹腔注射建立糖尿病模型8周后,采用免疫组织化学、RT-PCR及实时荧光定量PCR法,分析TSP1在早期链尿佐菌素诱导的糖尿病SD大鼠视网膜中的表达。结果显示在早期糖尿病大鼠的视网膜表面血管、神经节细胞层、内外核层中均有明显的TSP1表达,糖尿病视网膜组TSP1 mRNA表达要高于对照组,其中实时荧光定量PCR CT值的结果显示糖尿病组TSP1 mRNA表达量较对照组要高约3.48倍,二组间差别有显著性意义(P<0.01),提示TSP1在视网膜组织中的表达与糖尿病视网膜病变的发生密不可分,TSP1表达的增加可能在糖尿病视网膜病变的发生和发展中起重要作用。  相似文献   

9.
Neovascularization associated with diabetic retinopathy (DR) and other ocular disorders is a leading cause of visual impairment and adult-onset blindness. Currently available treatments are merely palliative and offer temporary solutions. Here, we tested the efficacy of antiangiogenic gene transfer in an animal model that mimics the chronic progression of human DR. Adeno-associated viral (AAV) vectors of serotype 2 coding for antiangiogenic Pigment Epithelium Derived Factor (PEDF) were injected in the vitreous of a 1.5 month-old transgenic model of retinopathy that develops progressive neovascularization. A single intravitreal injection led to long-term production of PEDF and to a striking inhibition of intravitreal neovascularization, normalization of retinal capillary density, and prevention of retinal detachment. This was parallel to a reduction in the intraocular levels of Vascular Endothelial Growth Factor (VEGF). Normalization of VEGF was consistent with a downregulation of downstream effectors of angiogenesis, such as the activity of Matrix Metalloproteinases (MMP) 2 and 9 and the content of Connective Tissue Growth Factor (CTGF). These results demonstrate long-term efficacy of AAV-mediated PEDF overexpression in counteracting retinal neovascularization in a relevant animal model, and provides evidence towards the use of this strategy to treat angiogenesis in DR and other chronic proliferative retinal disorders.  相似文献   

10.
Nitric oxide is proangiogenic in the retina and choroid   总被引:7,自引:0,他引:7  
Nitric oxide (NO) has been shown to have proangiogenic or antiangiogenic effects depending upon the setting. In this study, we used mice with targeted deletion of one of the three isoforms of nitric oxide synthase (NOS) to investigate the effects of NO in ocular neovascularization. In transgenic mice with increased expression of vascular endothelial growth factor (VEGF) in photoreceptors, deficiency of any of the three isoforms caused a significant decrease in subretinal neovascularization, but no alteration of VEGF expression. In mice with laser-induced rupture of Bruch's membrane, deficiency of inducible NOS (iNOS) or neuronal NOS (nNOS), but not endothelial NOS (eNOS), caused a significant decrease in choroidal neovascularization. In mice with oxygen-induced ischemic retinopathy, deficiency of eNOS, but not iNOS or nNOS caused a significant decrease in retinal neovascularization and decreased expression of VEGF. These data suggest that NO contributes to both retinal and choroidal neovascularization and that different isoforms of NOS are involved in different settings and different disease processes. A broad spectrum NOS inhibitor may have therapeutic potential for treatment of both retinal and choroidal neovascularization.  相似文献   

11.
Several ocular diseases complicated by neovascularization are being treated by repeated intraocular injections of vascular endothelial growth factor (VEGF) antagonists. While substantial benefits have been documented, there is concern that unrecognized damage may be occurring, because blockade of VEGF may damage the fenestrated vessels of the choroicapillaris and deprive retinal neurons of input from a survival factor. One report has suggested that even temporary blockade of all isoforms of VEGF-A results in significant loss of retinal ganglion cells. In this study, we utilized double transgenic mice with doxycycline-inducible expression of soluble VEGF receptor 1 coupled to an Fc fragment (sVEGFR1Fc), a potent antagonist of several VEGF family members, including VEGF-A, to test the effects of VEGF blockade in the retina. Expression of sVEGFR1Fc completely blocked VEGF-induced retinal vascular permeability and significantly suppressed the development of choroidal neovascularization at rupture sites in Bruch's membrane, but did not cause regression of established choroidal neovascularization. Mice with constant expression of sVEGFR1Fc in the retina for 7 months had normal electroretinograms and normal retinal and choroidal ultrastructure including normal fenestrations in the choroicapillaris. They also showed no significant difference from control mice in the number of ganglion cell axons in optic nerve cross sections and the retinal level of mRNA for 3 ganglion cell-specific genes. These data indicate that constant blockade of VEGF for up to 7 months has no identifiable deleterious effects on the retina or choroid and support the use of VEGF antagonists in the treatment of retinal diseases.  相似文献   

12.
糖尿病的发病率逐年上升,其并发症的严重性日趋明显,特别是糖尿病视网膜病变导致视力下降和丧失已经引起了广泛关注,所以研究糖尿病视网膜病变的发病机制及其防治是必要的。糖尿病视网膜病变是一种多种机制共同作用的复杂性疾病,而细胞凋亡在糖尿病视网膜病变的发生和发展中起着重要的作用,所以研究细胞凋亡对糖尿病视网膜病变的治疗有着重要意义。由于细胞凋亡研究的深入,人们将注意力集中于糖尿病视网膜细胞凋亡能否得到抑制和逆转的问题上。研究发现,糖尿病视网膜病变细胞凋亡可能与视网膜新生血管形成、VEGF水平增高等因素有关。当前对葛根素的研究表明,葛根素能有效抑制视网膜新生血管形成,并且对于缺血、缺氧等因素引起的损害有很强的改善作用,葛根素还可以降低糖尿病糖基化终产物水平,甚至对视网膜超微结构的损害具有一定的保护作用,所以葛根素可能是治疗糖尿病性视网膜病变的新策略。本文就近期糖尿病视网膜病变中细胞凋亡的有关研究和葛根素的抗细胞凋亡作用做一综述,提示在糖尿病视网膜病变中葛根素的不可忽视的作用。  相似文献   

13.
Adeno-associated virus vector plasmid carrying the expression cassette of brain-derived neurotrophic factor (BDNF), pAAV-BDNF, was constructed and packaged into recombinant adeno-associated virus (rAAV-BDNF). The rAAV-BDNF was intravitreally injected into streptzotocin (STZ)-induced diabetic Sprague–Dawley (SD) Rats. Data showed that over-expression of BDNF could increase alive retinal ganglion cell (RGC) number and improve its function in streptzotocin(STZ)-induced diabetic rats, which might be a new method to treat diabetic neuropathy and retinopathy.  相似文献   

14.
探讨肾上腺髓质素(Adrenomedullin,AM)在糖尿病视网膜病变(Diabeticretinopathy,DR)发病中的作用。Sprague-Dawley雄性大鼠尾静脉注射链脲佐菌素造模,以血糖测定和尿糖水平测定进行筛选,正常对照组尾静脉注射等量枸橼酸钠缓冲液。成模后继续饲养4周,取出眼球视网膜组织,连续冰冻切片,用免疫组织化学SABC法染色观察各组大鼠视网膜RPE细胞AM的表达情况。糖尿病大鼠成模前,两组动物的体重、血糖和尿糖检测结果间无显著性差异(P>0.05)。成模后4周,糖尿病组与正常组大鼠体重、血糖和尿糖数值差异有显著性意义(P<0.01)。AM在正常组大鼠视网膜节细胞层及内核层均有表达,正常组大鼠视网膜AM的光密度值为76.3±5.3,单位面积AM阳性细胞数为(4.5±1.1)×103/mm2。糖尿病大鼠视网膜内RPE细胞肾上腺髓质素表达显著增强,糖尿病大鼠视网膜RPE细胞AM的光密度值为105.7±11.9,单位面积AM阳性细胞数为(17.9±2.3)×103/mm2。两组相比,差异具有显著性(P<0.01)。AM在糖尿病大鼠视网膜RPE细胞表达量增加很可能是DR发生、发展的重要因素。  相似文献   

15.
Diabetic retinopathy is one of the main microvascular complications of diabetes and remains one of the leading causes of blindness worldwide. Recent studies have revealed an important role of inflammatory and proangiogenic high mobility group 1 (HMGB-1) cytokine in diabetic retinopathy. To elucidate cellular mechanisms of HMGB-1 activity in the retina, we performed this study. The histological features of diabetic retinopathy include loss of blood-vessel pericytes and endothelial cells, as well as abnormal new blood vessel growth. To establish the role of HMGB-1 in vulnerability of endothelial cells and pericytes, cultures of these cells, or co-cultures with glial cells, were treated with HMGB-1 and assessed for survival after 24 hours. The expression levels of the cytokines, chemokines, and cell adhesion molecules in glial and endothelial cells were tested by quantitative RT-PCR to evaluate changes in these cells after HMGB-1 treatment. Animal models of neovascularization were also used to study the role of HMGB-1 in the retina. We report that pericyte death is mediated by HMGB-1-induced cytotoxic activity of glial cells, while HMGB-1 can directly mediate death of endothelial cells. We also found that HMGB-1 affects endothelial cell activity. However, we did not observe a difference in the levels of neovascularization between HMGB-1-treated eyes compared to the control eyes, nor in the levels of proangiogenic cytokine VEGF-A expression between glial cells treated with HMGB-1 and control cells. Our data also indicate that HMGB-1 is not involved in retinal neovascularization in the oxygen-induced retinopathy model. Thus, our data suggest that retinal pericyte and endothelial injury and death in diabetic retinopathy may be due to HMGB-1-induced cytotoxic activity of glial cells as well as the direct effect of HMGB-1 on endothelial cells. At the same time, our findings indicate that HMGB-1 plays an insignificant role in retinal and choroidal neovascularization.  相似文献   

16.
本研究通过观察糖尿病性视网膜病变术后患者黄斑中心凹视网膜厚度,脉络膜厚度,尿微量白蛋白、血糖、糖化血红蛋白的水平,试图了解其差异及相关性。我们选取2016年1月至2017年12月于我院就诊的糖尿病性视网膜病变患者200例,根据其有无视网膜病变、有无肾病、术后有无黄斑水肿分为合并组和未合并组,同时选取100例正常成年人作为对照。观察糖尿病患者和对照组、未合并和合并并发症糖尿病患者的黄斑中心凹视网膜厚度(central retinal thickness, CRT),凹下脉络膜厚度(subfoveal choroidal thickness,SFCT),尿微量白蛋白(microAlbunminuria, mALB)、平均血糖(mean blood glucose, MBG)和糖化血红蛋白(glycated haemoglobin, HbA1c)水平,进一步分析了糖尿病黄斑水肿患者的尿微量白蛋白水平与黄斑中心凹视网膜厚度、脉络膜厚度、血糖、糖化血红蛋白的相关性。研究结果表明,糖尿病组患者的CRT水平较对照组低,SFCT、mALB、MBG和HbA1c水平高于对照组;合并视网膜病变、合并肾病和合并黄斑水肿组患者的CRT水平较未合并组低,SFCT、mALB、MBG和HbA1c水平均高于未合并组;黄斑水肿患者的m ALB水平与CRT水平负相关,与SFCT、MBG和HbA1c水平正相关。本研究得出结论:糖尿病性视网膜病变术后患者黄斑中心凹视网膜厚度(CRT)较薄,脉络膜厚度(SFCT)变厚,且与尿微量白蛋白密切相关。  相似文献   

17.
Apoptosis plays an important role in development and remodeling of vasculature during organogenesis. Coordinated branching and remodeling of the retinal vascular tree is essential for normal retinal function. Bcl-2 family members, such as bim not only influence apoptosis, but also cell adhesive and migratory properties essential during vascular development. Here we examined the impact of bim deficiency on postnatal retinal vascularization, as well as retinal neovascularization during oxygen-induced ischemic retinopathy (OIR) and laser-induced choroidal neovascularization. Loss of bim expression was associated with increased retinal vascular density in mature animals. This was mainly attributed to increased numbers of pericytes and endothelial cells. However, the initial spread of the superficial layer of retinal vasculature and, the appearance and density of the tip cells were similar in bim+/+ and bim−/− mice. In addition, hyaloid vessel regression was attenuated in the absence of bim. Furthermore, in the absence of bim retinal vessel obliteration and neovascularization did not occur during OIR. Instead, normal inner retinal vascularization proceeded independent of changes in oxygen levels. In contrast, choroidal neovascularization occurred equally well in bim+/+ and bim−/− mice. Together our data suggest bim expression may be responsible for the inherent sensitivity of the developing retinal vasculature to changes in oxygen levels, and promotes vessel obliteration in response to hyperoxia.  相似文献   

18.
Matrix metalloproteinases (MMPs) degrade extracellular matrix and regulate many functions including cell signaling. Oxidative stress is implicated in the development of diabetic retinopathy, and MMP-2, the most ubiquitous member of the MMP family, is sensitive to oxidative stress. This study aimed to determine the regulation of MMP-2 by oxidative stress in the development of diabetic retinopathy and the role of MMP-2 in the apoptosis of retinal capillary cells. The effects of mitochondrial superoxide scavenger on glucose-induced alterations in MMP-2, and its proenzyme activator MT1-MMP and physiological inhibitor TIMP-2, were determined in retinal endothelial cells, and the regulation of their glucose-induced accelerated apoptosis by the inhibitors of MMP-2 was accessed. To confirm in vitro results, the effects of antioxidant supplementation on MMP-2, MT1-MMP, and TIMP-2 were investigated in the retina of streptozotocin-induced diabetic rats. Glucose-induced activation of retinal capillary cell MMP-2 and MT1-MMP and decrease in TIMP-2 were inhibited by superoxide scavengers, and their accelerated apoptosis was prevented by the inhibitors of MMP-2. Antioxidant therapies, which have been shown to inhibit oxidative stress, capillary cell apoptosis, and retinopathy in diabetic rats, ameliorated alterations in retinal MMP-2 and its regulators. Thus, MMP-2 has a proapoptotic role in the loss of retinal capillary cells in diabetes, and the activation of MMP-2 is under the control of superoxide. This suggests a possible use of MMP-2-targeted therapy to inhibit the development of diabetic retinopathy.  相似文献   

19.
Apoptosis of retinal endothelial cells and pericytes is postulated to contribute to the development of retinopathy in diabetes. The goal of this study is to investigate diabetes-induced activation of retinal caspase-3, an apoptosis executer enzyme, in retina, and examine the effects of antioxidants on the activation. Caspase-3 activation was determined in the retina of alloxan diabetic rats (2-14 months duration) and in the isolated retinal capillary cells (endothelial cells and pericytes) by measuring cleavage of caspase-3 specific fluorescent substrate, and cleavage of caspase-3 holoenzyme and poly (ADP ribosyl) polymerase. Effect of antioxidants on the activation of caspase-3 was determined by feeding a group of diabetic rats diet supplemented with a comprehensive mixture of antioxidants, including Trolox, alpha-tocopherol, N-acetyl cysteine, ascorbic acid, beta-carotene and selenium for 2-14 months, and also under in vitro conditions by incubating isolated retinal capillary cells with antioxidants with wide range of actions. Caspase-3 was activated in the rat retina at 14 months of diabetes (P < 0.05 vs. normal), but not at 2 months of diabetes, and administration of antioxidants for the entire duration inhibited this activation. In the isolated retinal capillary cells incubated in 25 mM glucose medium, caspase-3 activity was increased by 50% compared to the cells incubated in 5 mM glucose (P < 0.02), and antioxidants or caspase-3 inhibitor inhibited this increase. Our results suggest that increased oxidative stress in diabetes is involved in the activation of retinal caspase-3 and apoptosis of endothelial cells and pericytes. Antioxidants might be inhibiting the development of diabetic retinopathy by inhibiting microvascular apoptosis.  相似文献   

20.
Diabetic retinopathy (DR), one of the most serious causes of blindness, is often associated with the upregulation of vascular endothelial growth factor (VEGF) in retina. Recently, leukocyte adhesion (leukostasis) is blamed for the occlusion of retinal capillary vascularity, which ultimately contributes to the progression of diabetic retinopathy. In addition, intercellular adhesion molecule-1 (ICAM-1), a representative factor for leukostasis, is increased in the diabetic retina. Endothelin (ET)-1, a potent vasoconstrictor peptide, is deeply linked to the pathogenesis of diabetic retinopathy. Different therapeutic interventions concerning VEGF have already been proposed to prevent diabetic retinopathy. However, no study yet has reported whether ET-1 dual receptor antagonist could alter the upregulated VEGF and ICAM-1 levels in the diabetic retina. The present study investigated the effect of ET(A/B) dual receptor antagonist (SB209670; 1 mg/rat/day) on the expression of VEGF and ICAM-1 in the diabetic rat retina. Diabetes was induced by intraperitoneal injection of streptozotocin (STZ; 65 mg/kg) in Sprague-Dawley rats, whereas control rats (non-DM control) received only citrate buffer. After 1 week, the STZ-administered rats were randomly divided into two groups: one group (DM+SB209670) received ET(A/B) dual receptor antagonist for 2 weeks, and a vehicle group (DM+vehicle) was treated only with saline. After the treatment period, the retinas were removed from the eyeballs. In DM+vehicle group, the VEGF expression of the retinas was significantly increased (32.8 pg/mg) in comparison to that in the non-DM control group (26.2 pg/mg); this upregulation of VEGF was reversed in the DM+SB209670 group (28.6 pg/mg). The expression of retinal ICAM-1 was increased in the DM+vehicle group (152.2 pg/mg) compared with the non-DM control group (121.6 pg/mg). However, SB209670 treatment did not alter the expression of retinal ICAM-1 level (154.8 pg/ml) in DM rats. Thus we conclude that an ET(A/B) dual receptor antagonist could reverse the expression level of VEGF in the diabetic retina while failing to normalize the upregulated ICAM-1 expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号