首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
Passive mechanical behavior of human neutrophils: power-law fluid.   总被引:5,自引:2,他引:3       下载免费PDF全文
M A Tsai  R S Frank    R E Waugh 《Biophysical journal》1993,65(5):2078-2088
The mechanical behavior of the neutrophil plays an important role in both the microcirculation and the immune system. Several laboratories in the past have developed mechanical models to describe different aspects of neutrophil deformability. In this study, the passive mechanical properties of normal human neutrophils have been further characterized. The cellular mechanical properties were assessed by single cell micropipette aspiration at fixed aspiration pressures. A numerical simulation was developed to interpret the experiments in terms of cell mechanical properties based on the Newtonian liquid drop model (Yeung and Evans, Biophys. J., 56: 139-149, 1989). The cytoplasmic viscosity was determined as a function of the ratio of the initial cell size to the pipette radius, the cortical tension, aspiration pressure, and the whole cell aspiration time. The cortical tension of passive neutrophils was measured to be about 2.7 x 10(-5) N/m. The apparent viscosity of neutrophil cytoplasm was found to depend on aspiration pressure, and ranged from approximately 500 Pa.s at an aspiration pressure of 98 Pa (1.0 cm H2O) to approximately 50 Pa.s at 882 Pa (9.0 cm H2O) when tested with a 4.0-micron pipette. These data provide the first documentation that the neutrophil cytoplasm exhibits non-Newtonian behavior. To further characterize the non-Newtonian behavior of human neutrophils, a mean shear rate gamma m was estimated based on the numerical simulation. The apparent cytoplasmic viscosity appears to decrease as the mean shear rate increases. The dependence of cytoplasmic viscosity on the mean shear rate can be approximated as a power-law relationship described by mu = mu c(gamma m/gamma c)-b, where mu is the cytoplasmic viscosity, gamma m is the mean shear rate, mu c is the characteristic viscosity at characteristic shear rate gamma c, and b is a material coefficient. When gamma c was set to 1 s-1, the material coefficients for passive neutrophils were determined to be mu c = 130 +/- 23 Pa.s and b = 0.52 +/- 0.09 for normal neutrophils. The power-law approximation has a remarkable ability to reconcile discrepancies among published values of the cytoplasmic viscosity measured using different techniques, even though these values differ by nearly two orders of magnitude. Thus, the power-law fluid model is a promising candidate for describing the passive mechanical behavior of human neutrophils in large deformation. It can also account for some discrepancies between cellular behavior in single-cell micromechanical experiments and predictions based on the assumption that the cytoplasm is a simple Newtonian fluid.  相似文献   

2.
Neutrophils from five different individuals are isolated with a density separation technique. A total of 151 unactivated (passive) cells are rapidly aspirated at constant suction pressure and at room temperature into a pipet with a diameter of 4 microns. The suction pressures in excess of an initial yield threshold are 0.5, 1 and 2 kPa and are comparable to those encountered in the microcirculation. These pressures are well in excess of the small suction pressure of approximately 20 Pa that is required to form a static hemispherical bump on the cell. At a given aspiration pressure, the leading edge of an individual cell is "tracked" as it flows into the pipet. A theory based on the flow of a Newtonian liquid from either a hemisphere or a spherical segment into a cylinder is used to model the entry process. Both theory and experiment show that during most of the entry process the leading edge of the cell moves at a nearly constant velocity with a rapid acceleration at the end. For cells from five different individuals at the three different excess aspiration pressures, Newtonian theory gives a cytoplasmic viscosity of 135 +/- 54 Pa.s and overall entry times of 3.3s (0.5 kPa), 1.6s (1 kPa) and 0.82s (2 kPa). These results and those of Evans and Yeung at lower aspiration pressures indicate that the complex cytoplasm inside unactivated neutrophils behaves as a nearly Newtonian fluid with a viscosity on the order of 10(2) Pa.s over almost a two order of magnitude range in aspiration pressure and, thus, rate of deformation.  相似文献   

3.
Ohashi T  Hagiwara M  Bader DL  Knight MM 《Biorheology》2006,43(3-4):201-214
The present study utilised pipette aspiration and simultaneous confocal microscopy to test the hypothesis that chondrocyte deformation is associated with distortion of intracellular organelles and activation of calcium signalling. Aspiration pressure was applied to isolated articular chondrocytes in increments of 2 cm of water every 60 seconds up to a maximum of 10 cm of water. At each pressure increment, confocal microscopy was used to visualise the mitochondria and nucleus labelled with JC-1 and Syto-16, respectively. To investigate intracellular calcium signalling, separate cells were labelled with Fluo 4, rapidly aspirated to 5 cm of water and then imaged for 5 minutes at a tare pressure of 0.1 cm of water. Partial cell aspiration was associated with distortion of the mitochondrial network, elongation of the nucleus and movement towards the pipette mouth. Treatment with cytochalasin D or nocodazole produced an increase in cell aspiration indicating that both the actin microfilaments and microtubules provide mechanical integrity to the cell. When the data was normalised to account for the increased cell deformation, both actin microfilaments and microtubules were shown to be necessary for strain transfer to the intracellular organelles. Mitochondria and nucleus deformation may both be involved in chondrocyte mechanotransduction as well as cellular and intracellular mechanics. In addition, pipette aspiration induced intracellular calcium signalling which may also form part of a mechanotransduction pathway. Alternatively calcium mobilisation may serve to modify actin polymerisation, thereby changing cell mechanics and membrane rigidity in order to facilitate localised cell deformation. These findings have important implications for our understanding of cell mechanics and mechanotransduction as well as interpretation and modelling of pipette aspiration data.  相似文献   

4.
The viscosity of neutrophils and their transit times through small pores   总被引:1,自引:0,他引:1  
Passive neutrophils from five different individuals are rapidly aspirated at constant suction pressure and at room temperature into a pipet with a diameter of 4 microns. The excess suction pressures (i.e., the pressures in excess of the small threshold pressure required to produce continuous flow into the pipet) are 5000, 10,000 and 20,000 dyn/cm2 (0.5, 1 and 2 kPa) and are comparable to those encountered in the microcirculation. The rate of entry into the pipet is modeled with a linearized version of a theory by Yeung and Evans for the newtonian flow of a neutrophil into a pipet or pore. From this theory and measurements of the cell size and its rate of entry into the pipet, we can calculate a value for the cytoplasmic viscosity. A linear (newtonian) fit of the theory to the experimental data gives a value for the viscosity of 1050 poise. A non-linear fit predicts a decrease in the "apparent viscosity" from about 1500 poise at zero excess pressure to 1000 poise at an excess aspiration pressure of 20,000 dyn/cm2. Our experiments and analysis also allow us to calculate a value for the transit time through short pores over a wide range of excess aspiration pressures and pore diameters. For example, for a pore diameter of 3 microns and an aspiration pressure of 1250 dyn/cm2, we predict a transit time of about 70 s. At 6 microns and 20,000 dyn/cm2, the predicted transit time is only about 0.04 s.  相似文献   

5.
The control of the mechanical stimuli transmitted to the cells is critical for the design of functional scaffolds for tissue engineering. The objective of this study was to investigate the dynamics of the mechanical stimuli transmitted to the cells during tissue differentiation in an irregular morphology scaffold under compressive load and perfusion flow. A calcium phosphate-based glass porous scaffold was used. The solid phase and the fluid flow within the pores were modeled as linear elastic solid material and Newtonian fluid, respectively. In the fluid model, different levels of viscosity were used to simulate tissue differentiation. Compressive strain of 0.5% and fluid flow with constant inlet velocity of 10 μm/s or constant inlet pressure of 3 Pa were applied. Octahedral shear strain and fluid shear stress were used as mechano-regulatory stimuli. For constant inlet velocity, stimuli equivalent to bone were predicted in 80% of pore volume for the case of low tissue viscosity. For the cases of high viscosity, fluctuations between stimuli equivalent to tissue formation and cell death were predicted due to the increase in the fluid shear stress when tissue started to fill pores. When constant pressure was applied, stimuli equivalent to bone were predicted in 62% of pore volume when low tissue viscosity was used and 42% when high tissue viscosity was used. This study predicted critical variations of fluid shear stress when cells differentiated. If these variations are not controlled in vitro, they can impede the formation of new matured tissue.  相似文献   

6.

Background

Living cells are subjected to external and internal mechanical stresses. The effects of these stresses on the deformation and subsequent biological response of the cells remains unclear. This study tested the hypothesis that the rate at which pressure (or stress) is applied influence the viscoelastic properties of the cell associated with differences in the dynamics of the actin cytoskeleton.

Principal Finding

Micropipette aspiration was used to determine the instantaneous and equilibrium moduli and the viscosity of isolated chondrocytes based on the standard linear solid (SLS) model and a variation of this incorporating Boltzmann superposition. Cells were visualised for 180 seconds following aspiration to 7 cmH2O at 0.35, 0.70 and 5.48 cmH2O/sec. Cell recovery was then examined for a further 180 seconds once the pressure had been removed. Reducing the rate of application of pressure reduced the levels of cell deformation and recovery associated with a significant increase in modulus and viscosity. Using GFP transfection and confocal microscopy, we show that chondrocyte deformation involves distortion, disassembly and subsequent reassembly of the cortical actin cytoskeleton. At faster pressure rates, cell deformation produced an increase in cell volume associated with membrane bleb formation. GFP-actin transfection inhibited the pressure rate dependent variation in cell mechanics indicating that this behaviour is regulated by GFP-sensitive actin dynamics.

Conclusion

We suggest that slower rates of aspiration pressure enable greater levels of cortical actin distortion. This is partially inhibited by GFP or faster aspiration rates leading to membrane bleb formation and an increase in cell volume. Thus the rate of application of pressure regulates the viscoelastic mechanical properties of living cells through pressure rate sensitive differences in actin dynamics. Therefore cells appear softer when aspirated at a faster rate in contrast to what is expected of a normal viscoelastic material.  相似文献   

7.
Growing number of studies show that biomechanical properties of individual cells play major roles in multiple cellular functions, including cell proliferation, differentiation, migration and cell-cell interactions. The two key parameters of cellular biomechanics are cellular deformability or stiffness and the ability of the cells to contract and generate force. Here we describe a quick and simple method to estimate cell stiffness by measuring the degree of membrane deformation in response to negative pressure applied by a glass micropipette to the cell surface, a technique that is called Micropipette Aspiration or Microaspiration.Microaspiration is performed by pulling a glass capillary to create a micropipette with a very small tip (2-50 μm diameter depending on the size of a cell or a tissue sample), which is then connected to a pneumatic pressure transducer and brought to a close vicinity of a cell under a microscope. When the tip of the pipette touches a cell, a step of negative pressure is applied to the pipette by the pneumatic pressure transducer generating well-defined pressure on the cell membrane. In response to pressure, the membrane is aspirated into the pipette and progressive membrane deformation or "membrane projection" into the pipette is measured as a function of time. The basic principle of this experimental approach is that the degree of membrane deformation in response to a defined mechanical force is a function of membrane stiffness. The stiffer the membrane is, the slower the rate of membrane deformation and the shorter the steady-state aspiration length.The technique can be performed on isolated cells, both in suspension and substrate-attached, large organelles, and liposomes.Analysis is performed by comparing maximal membrane deformations achieved under a given pressure for different cell populations or experimental conditions. A "stiffness coefficient" is estimated by plotting the aspirated length of membrane deformation as a function of the applied pressure. Furthermore, the data can be further analyzed to estimate the Young''s modulus of the cells (E), the most common parameter to characterize stiffness of materials. It is important to note that plasma membranes of eukaryotic cells can be viewed as a bi-component system where membrane lipid bilayer is underlied by the sub-membrane cytoskeleton and that it is the cytoskeleton that constitutes the mechanical scaffold of the membrane and dominates the deformability of the cellular envelope. This approach, therefore, allows probing the biomechanical properties of the sub-membrane cytoskeleton.  相似文献   

8.
The membrane shear elastic modulus (mu) and the time constant for extensional shape recovery (tc) were measured for normal, control human red blood cells (RBC) and for RBC heat treated (HT) at 48 degrees C. Three separate methods for the measurement of mu were compared (two used a micropipette and one employed a flow channel), and the membrane viscosity (n) was calculated from the relation n = mu. tc. The deformability of HT and control cells was evaluated using micropipette techniques, and the bulk viscosity of RBC suspensions at 40% hematocrit was measured. The shear elastic modulus, or "membrane rigidity", was more than doubled by heat treatment, although both the absolute value for mu and the estimate of the increase induced by heat treatment varied depending on the method of measurement. Heat treatment caused smaller increases in membrane viscosity and in membrane bending resistance, and only minimal changes in cell geometry. The deformability of HT cells was reduced: 1) the pressure required for cell entry (Pe) into 3 micrometers pipettes was increased, on average, by 170%; 2) at an aspiration pressure (Pa) exceeding Pe, longer times were required for cell entry into the same pipettes. However, when Pa was scaled relative to the mean entry pressure for a given sample (i.e, Pa/Pe), entry times were similar for control and HT cells. Bulk viscosity of HT RBC suspensions was elevated by approximately 12% on average (shear rates 75 to 1500 inverse seconds). These findings suggest that alteration of RBC membrane mechanical properties, similar to those induced by heat treatment, would most affect the in vivo circulation in regions where vessel dimensions are smaller than cellular diameters.  相似文献   

9.
Physical forces can elicit complex time- and space-dependent deformations in living cells. These deformations at the subcellular level are difficult to measure but can be estimated using computational approaches such as finite element (FE) simulation. Existing FE models predominantly treat cells as spring-dashpot viscoelastic materials, while broad experimental data are now lending support to the power-law rheology (PLR) model. Here, we developed a large deformation FE model that incorporated PLR and experimentally verified this model by performing micropipette aspiration on fibroblasts under various mechanical loadings. With a single set of rheological properties, this model recapitulated the diverse micropipette aspiration data obtained using three protocols and with a range of micropipette sizes. More intriguingly, our analysis revealed that decreased pipette size leads to increased pressure gradient, potentially explaining our previous counterintuitive finding that decreased pipette size leads to increased incidence of cell blebbing and injury. Taken together, our work leads to more accurate rheological interpretation of micropipette aspiration experiments than previous models and suggests pressure gradient as a potential determinant of cell injury.  相似文献   

10.
《Biorheology》1996,33(2):153-168
Much attention has been paid to the study of blood flow in long, narrow tubes. While the influence of tube diameter and driving pressure have been examined in detail, the influence of suspending phase viscosity has generally been assumed only to affect the blood viscosity in a linearly proportional manner, hence the practice of normalizing apparent blood viscosity values by the suspending phase viscosity to give a relative viscosity (e.g., Pries et al., 1992). While this assumption is probably valid for long tubes, it apparently does not hold for blood flow in short tubes (and by extension also for flow in short or branching capillary segments in vivo) in which RBC deformation plays a more significant role. In this paper we present a series of experiments using the Cell Transit Analyzer (CTA) in which the influence of driving pressure and suspending phase viscosity on RBC passage through short, narrow tubes has been systematically evaluated. Over the range studied (1 to 10 cm water), the influence of driving pressure was found to be unremarkable, in that RBC velocity scaled directly and linearly with pressure. This finding is consistent with previous studies. However, a distinct intercept was observed in the linear relationship between RBC pore transit time and suspending phase viscosity, which presumably arises as a consequence of RBC deformation either at the pore entrance or within the pore. Two simple mathematical models for the suspending phase-viscosity/transit-time relationship were considered. The results show that making CTA measurements over a range of suspending medium viscosities is a simple and practical way to obtain additional information about RBC mechanical properties.  相似文献   

11.
M A Tsai  R E Waugh    P C Keng 《Biophysical journal》1996,70(4):2023-2029
In this study, the role of cytoskeleton in HL-60 deformability during the cell cycle was investigated. G1, S, and G2/M cell fractions were separated by centrifugal elutriation. Cell deformability was evaluated by pipette aspiration. Tested at the same aspiration pressures, S cells were found to be less deformable than G1 cells. Moreover, HL-60 cells exhibited power-law fluid behavior: mu = mu c(gamma m/ gamma c)-b, where mu is cytoplasmic viscosity, gamma m is mean shear rate, mu c is the characteristic viscosity at the characteristic shear rate gamma c, and b is a material constant. At a given shear rate, S cells (mu c = 276 +/- 14 Pa.s, b = 0.51 +/- 0.03) were more viscous than G1 cells (mu c = 197 +/- 25, b = 0.53 +/- 0.02). To evaluate the relative importance of different cytoskeletal components in these cell cycle-dependent properties, HL-60 cells were treated with 30 microM dihydrocytochalasin B (DHB) to disrupt F-actin or 100 microM colchicine to collapse microtubules. DHB dramatically softened both G1 and S cells, which reduced the material constants mu c by approximately 65% and b by 20-30%. Colchicine had a limited effect on G1 cells but significantly reduced mu c of S cells (approximately 25%). Thus, F-actin plays the predominate role in determining cell mechanical properties, but disruption of microtubules may also influence the behavior of proliferating cells in a cell cycle-dependent fashion.  相似文献   

12.
We used micropipettes to aspirate leading and trailing edges of wild-type and mutant cells of Dictyostelium discoideum. Mutants were lacking either myosin II or talin, or both proteins simultaneously. Talin is a plasma membrane-associated protein important for the coupling between membrane and actin cortex, whereas myosin II is a cytoplasmic motor protein essential for the locomotion of Dictyostelium cells. Aspiration into the pipette occurred above a threshold pressure only. For all cells containing talin this threshold was significantly lower at the leading edge of an advancing cell as compared to its rear end, whereas we found no such difference in cells lacking talin. Wild-type and talin-deficient cells were able to retract from the pipette against an applied suction pressure. In these cells, retraction was preceded by an accumulation of myosin II in the tip of the aspirated cell lobe. Mutants lacking myosin II could not retract, even if the suction pressures were removed after aspiration. We interpreted the initial instability and the subsequent plastic deformation of the cell surface during aspiration in terms of a fracture between the cell plasma membrane and the cell body, which may involve destruction of part of the cortex. Models are presented that characterize the coupling strength between membrane and cell body by a surface energy sigma. We find sigma approximately 0.6(1.6) mJ/m(2) at the leading (trailing) edge of wild-type cells.  相似文献   

13.
The deformation of a portion of erythrocyte during aspirational entry into a micropipette has been analyzed on the basis of a constant area deformation of an infinite plane membrane into a cylindrical tube. Consideration of the equilibrium of the membrane at the tip of the pipette has generated the relation between the aspirated length and the dimensionless time during deformational entry as well as during relaxation after the removal of aspiration pressure. Experimental studies on deformation and relaxation of normal human erythrocytes were performed with the use of micropipettes and a video dimension analyzer which allowed the continuous recording of the time-courses. The deformation consisted of an initial rapid phase with a membrane viscosity (range 0.6 x 10(-4) to 4 x 10(-4) dyn.s/cm) varying inversely with the degree of deformation and a later slow phase with a high membrane viscosity (mean 2.06 x 10(-2) dyn.s/cm) which was not correlated with the degree of deformation. The membrane viscosity of the recovery phase after 20 s of deformation (mean 5.44 x 10(-4) dyn.s/cm) was also independent of the degree of deformation. When determined after a short period of deformation (e.g., 2 s), however, membrane viscosity of the recovery phase became lower and agreed with that of the deformation phase. These results suggest that the rheological properties of the membrane can undergo dynamic changes depending on the extent and duration of deformation, reflecting molecular rearrangement in response to membrane strain.  相似文献   

14.
The viscoelastic deformation of porcine aortic endothelial cells grown under static culture conditions was measured using the micropipette technique. Experiments were conducted both for control cells (mechanically or trypsin detached from the substrate) and for cells in which cytoskeletal elements were disrupted by cytochalasin B or colchicine. The time course of the aspirated length into the pipette was measured after applying a stepwise increase in aspiration pressure. To analyze the data, a standard linear viscoelastic half-space model of the endothelial cell was used. The aspirated length was expressed as an exponential function of time. The actin microfilaments were found to be the major cytoskeletal component determining the viscoelastic response of endothelial cells grown in static culture.  相似文献   

15.
Force relaxation and permanent deformation of erythrocyte membrane.   总被引:3,自引:3,他引:0       下载免费PDF全文
Force relaxation and permanent deformation processes in erythrocyte membrane were investigated with two techniques: micropipette aspiration of a portion of a flaccid cell, and extension of a whole cell between two micropipettes. In both experiments, at surface extension ratios less than 3:1, the extent of residual membrane deformation is negligible when the time of extension is less than several minutes. However, extensions maintained longer result in significant force relaxation and permanent deformation. The magnitude of the permanent deformation is proportional to the total time period of extension and the level of the applied force. Based on these observations, a nonlinear constitutive relation for surface deformation is postulated that serially couples a hyperelastic membrane component to a linear viscous process. In contrast with the viscous dissipation of energy as heat that occurs in rapid extension of a viscoelastic solid, or in plastic flow of a material above yield, the viscous process in this case represents dissipation produced by permanent molecular reorganization through relaxation of structural membrane components. Data from these experiments determine a characteristic time constant for force relaxation, tau, which is the ratio of a surface viscosity, eta to the elastic shear modulus, mu. Because it was found that the concentration of albumin in the cell suspension strongly mediates the rate of force relaxation, values for tau of 10.1, 40.0, 62.8, and 120.7 min are measured at albumin concentrations of 0.0, 0.01, 0.1, and 1.% by weight in grams, respectively. The surface viscosity, eta, is calculated from the product of tau and mu. For albumin concentrations of 0.0, 0.01, 0.1, and 1% by weight in grams, eta is equal to 3.6, 14.8, 25.6, and 51.9 dyn s/cm, respectively.  相似文献   

16.
Blood leukocytes can exhibit extensive morphological changes during their passage through small capillary vessels. The human monocytic THP-1 cell line was used to explore the metabolic dependence of these changes in shape. Cells were aspirated into micropipettes for determination of the rate of protrusion formation. They were then released and the kinetics of morphological recovery was studied. Results were consistent with Evans’ model (Blood 64:1028, 1984) of a viscous liquid droplet surrounded by a tensile membrane. The estimated values of cytoplasmic viscosity and membrane tension were 162 Pa.s and 0.0142 mN/m respectively. The influence of metabolic inhibitors on cell mechanical behavior was then studied: results strongly suggested that deformation involved two sequential phases. The cell elongation rate measured during the first 30 s following the onset of aspiration was unaffected by azide, an inhibitor of energy production, and it was about doubled by cytochalasin D, a microfilament inhibitor, and colchicine, a microtubule inhibitor. However, during the following 2 min, deformation was almost abolished in cells treated with azide and cytochalasin D, whereas the protrusion of control cells exhibited an approximately threefold increase in length. It is concluded that, although cells seemed to deform as passive objects, active metabolic processes were required to allow extensive morphological changes triggered by external forces.  相似文献   

17.
Macrophage cell lines like J774 cells are ideal model systems for establishing the biophysical foundations of autonomous deformation and motility of immune cells. To aid comparative studies on these and other types of motile cells, we report measurements of the cortical tension and cytoplasmic viscosity of J774 macrophages using micropipette aspiration. Passive J774 cells cultured in suspension exhibited a cortical resting tension of ∼0.14 mN/m and a viscosity (at room temperature) of 0.93 kPa·s. Both values are about one order of magnitude higher than the respective values obtained for human neutrophils, lending support to the hypothesis that a tight balance between cortical tension and cytoplasmic viscosity is a physical prerequisite for eukaryotic cell motility. The relatively large stiffness of passive J774 cells contrasts with their capacity for a more than fivefold increase in apparent surface area during active deformation in phagocytosis. Scanning electron micrographs show how microscopic membrane wrinkles are smoothed out and recruited into the apparent surface area during phagocytosis of large targets.  相似文献   

18.
K R Hallows  R S Frank 《Biorheology》1992,29(2-3):295-309
We measured changes in the deformability of human promyelocytic leukemic (HL-60) cells induced to differentiate for 5-6 days along the granulocyte pathway by 1.25% dimethylsulfoxide (DMSO). Differentiation resulted in an approximately 90% reduction in the transit times of the cells through capillary-sized pores over a range of aspiration pressures. Cell volume, as measured by two methods, decreased by an average of 35%. To account for the contribution of the volume decrease to the decrease in transit time, the liquid drop model, developed to describe neutrophil deformability, was used to calculate an apparent viscosity of the cells during this deformation. The apparent viscosity of both uninduced and induced HL-60 cells was a function of aspiration pressure, and an approximately 80% reduction in viscosity occurred with induction, as determined by regression analysis. The deformation rate-dependent viscosities of the induced cells were between 65 and 240 Pa-sec, values similar to those measured for circulating neutrophils. To assess the role of polymerized actin in these viscosity changes, intracellular F-actin content was measured, and the effect of dihydrocytochalasin B (DHB), an agent that disrupts actin polymerization, was determined. Despite the significant decrease in cellular viscosity, F-actin content per cell volume did not change significantly after induced differentiation. Treatment with 3 and 30 microM DHB lowered cellular F-actin content in a dose-dependent manner in both uninduced and induced cells. Cellular viscosity of both uninduced and induced cells decreased sharply with 3 microM DHB treatment (85% and 76% respectively). 30 microM DHB treatment caused a further significant reduction in the viscosity of uninduced cells, but for induced cells the additional decrease in viscosity was not significant. These data indicate that reductions in both cell volume and intrinsic viscosity contribute to the increased deformability of HL-60 cells with DMSO-induced differentiation. However, changes in the concentration of F-actin cannot account for the decrease in cellular viscosity that occurs.  相似文献   

19.
K A Ward  W I Li  S Zimmer  T Davis 《Biorheology》1991,28(3-4):301-313
The micropipette aspiration technique was used to investigate the deformation properties of a panel of nontransformed and transformed rat fibroblasts derived from the same normal cell line. In this method, a step negative pressure is applied to the cell via a micropipette and the aspiration distance into the pipette as a function of time is determined using video techniques. A standard solid viscoelastic model was then used to analyze the viscoelastic properties of the cell. From these results, it is concluded that a direct correlation exists between an increase in deformability and progression of the transformed phenotype from a nontumorigenic cell line into a tumorigenic, metastatic cell line.  相似文献   

20.
Accurate quantification of the mechanical properties of living cells requires the combined use of experimental techniques and theoretical models. In this paper, we investigate the viscoelastic response of suspended NIH 3T3 fibroblasts undergoing micropipette aspiration using power-law rheology model. As an important first step, we examine the pipette size effect on cell deformation and find that pipettes larger than ~7 μm are more suitable for bulk rheological measurements than smaller ones and the cell can be treated as effectively continuum. When the large pipettes are used to apply a constant pressure to a cell, the creep deformation is better fitted with the power-law rheology model than with the liquid drop or spring-dashpot models; magnetic twisting cytometry measurement on the rounded cell confirms the power-law behavior. This finding is further extended to suspended cells treated with drugs targeting their cytoskeleton. As such, our results suggest that the application of relatively large pipettes can provide more effective assessment of the bulk material properties as well as support application of power-law rheology to cells in suspension.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号