首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Alloxan is known as a selective B-cell cytotoxic substance, and there is so far little evidence for a direct toxic effect on the other islet cell types. To elucidate further whether such effects occur, the actions of alloxan on glucagon release and glucose oxidation were studied in isolated normal or A2-cell-rich pancreatic islets of the guinea pig. The A2-cell-rich islets were obtained from animals injected with streptozotocin 1–2 weeks before islet isolation. After exposure to alloxan (2 or 5mm) in vitro for 30min at 4°C, the islets were incubated in media containing either 1.7mm-glucose or 16.7mm-glucose plus 30m-i.u. of bovine insulin/ml. In both types of islet, alloxan abolished the ability of glucose and insulin both to decrease glucagon release and to increase the rate of glucose oxidation. A high concentration of glucose (28mm) during exposure to alloxan protected against these injurious effects. Tissue culture of alloxan-treated islets for 24h in 5.5mm-glucose restored neither the suppressive effect of glucose on glucagon release nor the inhibition of glucose oxidation of the A2-cells. However, culture for 1 week completely normalized both the glucagon-secretory response and glucose oxidation by both kinds of islets. It is therefore concluded that alloxan affects the secretory mechanism of not only the B-cell but also of the islet A2-cell, although this latter cell type is not primarily destroyed by the drug. The data furthermore support the concept of a relationship between glucose metabolism and the glucose-mediated glucagon release of the A2-cell.  相似文献   

2.
The effects of dopamine on pituitary prolactin secretion and pituitary cyclic AMP accumulation were studied by using anterior pituitary glands from adult female rats, incubated in vitro. During 2h incubations, significant inhibition of prolactin secretion was achieved at concentrations between 1 and 10nm-dopamine. However, 0.1–1μm-dopamine was required before a significant decrease in pituitary cyclic AMP content was observed. In the presence of 1μm-dopamine, pituitary cyclic AMP content decreased rapidly to reach about 75% of the control value within 20min and there was no further decrease for at least 2h. Incubation with the phosphodiesterase inhibitors theophylline (8mm) or isobutylmethylxanthine (2mm) increased pituitary cyclic AMP concentrations 3- and 6-fold respectively. Dopamine (1μm) had no effect on the cyclic AMP accumulation measured in the presence of theophylline, but inhibited the isobutylmethylxanthine-induced increase by 50%. The dopamine inhibition of prolactin secretion was not affected by either inhibitor. Two derivatives of cyclic AMP (dibutyryl cyclic AMP and 8-bromo cyclic AMP) were unable to block the dopamine (1μm) inhibition of prolactin secretion, although 8-bromo cyclic AMP (2mm) significantly stimulated prolactin secretion and both compounds increased somatotropin (growth hormone) release. Cholera toxin (3μg/ml for 4h) increased pituitary cyclic AMP concentrations 4–5-fold, but had no effect on prolactin secretion. The inhibition of prolactin secretion by dopamine was unaffected by cholera toxin, despite the fact that dopamine had no effect on the raised pituitary cyclic AMP concentration caused by this factor. Dopamine had no significant effect on either basal or stimulated somatotropin secretion under any of the conditions tested. We conclude that the inhibitory effects of dopamine on prolactin secretion are probably not mediated by lowering of cyclic AMP concentration, although modulation of the concentration of this nucleotide in some other circumstances may alter the secretion of the hormone.  相似文献   

3.
Both cyclic AMP phosphodiesterase and cyclic GMP phosphodiesterase were recovered mainly from the supernatant fractions of guinea-pig pancreas, but a higher proportion of the activity of the former was associated with the pellet fractions. The activities in the supernatant were not separated by gel filtration, but were clearly separated by subsequent chromatography on an anion-exchange resin. The activities of cyclic AMP phosphodiesterase and cyclic GMP phosphodiesterase had high-affinity (Km 6.5±1.1μm and 31.9±3.9μm respectively) and low-affinity (Km 0.56±0.05mm and 0.32±0.03mm respectively) components. The activity of neither enzyme was affected by the pancreatic secretogens, cholecystokinin-pancreozymin, secretin and carbachol. Removal of ions by gel filtration resulted in a marked reduction in cyclic nucleotide phosphodiesterase activity, which could be restored by addition of Mg2+. Mn2+ (3mm) was as effective as Mg2+ (3mm) in the case of cyclic AMP phosphodiesterase, but was less than half as effective in the case of cyclic GMP phosphodiesterase. The metal-ion chelators, EDTA and EGTA, also decreased activity. Ca2+ (1mm) did not affect the activity of cyclic nucleotide phosphodiesterase when the concentration of Mg2+ was 3mm. At concentrations of Mg2+ between 0.1 and 1mm, 1mm-Ca2+ was activatory, and at concentrations of Mg2+ below 0.1mm, 1mm-Ca2+ was inhibitory. These results are discussed in terms of the possible significance of cyclic nucleotide phosphodiesterase in the physiological control of cyclic nucleotide concentrations during stimulus–secretion coupling.  相似文献   

4.
Hyperinsulinemia (HI) is elevated plasma insulin at basal glucose. Impaired glucose tolerance is associated with HI, although the exact cause and effect relationship remains poorly defined. We tested the hypothesis that HI can result from an intrinsic response of the β-cell to chronic exposure to excess nutrients, involving a shift in the concentration dependence of glucose-stimulated insulin secretion. INS-1 (832/13) cells were cultured in either a physiological (4 mm) or high (11 mm) glucose concentration with or without concomitant exposure to oleate. Isolated rat islets were also cultured with or without oleate. A clear hypersensitivity to submaximal glucose concentrations was evident in INS-1 cells cultured in excess nutrients such that the 25% of maximal (S0.25) glucose-stimulated insulin secretion was significantly reduced in cells cultured in 11 mm glucose (S0.25 = 3.5 mm) and 4 mm glucose with oleate (S0.25 = 4.5 mm) compared with 4 mm glucose alone (S0.25 = 5.7 mm). The magnitude of the left shift was linearly correlated with intracellular lipid stores in INS-1 cells (r2 = 0.97). We observed no significant differences in the dose responses for glucose stimulation of respiration, NAD(P)H autofluorescence, or Ca2+ responses between left- and right-shifted β-cells. However, a left shift in the sensitivity of exocytosis to Ca2+ was documented in permeabilized INS-1 cells cultured in 11 versus 4 mm glucose (S0.25 = 1.1 and 1.7 μm, respectively). Our results suggest that the sensitivity of exocytosis to triggering is modulated by a lipid component, the levels of which are influenced by the culture nutrient environment.  相似文献   

5.
1. The ability of tricarboxylic acid-cycle metabolites to influence the physiological performance of the perfused anaerobic rat heart was investigated. Energy expenditure/h [(beats/min)×60×systolic pressure/g of protein] for various anoxic conditions compared with oxygenated control hearts were: 5mm-glucose, 4.5%; 20mm- or 40mm-glucose, 10%; 20mm-glucose plus fumerate+malate+glutamate, 29%; 20mm-glucose plus oxaloacetate and α-oxoglutarate, 31%. 2. The energy expenditure/lactate production ratio was increased by the tricarboxylic acid-cycle metabolites, indicating that alterations in anaerobic physiological performance did not result from changes in glycolysis. 3. Analysis of tissue constituents provided further indication of an enhanced energy status for fumarate+malate+glutamate- and oxaloacetate+α-oxoglutarate-perfused hearts; tissue concentrations of both glycogen and ATP were higher than in the 20mm-glucose-perfused groups. 4. A marked increase in the accumulation of succinate in tissues perfused with oxaloacetate+α-oxoglutarate or fumarate+malate+glutamate provided further evidence that these metabolites were stimulating mitochondrial energy production under anoxia. 5. These studies indicate that mitochondrial ATP production can be stimulated in an isolated mammalian tissue perfused under anaerobiosis with a resulting enhancement of cell function.  相似文献   

6.
Uridine diphosphate (UDP)-glucose 4-epimerase (EC 5.1.3.2) has been purified over 1000-fold from extracts of wheat germ by MnCl2 treatment, (NH4)2SO4 fractionation, Sephadex column chromatography, and adsorption onto and elution from calcium phosphate gel. The enzyme has a pH optimum of 9.0. Km values are 0.1 mm for UDP-d-galactose and 0.2 mm for UDP-d-glucose. NAD is required for activity; Ka = 0.04 mm. NADH is an inhibitor strictly competitive with NAD; Ki = 2 μm. Wheat germ also contains UDP-l-arabinose 4-epimerase (EC 5.1.3.5) and thymidine diphosphate (TDP)-glucose 4-epimerase which are distinct from UDP-glucose 4-epimerase.  相似文献   

7.
The mechanism of hexose transport into plasma membrane vesicles isolated from mature sugarbeet leaves (Beta vulgaris L.) was investigated. The initial rate of glucose uptake into the vesicles was stimulated approximately fivefold by imposing a transmembrane pH gradient (ΔpH), alkaline inside, and approximately fourfold by a negative membrane potential (ΔΨ), generated as a K+-diffusion potential, negative inside. The -fold stimulation was directly related to the relative ΔpH or ΔΨ gradient imposed, which were determined by the uptake of acetate or tetraphenylphosphonium, respectively. ΔΨ- and ΔpH-dependent glucose uptake showed saturation kinetics with a Km of 286 micromolar for glucose. Other hexose molecules (e.g. 2-deoxy-d-glucose, 3-O-methyl-d-glucose, and d-mannose) were also accumulated into plasma membrane vesicles in a ΔpH-dependent manner. Inhibition constants of a number of compounds for glucose uptake were determined. Effective inhibitors of glucose uptake included: 3-O-methyl-d-glucose, 5-thio-d-glucose, d-fructose, d-galactose, and d-mannose, but not 1-O-methyl-d-glucose, d- and l-xylose, l-glucose, d-ribose, and l-sorbose. Under all conditions of proton motive force magnitude and glucose and sucrose concentration tested, there was no effect of sucrose on glucose uptake. Thus, hexose transport on the sugarbeet leaf plasma membrane was by a H+-hexose symporter, and the carrier and possibly the energy source were not shared by the plasma membrane H+-sucrose symporter.  相似文献   

8.
1. Regulation of the reduction of ferricyanide by the isolated perfused rat liver was studied. 2. The rate of reduction was dependent on the rate of supply of ferricyanide and independent of perfusate oxygen concentration. 3. The effect of pH was also examined; the rate of reduction was optimal at pH 7.4 and was inhibited to a greater extent by pH values below 7.4 than those above 7.4. 4. The effects of substrates on the rate of ferricyanide reduction was assessed. Reductants of the cytosolic and mitochondrial NADH/NAD+ couple were tested. 2-Hydroxybutyrate (10mm), lactate (10mm), glycerol (10mm) and ethanol (10mm) each had no effect. Dihydroxyacetone (10mm) stimulated the rate. 5. Dehydroascorbate (1mm), stimulated the rate of ferricyanide reduction; the stimulation did not appear to be attributable to the production of reduced substances that were excreted to reduce extracellular ferricyanide. 6. The effects of glucagon and cyclic AMP on the rate of ferricyanide reduction were examined. Glucagon inhibited the rate by approx. 30% and half-maximal inhibition occurred at 0.1 nm, corresponding to the concentration at which half-maximal stimulation of glucose release occurred. Cyclic AMP stimulated glucose release but had no significant effect on the rate of ferricyanide reduction. It is concluded that the trans-plasma membrane redox system of liver that reduces extracellular ferricyanide is regulated by glucagon. The rate is also altered by the substrate dihydroxyacetone. The effect of glucagon may be direct as it cannot be mimicked by cyclic AMP and it occurs directly following exposure to the hormone.  相似文献   

9.
1. The kinetic properties of the soluble and particulate hexokinases from rat heart have been investigated. 2. For both forms of the enzyme, the Km for glucose was 45μm and the Km for ATP 0·5mm. Glucose 6-phosphate was a non-competitive inhibitor with respect to glucose (Ki 0·16mm for the soluble and 0·33mm for the particulate enzyme) and a mixed inhibitor with respect to ATP (Ki 80μm for the soluble and 40μm for the particulate enzyme). ADP and AMP were competitive inhibitors with respect to ATP (Ki for ADP was 0·68mm for the soluble and 0·60mm for the particulate enzyme; Ki for AMP was 0·37mm for the soluble and 0·16mm for the particulate enzyme). Pi reversed glucose 6-phosphate inhibition with both forms at 10mm but not at 2mm, with glucose 6-phosphate concentrations of 0·3mm or less for the soluble and 1mm or less for the particulate enzyme. 3. The total activity of hexokinase in normal hearts and in hearts from alloxan-diabetic rats was 21·5μmoles of glucose phosphorylated/min./g. dry wt. of ventricle at 25°. The temperature coefficient Q10 between 22° and 38·5° was 1·93; the ratio of the soluble to the particulate enzyme was 3:7. 4. The kinetic data have been used to predict rates of glucose phosphorylation in the perfused heart at saturating concentrations of glucose from measured concentrations of ATP, glucose 6-phosphate, ADP and AMP. These have been compared with the rates of glucose phosphorylation measured with precision in a small-volume recirculation perfusion apparatus, which is described. The correlation between predicted and measured rates was highly significant and their ratio was 1·07. 5. These findings are consistent with the control of glucose phosphorylation in the perfused heart by glucose 6-phosphate concentration, subject to certain assumptions that are discussed in detail.  相似文献   

10.
1. Suspensions of isolated chick jejunal columnar absorptive (brush-border) cells respired on endogenous substrates at a rate 40% higher than that shown by rat brush-border cells. 2. Added d-glucose (5 or 10mm), l-glutamine (2.5mm) and l-glutamate (2.5mm) were the only individual substrates which stimulated respiration by chick cells; l-aspartate (2.5 or 6.7mm), glutamate (6.7mm), glutamine (6.7mm), l-alanine (1 or 10mm), pyruvate (1 or 2mm), l-lactate (5 or 10mm), butyrate (10mm) and oleate (1mm) did not stimulate chick cell respiration; l-asparagine (6.7mm) inhibited slightly; glucose (5mm) stimulated more than did 10mm-glucose. 3. Acetoacetate (10mm) and d-3-hydroxybutyrate (10mm) were rapidly consumed but, in contrast to rat brush-border cells, did not stimulate respiration. 4. Glucose (10mm) was consumed more slowly than 5mm-glucose; the dominant product of glucose metabolism during vigorous respiration was lactate; the proportion of glucose converted to lactate was greater with 10mm- than with 5mm-glucose. 5. Glutamate and aspartate consumption rates decreased, and alanine and glutamine consumption rates increased when their initial concentrations were raised from 2.5 to 6.7 or 10mm. 6. The metabolic fate of glucose was little affected by concomitant metabolism of any one of aspartate, glutamate or glutamine except for an increased production of alanine; the glucose-stimulated respiration rate was unaffected by concomitant metabolism of these individual amino acids. 7. Chick cells produced very little alanine from aspartate and, in contrast to rat cells, likewise produced very little alanine from glutamate or glutamine; in chick cells alanine appeared to be predominantly a product of transmination of pyruvate derived from glucose metabolism. 8. In chick cells, glutamate and glutamine were formed from aspartate (2.5 or 6.7mm); aspartate and glutamine were formed from glutamate (2.5mm) but only aspartate from 6.7mm-glutamate; glutamate was the dominant product formed from glutamine (6.7mm) but aspartate only was formed from 2.5mm-glutamine. 9. Chick brush-border cells can thus both catabolize and synthesize glutamine; glutamine synthesis is always diminished by concomitant metabolism of glucose, presumably by allosteric inhibition of glutamine synthetase by alanine. 10. Proline was formed from glutamine (2.5mm) but not from glutamine (2.5mm)+glucose (5mm) and not from 2.5mm-glutamate; ornithine was formed from glutamine (2.5mm)+glucose (5.0mm) but not from glutamine alone; serine was formed from glutamine (2.5mm)+glucose (5mm) and from these two substrates plus aspartate (2.5mm). 11. Total intracellular adenine nucleotides (22μmol/g dry wt.) remained unchanged during incubation of chick cells with glucose. 12. Intracellular glutathione (0.7–0.8mm) was depleted by 40% during incubation of respiring chick cells without added substrates for 75min at 37°C; partial restoration of the lost glutathione was achieved by incubating cells with l-glutamate+l-cysteine+glycine.  相似文献   

11.
The effects of aliphatic 2-oxocarboxylic acids, at concentrations of up to 40mm, on the function of pancreatic islets from ob/ob (obese–hyperglycaemic) mice were investigated. 1. 2-Oxopentanoate, dl-3-methyl-2-oxopentanoate, 4-methyl-2-oxopentanoate and 2-oxohexanoate all induced insulin release by isolated incubated islets and a biphasic insulin-secretory pattern in perfused mouse pancreas. The last two substances were similar in potency to glucose. Pyruvate, 2-oxobutyrate, 3-methyl-2-oxobutyrate and 2-oxo-octanoate did not induce insulin release significantly. 2. 2-Oxocarboxylic acids with significant insulin-secretory potency also induced significant 45Ca uptake by isolated incubated islets. 3. The rates of decarboxylation of [1-14C]pyruvate, 3-methyl-2-oxo[1-14C]butyrate and 4-methyl-2-oxo[1-14C]pentanoate were twice as high as the rates of oxidation of the corresponding U-14C-labelled compounds. However, whereas the rates of metabolism of labelled pyruvate and 3-methyl-2-oxobutyrate steadily increased over the concentration range 1–40mm, those of labelled 4-methyl-2-oxopentanoate and d-[U-14C]glucose levelled off at concentrations above 10mm. 4. Omission of 40CaCl2 from the incubation medium reduced the rate of oxidation of the insulin secretagogue [U-14C]4-methyl-2-oxopentanoate, but left that of the non-(insulin secretagogue) [U-14C]3-methyl-2-oxobutyrate unaffected. 5. Only glucose, and not pyruvate, 3-methyl-2-oxobutyrate and 4-methyl-2-oxopentanoate, significantly inhibited oxidation of endogenous fatty acids. 6. It is suggested that stimulus–secretion coupling and the resulting exocytosis of insulin in pancreatic β-cells may modulate both fuel oxidation and 45Ca uptake.  相似文献   

12.
Uptake of monosaccharides by guinea-pig cerebral-cortex slices   总被引:1,自引:1,他引:0       下载免费PDF全文
By the use of 1mm-iodoacetate to inhibit glycolysis in guinea-pig cerebral tissue slices, the kinetics of the uptake of monosaccharides on transfer of tissue from 0° to 37° were studied. d-Ribose, d-galactose, d-mannose, l-sorbose, and d-fructose showed diffusion kinetics, whereas 2-deoxy-d-glucose, d-glucose, d-arabinose and d-xylose showed saturation kinetics.  相似文献   

13.
Tsai CM  Hassid WZ 《Plant physiology》1973,51(6):998-1001
UDP-d-glucose, at a micromolar level in the presence of MgCl2 and oat (Avena sativa) coleoptile particulate enzyme which contains both β-(1 → 3) and β-(1 → 4) glucan synthetases, produces glucan with mainly β-(1 → 4) glucosyl linkages. An activation of β-(1 → 3) glucan synthetase by UDP-d-glucose and a decrease in the formation of β-(1 → 3) glucan in the presence of MgCl2 have been observed. However, at high substrate concentration (≥ 10−4m), the activation of β-(1 → 3) glucan synthetase is so pronounced that the formation of β-(1 → 3) glucosyl linkage predominates in synthesized glucan regardless of the presence of MgCl2. These observations may explain the striking shift in the composition of glucan of particulate enzyme from a β-(1 → 4) to β-(1 → 3) glucosyl linkage when UDP-d-glucose concentration is raised from a low concentration (≤ 10−5m) to a higher concentration (≥ 10−4m).  相似文献   

14.
Renal transport of four different categories of organic solutes, namely sugars, neutral amino acids, monocarboxylic acids and dicarboxylic acids, was studied by using the potential-sensitive dye 3,3′-diethyloxadicarbocyanine iodide in purified luminal-membrane and basolateral-membrane vesicles isolated from rabbit kidney cortex. Valinomycin-induced K+ diffusion potentials resulted in concomitant changes in dye–membrane-vesicle absorption spectra. Linear relationships were obtained between these changes and depolarization and hyperpolarization of the vesicles. Addition of d-glucose, l-phenylalanine, succinate or l-lactate to luminal-membrane vesicles, in the presence of an extravesicular>intravesicular Na+ gradient, resulted in rapid transient depolarization. With basolateral-membrane vesicles no electrogenic transport of d-glucose or l-phenylalanine was observed. Spectrophotometric competition studies revealed that d-galactose is electrogenically taken up by the same transport system as that for d-glucose, whereas l-phenylalanine, succinate and l-lactate are transported by different systems in luminal-membrane vesicles. The absorbance changes associated with simultaneous addition of d-glucose and l-phenylalanine were additive. The uptake of these solutes was influenced by the presence of Na+-salt anions of different permeabilities in the order: Cl>SO42−>gluconate. Addition of valinomycin to K+-loaded vesicles enhanced uptake of d-glucose and l-phenylalanine in the presence of an extravesicular>intravesicular Na+ gradient. Gramicidin or valinomycin plus nigericin diminished/abolished electrogenic solute uptake by Na+- or Na++K+-loaded vesicles respectively. These results strongly support the presence of Na+-dependent renal electrogenic transport of d-glucose, l-phenylalanine, succinate and l-lactate in luminal-membrane vesicles.  相似文献   

15.
1. The aerobic transport of d-glucose and d-galactose in rabbit kidney tissue at 25° was studied. 2. In slices forming glucose from added substrates an accumulation of glucose against its concentration gradient was found. The apparent ratio of intracellular ([S]i) and extracellular ([S]o) glucose concentrations was increased by 0·4mm-phlorrhizin and 0·3mm-ouabain. 3. Slices and isolated renal tubules actively accumulated glucose from the saline; the apparent [S]i/[S]o fell below 1·0 only at [S]o higher than 0·5mm. 4. The rate of glucose oxidation by slices was characterized by the following parameters: Km 1·16mm; Vmax. 4·5μmoles/g. wet wt./hr. 5. The active accumulation of glucose from the saline was decreased by 0·1mm-2,4-dinitrophenol, 0·4mm-phlorrhizin and by the absence of external Na+. 6. The kinetic parameters of galactose entry into the cells were: Km 1·5mm; Vmax 10μmoles/g. wet wt./hr. 7. The efflux kinetics from slices indicated two intracellular compartments for d-galactose. The galactose efflux was greatly diminished at 0°, was inhibited by 0·4mm-phlorrhizin, but was insensitive to ouabain. 8. The following mechanism of glucose and galactose transport in renal tubular cells is suggested: (a) at the tubular membrane, these sugars are actively transported into the cells by a metabolically- and Na+-dependent phlorrhizin-sensitive mechanism; (b) at the basal cell membrane, these sugars are transported in accordance with their concentration gradient by a phlorrhizin-sensitive Na+-independent facilitated diffusion. The steady-state intracellular sugar concentration is determined by the kinetic parameters of active entry, passive outflow and intracellular utilization.  相似文献   

16.
The particulate glucan synthetase preparation isolated from a homogenate of oat coleoptiles at 4 C lost 65% of its original activity after 1 day when the UDP-d-glucose substrate concentration was 5 × 10−7m to 1.0 × 10−6m. Storage of the particulate enzyme at −20 C or in liquid nitrogen did not prevent the enzyme from losing its activity. Incorporation of 0.5% hovine serum albumin into the medium stabilized the particulate enzyme at 0 C for 6 days and for at least 2 weeks in liquid nitrogen.  相似文献   

17.
Native insulin inhibits the binding and degradation of 125I-labelled insulin in parallel. Half-maximal inhibition of degradation occurs with 10nm-insulin, a hormone concentration sufficient to saturate the insulin receptor. The proportion of bound hormone that is degraded increases as the insulin concentration is increased, suggesting that low-affinity uptake is functionally related to degradation. Since only a small fraction (approx. 10%) of the overall degradation occurs at the plasma membrane, or in the extracellular medium, translocation of bound hormone into the cell is the predominant mechanism mediating the degradation of insulin. In the presence of 0.6nm-insulin, a concentration at which most cell-associated hormone is receptor-bound, chloroquine increases the amount of 125I-labelled insulin retained by hepatocytes. However, chloroquine increases the retention of degradation products of insulin in incubations containing sufficient hormone (6nm) to saturate the receptor and permit occupancy of low-affinity sites. Glucagon does not compete for the interaction of 125I-labelled insulin (1nm) with the insulin receptor. In contrast, 20μm-glucagon inhibits 75% of the uptake of insulin (0.1μm) by low-affinity sites. A fraction of the cell-bound radioactivity is not intact insulin throughout a 90min association reaction at 37°C. During dissociation, fragments of 125I-labelled insulin are released to the medium more rapidly than is intact hormone. The production and transient retention of degradation products of the hormone complicates the characterization of the insulin receptor by equilibrium or kinetic methods of assay. It is proposed that insulin degradation occurs by receptor- and non-receptor-mediated pathways. The latter may be related to the action of glutathione–insulin transhydrogenase, with which both insulin and glucagon interact.  相似文献   

18.
A soluble enzyme system from suspension cultures of Acer pseudoplatanus L. converts d-glucose 6-phosphate to myoinositol. A Mg2+-dependent phosphatase, present in the crude extract, hydrolyzes the product of the cyclization, myoinositol monophosphate, to free myoinositol. Further purification of the enzyme system by precipitation with (NH4)2SO4 followed by diethylaminoethyl cellulose chromatography eliminates the phosphatase and makes it necessary to add alkaline phosphatase to the reaction mixture in order to assay for free myoinositol. Gel filtration on Sephadex G-200 increases the specific activity of the cycloaldolase to 8.8 × 10−4 units per milligram protein (1 unit = 1 micromole of myoinositol formed per minute). The cycloaldolase has an absolute requirement for nicotinamide adenine dinucleotide and a maximum activity at pH 8 with 0.1 mm nicotinamide adenine dinucleotide. The reaction rate is linear for 2.5 hours when d-glucose 6-phosphate is below 4 mm and has a Km of 1.77 mm. The diethylaminoethyl cellulose-purified enzyme is stable for 6 to 8 weeks in the frozen state.  相似文献   

19.
It remains unclear how α-ketoisocaproate (KIC) and leucine are metabolized to stimulate insulin secretion. Mitochondrial BCATm (branched-chain aminotransferase) catalyzes reversible transamination of leucine and α-ketoglutarate to KIC and glutamate, the first step of leucine catabolism. We investigated the biochemical mechanisms of KIC and leucine-stimulated insulin secretion (KICSIS and LSIS, respectively) using BCATm−/− mice. In static incubation, BCATm disruption abolished insulin secretion by KIC, d,l-α-keto-β-methylvalerate, and α-ketocaproate without altering stimulation by glucose, leucine, or α-ketoglutarate. Similarly, during pancreas perfusions in BCATm−/− mice, glucose and arginine stimulated insulin release, whereas KICSIS was largely abolished. During islet perifusions, KIC and 2 mm glutamine caused robust dose-dependent insulin secretion in BCATm+/+ not BCATm−/− islets, whereas LSIS was unaffected. Consistently, in contrast to BCATm+/+ islets, the increases of the ATP concentration and NADPH/NADP+ ratio in response to KIC were largely blunted in BCATm−/− islets. Compared with nontreated islets, the combination of KIC/glutamine (10/2 mm) did not influence α-ketoglutarate concentrations but caused 120 and 33% increases in malate in BCATm+/+ and BCATm−/− islets, respectively. Although leucine oxidation and KIC transamination were blocked in BCATm−/− islets, KIC oxidation was unaltered. These data indicate that KICSIS requires transamination of KIC and glutamate to leucine and α-ketoglutarate, respectively. LSIS does not require leucine catabolism and may be through leucine activation of glutamate dehydrogenase. Thus, KICSIS and LSIS occur by enhancing the metabolism of glutamine/glutamate to α-ketoglutarate, which, in turn, is metabolized to produce the intracellular signals such as ATP and NADPH for insulin secretion.  相似文献   

20.
dCMP deaminase was partially purified from BHK-21/C13 cells grown in culture. The molecular weight of the enzyme was estimated by gel filtration and gradient centrifugation to be 130000 and 115000 respectively. The enzyme had a pH optimum of 8.4. Its activity versus substrate concentration curve was sigmoid, the substrate concentration at half-maximal velocity being 4.4mm. dCTP activated the deaminase maximally at 40μm, gave a hyperbolic curve for activity versus dCMP concentration and a Km value for dCMP of 0.91mm. dCTP activation required the presence of Mg2+ or Mn2+ ions. dTTP inhibited the deaminase maximally at 15μm; the inhibition required the presence of Mg2+ or Mn2+ ions. The enzyme was very heat-labile but could be markedly stabilized by dCTP at 0.125mm and ethylene glycol at 20% (v/v).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号