首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
Recent progress in molecular techniques has generated a wealth of information for phylogenetic analysis. Among metazoans all but a single phylum have been incorporated into some sort of molecular analysis. However, the minute and rare species of the phylum Loricifera have remained elusive to molecular systematists. Here we report the first molecular sequence data (nearly complete 18S rRNA) for a member of the phylum Loricifera, Pliciloricus sp. from Korea. The new sequence data were analyzed together with 52 other ecdysozoan sequences, with all other phyla represented by three or more sequences. The data set was analyzed using parsimony as an optimality criterion under direct optimization as well as using a Bayesian approach. The parsimony analysis was also accompanied by a sensitivity analysis. The results of both analyses are largely congruent, finding monophyly of each ecdysozoan phylum, except for Priapulida, in which the coelomate Meiopriapulus is separate from a clade of pseudocoelomate priapulids. The data also suggest a relationship of the pseudocoelomate priapulids to kinorhynchs, and a relationship of nematodes to tardigrades. The Bayesian analysis placed the arthropods as the sister group to a clade that includes tardigrades and nematodes. However, these results were shown to be parameter dependent in the sensitivity analysis. The position of Loricifera was extremely unstable to parameter variation, and support for a relationship of loriciferans to any particular ecdysozoan phylum was not found in the data.  相似文献   

2.
SUMMARY The reconstruction of ancestors is a central aim of comparative anatomy and evolutionary developmental biology, not least in attempts to understand the relationship between developmental and organismal evolution. Inferences based on living taxa can and should be tested against the fossil record, which provides an independent and direct view onto historical character combinations. Here, we consider the nature of the last common ancestor of living ecdysozoans through a detailed analysis of palaeoscolecids, an early and extinct group of introvert‐bearing worms that have been proposed to be ancestral ecdysozoans. In a review of palaeoscolecid anatomy, including newly resolved details of the internal and external cuticle structure, we identify specific characters shared with various living nematoid and scalidophoran worms, but not with panarthropods. Considered within a formal cladistic context, these characters provide most overall support for a stem‐priapulid affinity, meaning that palaeoscolecids are far‐removed from the ecdysozoan ancestor. We conclude that previous interpretations in which palaeoscolecids occupy a deeper position in the ecdysozoan tree lack particular morphological support and rely instead on a paucity of preserved characters. This bears out a more general point that fossil taxa may appear plesiomorphic merely because they preserve only plesiomorphies, rather than the mélange of primitive and derived characters anticipated of organisms properly allocated to a position deep within animal phylogeny.  相似文献   

3.
Chaetognaths are transparent marine animals that are ubiquitous and abundant members of oceanic zooplanktonic communities. Their phylogenetic position within the Metazoa, however, has remained obscure since their discovery. Morphology and embryology have traditionally allied chaetognaths with deuterostomes, but molecular evidence suggests otherwise. Two recent multigene expressed sequence tag (EST) molecular phylogenomic studies suggest that chaetognaths are either sister to the Lophotrochozoa (Matus et al. 2006) or to all protostomes (Marlétaz et al. 2006). We have isolated eight Hox genes, one Parahox gene, and Mox, a related homeodomain gene, from the pelagic chaetognath, Flaccisagitta enflata. Although chaetognath central class Hox genes lack the Lox5 or "spiralian" parapeptide, a diagnostic amino-acid motif that has been utilized previously to assign lophotrochozoan affinity, they do possess a central class Hox gene that has a partial "Ubd-A peptide" found in both ecdysozoan and lophotrochozoan Ubx/Abd-A/Lox2/Lox4 genes. Additionally, we report the presence of two distinct chaetognath posterior Hox genes that possess both ecdysozoan and lophotrochozoan signature amino-acid motifs. The phylogenetic position of chaetognaths, as well as the evolution of the Hox cluster, is discussed in light of these data.  相似文献   

4.
Studying development in diverse taxa can address a central issue in evolutionary biology: how morphological diversity arises through the evolution of developmental mechanisms. Two of the best-studied developmental model organisms, the arthropod Drosophila and the nematode Caenorhabditis elegans, have been found to belong to a single protostome superclade, the Ecdysozoa. This finding suggests that a closely related ecdysozoan phylum could serve as a valuable model for studying how developmental mechanisms evolve in ways that can produce diverse body plans. Tardigrades, also called water bears, make up a phylum of microscopic ecdysozoan animals. Tardigrades share many characteristics with C. elegans and Drosophila that could make them useful laboratory models, but long-term culturing of tardigrades historically has been a challenge, and there have been few studies of tardigrade development. Here, we show that the tardigrade Hypsibius dujardini can be cultured continuously for decades and can be cryopreserved. We report that H. dujardini has a compact genome, a little smaller than that of C. elegans or Drosophila, and that sequence evolution has occurred at a typical rate. H. dujardini has a short generation time, 13–14 days at room temperature. We have found that the embryos of H. dujardini have a stereotyped cleavage pattern with asymmetric cell divisions, nuclear migrations, and cell migrations occurring in reproducible patterns. We present a cell lineage of the early embryo and an embryonic staging series. We expect that these data can serve as a platform for using H. dujardini as a model for studying the evolution of developmental mechanisms.  相似文献   

5.
Gonadotropin-releasing hormone (GNRH) is a neuropeptide critical for reproductive activation and maintenance in vertebrates. The recent elucidation of molluscan GNRH-like sequences led to several important questions regarding the evolution of the GNRH family. For instance, are molluscan and chordate GNRHs true orthologs? Has GNRH been retained in most protostomian lineages? What was the function of the ancestral GNRH? The goal of this review is to provide a critical analysis of GNRH evolution based on data available from the known forms of protostomian GNRH. Judging from the orthology between chordate and protostomian GNRH receptors, conservation of several structural motifs on the GNRH peptide, and exon/intron arrangement conserved between protostomian and chordate GNRH genomic sequences, we conclude that chordate and protostomian GNRHs likely share a common ancestor. Based on our analysis of phylogenetic distribution, we also hypothesize that GNRH may have been lost in the ecdysozoan lineage but preserved in lophotrochozoans. Lastly, we propose that the ancestral function of GNRH is to serve as a general neural regulator, and its considerable specialization in reproduction seen in chordates is a consequence of neofunctionalization following gene duplication.  相似文献   

6.
Loricifera is a phylum of minute animals that live exclusively in marine sediments. A total of 33 species have been described so far in this phylum; however, several more are already known from preliminary observations. Loriciferans are characterised by a complex life cycle, which involves a succession of several adult and larval stages. Here, we describe a new type of loriciferan larval stage: the Shira larva. The gross morphology of this larva is generally similar to that of the most prominent larval type of Loricifera, the so-called Higgins larva. However, the Shira larva possesses a number of unique features, namely (1) a single pair of anteroventral setae is present in the most anterior region of the abdomen, (2) the bases of the anteroventral setae are very large and swollen, (3) the thorax and abdomen are thinner than the introvert and (4) the abdominal region is divided into five sub-regions. Accordingly, we described the new species, Tenuiloricus shirayamai gen. nov. et sp. nov. (incertae sedis). The new findings are discussed from a comparative perspective with the Higgins larva as well as with the fossil of a putative loriciferan larval stage from the Middle Cambrian.  相似文献   

7.
Tiny marine animals that complete their life cycle in the total absence of light and oxygen are reported by Roberto Danovaro and colleagues in this issue of BMC Biology. These fascinating animals are new members of the phylum Loricifera and possess mitochondria that in electron micrographs look very much like hydrogenosomes, the H2-producing mitochondria found among several unicellular eukaryotic lineages. The discovery of metazoan life in a permanently anoxic and sulphidic environment provides a glimpse of what a good part of Earth's past ecology might have been like in 'Canfield oceans', before the rise of deep marine oxygen levels and the appearance of the first large animals in the fossil record roughly 550-600 million years ago. The findings underscore the evolutionary significance of anaerobic deep sea environments and the anaerobic lifestyle among mitochondrion-bearing cells. They also testify that a fuller understanding of eukaryotic and metazoan evolution will come from the study of modern anoxic and hypoxic habitats.  相似文献   

8.
Ultrastructure, biology, and phylogenetic relationships of kinorhyncha   总被引:4,自引:1,他引:3  
The article summarizes current knowledge mainly about the (functional)morphology and ultrastructure, but also about the biology, development,and evolution of the Kinorhyncha. The Kinorhyncha are microscopic,bilaterally symmetrical, exclusively free-living, benthic, marineanimals and ecologically part of the meiofauna. They occur throughoutthe world from the intertidal to the deep sea, generally insediments but sometimes associated with plants or other animals.From adult stages 141 species are known, but 38 species havebeen described from juvenile stages. The trunk is arranged into11 segments as evidenced by cuticular plates, sensory spots,setae or spines, nervous system, musculature, and subcuticularglands. The ultrastructure of several organ systems and thepostembryonic development are known for very few species. Almostno data are available about the embryology and only a singlegene has been sequenced for a single species. The phylogeneticrelationships within Kinorhyncha are unresolved. Priapulida,Loricifera, and Kinorhyncha are grouped together as Scalidophora,but arguments are found for every possible sistergroup relationshipwithin this taxon. The recently published Ecdysozoa hypothesissuggests a closer relationship of the Scalidophora, Nematoda,Nematomorpha, Tardigrada, Onychophora, and Arthropoda.  相似文献   

9.
Hypotheses of relationship among genera of Percidae have been conflicting. Based on different phylogenetic premises, the evolution of small benthic forms in Percidae has been interpreted as resulting from either convergence or common ancestry. In order to assess various phylogenetic hypotheses of Percidae we collected complete sequences (1140 bp) of mitochondrially encoded cytochrome b for 21 species of percids. Seven species representing four additional families of Perciformes were used as outgroups. Maximum parsimony and minimum evolution analyses both recovered single shortest trees, and the results of these analyses were generally congruent with one another. All analyses consistently recovered three monophyletic groups in Percidae: Etheostomatinae (Ammocrypta, Crystallaria, Etheostoma, and Percina), Percinae (Perca and Gymnocephalus), and Luciopercinae (Stizostedion, Zingel, and Romanichthys). As a result of this analysis we present a revised classification of Percidae and discuss the phylogenetic evidence for the independent evolution of small benthic species within Etheostomatinae and Luciopercinae.  相似文献   

10.
A tissue-specific marker of Ecdysozoa   总被引:9,自引:0,他引:9  
Over the past few years, molecular studies of phylogeny have challenged the traditional view of evolutionary relationships among protostomian animal phyla. Based on analysis of 18S ribosomal RNA gene sequences, it has been suggested that some traditional groups, like the articulata and the pseudocoelomata, should be completely abandoned and that instead the protostomians should be split into two major clades: the Ecdysozoa and the Lophotrochozoa. However, this new molecular phylogeny still awaits confirmation by independent methods. In this study, we present a cytological feature that supports the new classification. The carbohydrate epitope that is recognised by antisera against the plant glycoprotein horseradish peroxidase (HRP) is known to be selectively expressed by membrane proteins on the surface of neural tissue in insects. We found that the major ecdysozoan phyla show neural expression of HRP immunoreactivity, which is completely absent in the nervous tissue of lophotrochozoans, deuterostomians, and cnidarians. This suggests that the presence of anti-HRP-reactive glycoproteins in neural tissue is an ecdysozoan autapomorphy.  相似文献   

11.
Phylogenetic position of Nemertea derived from phylogenomic data   总被引:1,自引:0,他引:1  
Nemertea and Platyhelminthes have traditionally been grouped together because they possess a so-called acoelomate organization, but lateral vessels and rhynchocoel of nemerteans have been regarded as coelomic cavities. Additionally, both taxa show spiral cleavage patterns prompting the placement of Nemertea as sister to coelomate Protostomia, that is, either to Neotrochozoa (Mollusca and Annelida) or to Teloblastica (Neotrochozoa plus Arthropoda). Some workers maintain a sister group relationship of Nemertea and Platyhelminthes as Parenchymia because of an assumed homology of G?tte's and Müller's larvae of polyclad Platyhelminthes and the pilidium larvae of heteronemerteans. So far, molecular data were only able to significantly reject a sister group relationship to Teloblastica. Although phylogenomic data are available for Platyhelminthes, Annelida, Mollusca, and Arthropoda, they are lacking for Nemertea. Herein, we present the first analysis specifically addressing nemertean phylogenetic position using phylogenomic data. More specifically, we collected expressed sequence tag data from Lineus viridis (O.F. Müller, 1774) and combined it with available data to produce a data set of 9,377 amino acid positions from 60 ribosomal proteins. Maximum likelihood analyses and Bayesian inferences place Nemertea in a clade together with Annelida and Mollusca. Furthermore, hypothesis testing significantly rejected a sister group relationship to either Platyhelminthes or Teloblastica. The Coelomata hypothesis, which groups coelomate taxa together to the exclusion of acoelomate and pseudocoelomate taxa, is not congruent with our results. Thus, the supposed acoelomate organization evolved independently in Nemertea and Platyhelminthes. In Nemertea, evolution of acoely is most likely due to a secondary reduction of the coelom as it is found in certain species of Mollusca and Annelida. Though looking very similar, the G?tte's and Müller's larvae of polyclad Platyhelminthes are not homologous to the pilidium larvae of heteronemerteans. Finally, the convergent evolution of segmentation in Annelida and Arthropoda is further substantiated.  相似文献   

12.
Orthologous Cys-loop glutamate-gated chloride channels (GluClR’s) have been cloned and described electrophysiologically and pharmacologically in arthropods and nematodes (both members of the invertebrate ecdysozoan superphylum). Recently, GluClR’s from Aplysia californica (a mollusc from the lophotrochozoan superphylum) have been cloned and similarly studied. In spite of sharing a common function, the ecdysozoan and lophotrochozoan receptors have been shown by phylogenetic analyses to have evolved independently. The recent crystallization of the GluClR from C. elegans revealed the binding pocket of the nematode receptor. An alignment of the protein sequences of the nematode and molluscan GluClRs showed that the Aplysia receptor does not contain all of the residues defining the binding mode of the ecdysozoan receptor. That the two receptors have slightly different binding modes is not surprising since earlier electrophysiological and pharmacological experiments had suggested that they were differentially responsive to certain agonists. Knowledge of the structure of the C. elegans GluClR has permitted us to generate a homology model of the binding pocket of the Aplysia receptor. We have analyzed the differences between the two binding modes and evaluated the relative significance of their non-common residues. We have compared the GluClRs electrophysiologically and pharmacologically and we have used site-directed mutagenesis on both receptor types to test predictions made from the model. Finally, we propose an explanation derived from the model for why the nematode receptors are gated only by glutamate, whereas the molluscan receptors can also be activated by β-alanine, GABA and taurine. Like the Aplysia receptor, the vertebrate glycine and GABAA-ρ receptors also respond to these other agonists. An alignment of the sequences of the molluscan and vertebrate receptors shows that the reasons we have given for the ability of the other agonists to activate the Aplysia receptor also explain the agonist profile seen in the glycine and GABAA-ρ receptors.  相似文献   

13.
Highlights? A consensus for ecdysozoan phylogeny is generated from multiple genomic data sets ? A large set of fossil calibrations is used to reveal timing of ecdysozoan evolution ? Arthropods colonized land in the late Cambrian to early Ordovician (~510–471 mya) ? Newly developed sensitivity analyses confirm that date estimates are consistent  相似文献   

14.
The pharyngeal and lorical cuticles of adult and larval Loricifera were investigated by transmission electron microscopy. LR White sections of larval and adult Loricifera were labelled with the lectin wheat germ agglutinin (WGA) conjugated to colloidal gold. The pharyngeal cuticle of Nanaloricus mysticus exhibits a multilaminate epicuticle and an amorphous basal layer with osmiophilic fibres. The lorical cuticle consists of an osmiophilic or trilaminate epicuticle, one to three amorphous layer(s), and a basal fibrous layer which is strongly labelled by the lectin-gold conjugate. Chitinase treatment or competitive inhibition with N-, N '-, N "-triacetylchitotriose exclude labelling almost completely, whereas competitive inhibition with N -acetyl-D-glucosamine does not affect labelling intensity. The binding of WGA in connection with competition experiments indicates the presence of chitin in the fibrous layer. In most areas of a section, three amorphous layers extend below the epicuticle of the Nanaloricidae. Only in favourably orientated sections can all three "amorphous" layers be seen to be formed by stacks of lamellae. Modified articulation sites with bundles of osmiophilic longitudinal fibres and an osmiophilic plate (Nanaloricidae only) occur in adult Loricifera, but not in the larval stages. The ultrastructure of the lorical cuticle of the Loricifera resembles that of other Nemathelminthes (= Aschelminthes). The morphology of the articulation sites and the number of lorical plates seem to differ between the Loricifera and Priapulida. Therefore, it is currently not possible to conclude whether the lorica of the Loricifera and Priapulida are homologous structures. © 1997 The Royal Swedish Academy of Sciences. Published by Elsevier Science Ltd.  相似文献   

15.
16.
Ascidians inhabit both shallow water and the deep sea. The phylogenetic position of deep-sea ascidians has not been sufficiently investigated because of their unusual habitats. The family Octacnemidae is one such enigmatic deep-sea ascidian. In this report, we determined the sequences of the 18SrDNA and a mitochondrial protein gene of Megalodicopia hians belonging to the family Octacnemidae, and we analyzed its phylogenetic relationship with other ascidians. A phylogenetic relationship of this family with the families Cionidae and/or Corellidae has been suspected based on a small number of morphological characteristics. However, our results suggested that M. hians has a close relationship to the family Corellidae and might originate from them. This is the first report of the molecular phylogenetic analysis of a deep-sea ascidian.  相似文献   

17.
18.
Recent molecular data provide strong support for the view that all metazoan phyla, including Porifera, are of monophyletic origin. The relationship of Metazoa, including the Porifera, to Plantae, Fungi and unicellular eukaryotes has only rarely been studied by using cDNAs coding for proteins. Sequence data from rDNA suggested a relationship of Porifera to unicellular eukaryotes (choanoflagellates). However, ultrastructural studies of choanocytes did not support these findings. In the present study, we compared amino acid sequences that are found in a variety of metazoans (including sponges) with those of Plantae, Fungi and unicellular eukaryotes, to obtain an answer to this question. We used the four sequences from 70 kDa heat-shock proteins, the serine-threonine kinase domain found in protein kinases, beta-tubulin and calmodulin. The latter two sequences were deduced from cDNAs, isolated from the sponge Geodia cydonium for the phylogenetic analyses presented. These revealed that the sponge molecules were grouped into the same branch as the Metazoa, which is statistically (significantly) separated from those branches that comprise the sequences from Fungi, Plantae and unicellular eukaryotes. From our molecular data it seems evident that the unicellular eukaryotes existed at an earlier stage of evolution, and the Plantae and especially the Fungi and the Metazoa only appeared later.  相似文献   

19.
ABSTRACT: Large-scale sequencing of genomes has enabled the inference of phylogenies based on the evolution of genomic architecture, under such events as rearrangements, duplications, and losses. Many evolutionary models and associated algorithms have been designed over the last few years and have found use in comparative genomics and phylogenetic inference. However, the assessment of phylogenies built from such data has not been properly addressed to date. The standard method used in sequence-based phylogenetic inference is the bootstrap, but it relies on a large number of homologous characters that can be resampled; yet in the case of rearrangements, the entire genome is a single character. Alternatives such as the jackknife suffer from the same problem, while likelihood tests cannot be applied in the absence of well established probabilistic models. We present a new approach to the assessment of distance-based phylogenetic inference from whole-genome data; our approach combines features of the jackknife and the bootstrap and remains nonparametric. For each feature of our method, we give an equivalent feature in the sequence-based framework; we also present the results of extensive experimental testing, in both sequence-based and genome-based frameworks. Through the feature-by-feature comparison and the experimental results, we show that our bootstrapping approach is on par with the classic phylogenetic bootstrap used in sequence-based reconstruction, and we establish the clear superiority of the classic bootstrap for sequence data and of our corresponding new approach for rearrangement data over proposed variants. Finally, we test our approach on a small dataset of mammalian genomes, verifying that the support values match current thinking about the respective branches. Our method is the first to provide a standard of assessment to match that of the classic phylogenetic bootstrap for aligned sequences. Its support values follow a similar scale and its receiver-operating characteristics are nearly identical, indicating that it provides similar levels of sensitivity and specificity. Thus our assessment method makes it possible to conduct phylogenetic analyses on whole genomes with the same degree of confidence as for analyses on aligned sequences. Extensions to search-based inference methods such as maximum parsimony and maximum likelihood are possible, but remain to be thoroughly tested.  相似文献   

20.
The major DNA constituent of primate centromeres is alpha satellite DNA. As much as 2%–5% of sequence generated as part of primate genome sequencing projects consists of this material, which is fragmented or not assembled as part of published genome sequences due to its highly repetitive nature. Here, we develop computational methods to rapidly recover and categorize alpha-satellite sequences from previously uncharacterized whole-genome shotgun sequence data. We present an algorithm to computationally predict potential higher-order array structure based on paired-end sequence data and then experimentally validate its organization and distribution by experimental analyses. Using whole-genome shotgun data from the human, chimpanzee, and macaque genomes, we examine the phylogenetic relationship of these sequences and provide further support for a model for their evolution and mutation over the last 25 million years. Our results confirm fundamental differences in the dispersal and evolution of centromeric satellites in the Old World monkey and ape lineages of evolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号