首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
周丽  胡春根 《广西植物》2016,36(8):949-955
该文使用简单重复序列间( ISSR)分子标记,对送春与多花兰种间杂交后代进行了研究。结果表明:从80个ISSR引物中筛选出14个扩增效果稳定的ISSR引物,对两亲本和59个F1代个体进行了ISSR扩增,得到107个扩增位点,扩增的片段大小位于90~2100 bp之间,平均每个引物扩增7.64条条带,得到11种类型的带。 ISSR标记在送春×多花兰的F1代中表现出一定的多态性,分离频率为44.86%,分离位点有83.33%符合孟德尔1︰1或3︰1的分离规律,产生偏孟德尔分离的位点占12.50%,余下的4.17%属于特殊分离带型。可能导致后代变异的位点为偏孟德尔分离的6条带、缺失的8条带或新生成的2条带。聚类图中父本和母本与F1代个体间的遗传距离较远,59个杂交后代先聚集成一组,再同母本相聚为一组,最后才同父本聚在一起,59个杂种均偏母本型。送春与多花兰的杂交后代在植株形态、染色体、遗传物质方面都具备双亲特点,61个个体间的ISSR分子量标记结果和植株形态学特征都说明,59个F1代杂种包含送春和多花兰的遗传特性是真杂种;F1代杂种既有双亲的互补特征带,又有双亲的重组片断即产生新的特异带,这说明送春与多花兰的杂交后代具有遗传变异的特点。该研究结果可以有效地对杂交后代进行定向选择,为兰花的杂交育种提供了分子依据。  相似文献   

2.
利用SSR标记鉴定西瓜杂交种纯度的研究   总被引:14,自引:0,他引:14  
以2个西瓜杂交品种(系)的种子黑公子和04-17及其亲本为材料,用SSR标记技术研究杂种与其双亲之间的扩增谱带多态性,以甄别真假杂种.结果发现,所试验的52对SSR引物中有13对引物分别在2个西瓜杂交种和其双亲之间存在扩增条带的多态性,表现为:多数SSR引物对自交系的扩增只出现1条带,但部分引物在某些自交系中扩增出2条带,杂交种条带均为父母本的互补型,很适合做杂交种纯度鉴定.用引物CMCT134b对黑公子和引物CMGA165对04-17进行了各100粒单种子SSR鉴定,所测纯度分别为96%和100%,与田间纯度95.6%和99.7%非常接近,表明SSR标记技术在西瓜杂交种子纯度室内快速检测中的应用前景.  相似文献   

3.
用随机引物扩增多态DNA(RAPD)技术对三种不同组合:小麦(Triticum aestivum)( )簇毛麦(Haynaldia villosa);小麦( )羊草(Leymus chinensis)和小麦( )高冰草(Agropyron elongatum)的属间不对称杂种进行分子鉴定,不同杂种植株的基因组经随机引物扩增后,均出现双亲的多态特异产物,证实它们含有双亲的基因组。将引物OPJ-12扩增的高冰草多态特异产物(分子量为0.77bp的DNA片段)分离纯化并标记作探针,用Southern杂交证明了小麦( )高冰草杂种经OPJ-12扩增的0.77kbp特异片段与高冰草这一片段具有同源性。本文结果证明,RAPD技术可作为小麦属间不对称体细胞杂种的一种快速、简便、有效的分子鉴定方法。  相似文献   

4.
SSR分子标记鉴定山葡萄和河岸葡萄种间杂种   总被引:2,自引:0,他引:2       下载免费PDF全文
利用SSR分子标记技术,对山葡萄和河岸葡萄种间杂交后代的真伪性进行鉴别。从12对多态性SSR引物中筛选出能扩增出父本特异性条带的7对引物,作为杂种鉴定的标记。用这7对引物对239株山葡萄和河岸葡萄的杂交后代进行鉴定。结果表明,有161株后代具有父本的特异性条带,结合田间形态学分析,确认为真杂种。另外,后代中还出现了新的条带,表明杂交后代产生了丰富的变异。因此,SSR标记可以有效地对葡萄属种间杂交后代进行真实性鉴定,可作为葡萄种质创新的有效辅助手段。  相似文献   

5.
使用纯度低或真实性差的杂交种子会给农业生产造成极大损失。然而杂交种子的纯度无法单纯从种子形态上鉴别。本文首次采用RAPD特异扩增谱带做为分子标记对水稻杂交种纯度进行了鉴定。汕优63杂交水稻种子由中国水稻研究所从某制种单位随机取样获得。珍汕97A不育系和明恢63恢复系等品种由于中国水稻研究所提供。在做形态观察的同时,分别取上述三种材料叶片制备DNA作为初始模板DNA。对300个RAPD随机引物,经过三次多态性初筛复筛,发现随机引物P18可发稳定地扩增出一条来源于父本明恢63的0.8kb的特异条带。用P18引物对100株汕优63杂交单株进行RAPD扩增,其中83个获得了0.8kb特异条带(Fig.1upper)。分子交杂证明其结果是可靠的(Fig,1Lower)。以RAPD扩增结果为依据,对这100株材料进行植株形态比较,发现那17个不能扩增出特异条带的单株均为假杂种。说明该制种单位汕优63的假种率为17%。大大超过部的有关规定。应对其原因和后果进行追究。用P18引物对18种分别为汕粳及其中间型的常用稻种进行PAPD扩增鉴定。除明恢63的亲本-圭630和中间型Pecos,Aus373具有0.8kb的特异条带(Fig.2)以外,其余均没有。是否明恢63与这两个中间型有起源关系,尚有待进一步验证。但至少说明:PAPD扩增可用于鉴定水稻品种田间串粉造成的假杂种。理论上,两个不同品种的杂交F1代的PAPD扩增谱带应为两种类型:与双亲同型和互补型。远大实际上,由于PAPD引物对不同DNA自然的竞争扩增效应等因素影响,常常使扩增量少的一些DNA片段在电泳谱带上表现不出来,而表现为单一亲本型谱带。这是引物P18之所以只有一条父本型条带的。多数情况下,这种单一新本型谱带也可以作为鉴定杂种纯 依据,但是要参照诸如形态特征等其它指标,区分具有同样大小(假定存在0.8kb的其怂u)特异条带的假杂种。本实验室正在继续筛选来源于母本的单一亲本型或互补型谱带的随机引物,立图建立起仅用PAPD扩增检测即可确诊的简便方法。  相似文献   

6.
马铃薯杂种F1的SSR鉴定   总被引:1,自引:0,他引:1  
为选育抗黑痣病、高产优质的马铃薯新品种,选用引进品种‘大西洋’分别与‘陇薯6号’、‘陇薯7号’杂交,获得了杂种F1代,利用SSR标记技术对‘大西洋’与‘陇薯6号’的42个杂种F1、‘大西洋’与‘陇薯7号’的9个杂种F1单株进行了鉴定。从59对SSR引物中筛选出2对在亲本间存在差异、扩增稳定、条带清晰的引物S184和STM1049,用于‘大西洋’ב陇薯6号’杂种F1、‘大西洋’ב陇薯7号’杂种F1及其亲本的基因组DNA扩增。SSR带型分析显示,杂种F1的SSR带型呈双亲互补型、缺失型、父本型和母本型4类,依据带型特征鉴定出供试的51个马铃薯杂种F1单株均为真杂种,表明SSR分子标记技术用于马铃薯杂种真实性鉴定是可行的。该研究可为进一步开展马铃薯杂交后代目标性状优异株系选育提供依据。  相似文献   

7.
采用DDRT-PCR技术,以棉花盛花期项尖叶片cDNA为材料,对上海生物工程公司合成的专用于基因差异显示分析的3个锚定引物和全套26个随机引物进行筛选,最后选择了15个扩增差异带丰富的随机引物。采用3个锚定引物和这15个随机引物组成的45对引物组合对24个抗虫棉杂交组合及其10亲本盛花期叶片cDNA进行扩增和差显,2次扩增重复率达70.1%,表明在扩增过程中存在较高的假阳性,通过重复PCR扩增,统计稳定扩增的条带,可减少假阳性干扰。根据基因表达方式,将其划分5种模式:MI为双亲表达沉默,双亲出现条带而杂种没有条带;M2为单亲表达沉默,带仅出现在亲本之一,包括仅母本有带而父本和杂种无带和仅父本有带而母本和杂种无带2种表达方式:M3为杂种特异表达,带仅出现在杂种,双亲无带;M4为单亲表达一致,带在双亲之一和杂种中出现,而在另一亲本中不出现,包括母本、杂种中有带而父本无带和父本、杂种中有带而母本无带2种方式;M5为基因表达一致,带在双亲和杂种中均出现。差显表达模式比例与产量性状和杂种优势分析表明:M4与所有产量性状均呈正相关,并且与单位面积铃数相关达显著水平,其他各种模式与杂种产量性状表型值均未达到显著水平;M2与单位面积铃数杂种优势呈显著负相关,M3与皮棉产量杂种优势呈显著正相关。上述结果表明,盛花期叶片中的基因显性表达和杂种特异表达有利于产量形成和杂种优势发挥。  相似文献   

8.
19个枇杷杂交新品种(系)的SSR鉴定和指纹图谱构建   总被引:1,自引:0,他引:1  
为探究枇杷(Eriobotryajaponica)杂交品种真实性和DNA指纹图谱,对新育成的19个枇杷杂交品种(系)进行SSR标记鉴定分析。结果表明,从已发表的89对SSR引物中筛选出扩增条带清晰稳定的多态性引物19对,在24份枇杷材料中共扩增到83条带,每对引物平均扩增4.37条,PIC值为0.234~0.983,平均为0.764。经12对具有父本特征带多态性引物鉴定, 19个杂交新品种(系)全部为真杂种,真杂种率为100%。UPGMA聚类分析表明,19个杂交新品种(系)的遗传相似系数为0.728~0.969,与杂交亲本‘新白2号’和‘贵妃’聚为同一个大类,并可细分为4个亚类,红肉与白肉的枇杷品种(系)间无明显划分。同时利用8对多态性SSR引物组合,构建了19个枇杷杂交新品种(系)的分子指纹图谱。这为枇杷品种鉴定、新品种权保护和杂交育种提供重要参考依据。  相似文献   

9.
落叶松种间及无性系间ISSR鉴别技术的研究   总被引:1,自引:0,他引:1  
采用ISSR分子标记技术对兴安、长白和日本落叶松种间以及不同无性系进行了鉴别。从49条引物中筛选出13条ISSR引物可以对落叶松种间和无性系间进行鉴别,特异条带个体的百分率为100%,该项技术为落叶松新品种以及良种的准确鉴别提供了新的途径和手段:其中5条引物在日本落叶松、兴安落叶松和长白落叶松不同位置扩增出特异谱带,作为种的鉴定的标准,有9条引物可以对落叶松种内不同无性系分别扩增出特异片段,进行无性系的鉴别。  相似文献   

10.
PCR扩增泥鳅和大鳞副泥鳅SRY盒基因   总被引:10,自引:1,他引:9  
以特异扩增人SRY基因保守区的一对引物,研究了泥鳅和大鳞副泥鳅基因组中SRY盒基因的扩增。结果表明,该引物可以在泥鳅中扩增出四条带,其长度分别为200,550、940和1000bp。在大鳞副泥鳞中扩增出三条带,大小为200,550和900bp。经Southern杂交显示出二者的阳性带为200和550bp。阳性带在雌雄个体间和两个物种间无差异。  相似文献   

11.
Ricinus communis is a versatile industrial oil crop that is cultivated worldwide. Genetic improvement and marker-assisted breeding of castor bean have been slowed owing to the lack of abundant and efficient molecular markers. As co-dominant markers, simple sequence repeats (SSRs) are useful for genetic evaluation and molecular breeding. The recently released whole-genome sequence of castor bean provides useful genomic resources for developing markers on a genome-wide scale. In the present study, the distribution and frequency of microsatellites in the castor bean genome were characterised and numerous SSR markers were developed using genomic data mining. In total, 18,647 SSR loci at a density of one SSR per 18.89 Kb in the castor bean genome sequence (representing approximately 352.27 Mb) were identified. Dinucleotide repeats were the most frequently observed microsatellites, although the AAT repeat motif was also prevalent. Using six cultivars as screening samples, 670 polymorphic SSR markers from 1,435 primer pairs (46.7 %) were developed. Trinucleotide motif loci contained a higher proportion of polymorphisms (48.5 %) than dinucleotide motif loci (39.2 %). The polymorphism level in the SSR loci was positively correlated with the increasing number of repeat units in the microsatellites. The phylogenetic relationship among 32 varieties was evaluated using the developed SSR markers. Cultivars developed at the same institute clustered together, suggesting that these cultivars have a narrow genetic background. The large number of SSR markers developed in this study will be useful for genetic mapping and for breeding improved castor-oil plants. These markers will also facilitate genetic and genomic studies of Euphorbiaceae.  相似文献   

12.
用于绿豆种质资源遗传多样性分析的SSR及STS引物的筛选   总被引:6,自引:1,他引:6  
目前能够用于绿豆(Vigna radiate)种质资源遗传多样性分析的PCR引物极其有限。通过12份农艺性状差异较大的绿豆种质对绿豆以及小豆(Vigna angularis)、豇豆(Vigna unguiculata)、菜豆(Phaseolus vulgaris)等近缘食用豆中的PCR引物进行筛选,结果表明41对绿豆SSR引物中能够有效扩增的有35对,6对有多态性;28对绿豆STS引物中有23对能够有效扩增,2对有多态性;8对小豆SSR引物能够有效扩增的有6对,但均无多态性;27对豇豆SSR引物能够有效扩增的有17对,1对有多态性;24对菜豆SSR引物能够有效扩增的有9对,1对有多态性。这些多态性引物的获得将有助于中国绿豆种质资源的遗传多样性分析。  相似文献   

13.
Microsatellite or single sequence repeat (SSR) markers have been commonly used in genetic research in many crop species, including common bean (Phaseolus vulgaris L.). A limited number of existing SSR markers have been designed from high-throughput sequencing of the genome, warranting the exploitation of new SSR markers from genomic regions. In this paper, we sequenced total DNA from the genotype Hong Yundou with a 454-FLX pyrosequencer and found numerous SSR loci. Based on these, a large number of SSR markers were developed and 90 genomic-SSR markers with clear bands were tested for mapping and diversity detection. The new SSR markers proved to be highly polymorphic for molecular polymorphism, with an average polymorphism information content value of 0.44 in 131 Chinese genotypes and breeding lines, effective for distinguishing Andean and Mesoamerican genotypes. In addition, we integrated 85 primers of the 90 polymorphism markers into the bean map using an F2 segregating population derived from Hong Yundou crossed with Jingdou. The distribution of SSR markers among 11 chromosomes was not random and tended to cluster on the linkage map, with 14 new markers mapped on chromosome Pv01, whereas only four loci were located on chromosome Pv04. Overall, these new markers have potential for genetic mapping, genetic diversity studies and map-based cloning in common bean.  相似文献   

14.
A wide array of molecular markers has been used to investigate the genetic diversity among common bean species. However, the best combination of markers for studying such diversity among common bean cultivars has yet to be determined. Few reports have examined the genetic diversity of the carioca bean, commercially one of the most important common beans in Brazil. In this study, we examined the usefulness of two molecular marker systems (simple sequence repeats - SSRs and amplified fragment length polymorphisms - AFLPs) for assessing the genetic diversity of carioca beans. The amount of information provided by Roger's modified genetic distance was used to analyze SSR data and Jaccards similarity coefficient was used for AFLP data. Seventy SSRs were polymorphic and 20 AFLP primer combinations produced 635 polymorphic bands. Molecular analysis showed that carioca genotypes were quite diverse. AFLPs revealed greater genetic differentiation and variation within the carioca genotypes (Gst = 98% and Fst = 0.83, respectively) than SSRs and provided better resolution for clustering the carioca genotypes. SSRs and AFLPs were both suitable for assessing the genetic diversity of Brazilian carioca genotypes since the number of markers used in each system provided a low coefficient of variation. However, fingerprint profiles were generated faster with AFLPs, making them a better choice for assessing genetic diversity in the carioca germplasm.  相似文献   

15.
Li G  Hu W  Qin R  Jin H  Tan G  Zhu L  He G 《Genetica》2008,134(2):169-180
Wild rice is a valuable resource for the genetic improvement of cultivated rice (Oryza sativa L., AA genome). Molecular markers are important tools for monitoring gene introgression from wild rice into cultivated rice. In this study, Simple sequence repeat (SSR) markers were used to analyze interspecific hybrids of O. sativa-O. officinalis (CC genome), the backcrossing progenies and the parent plants. Results showed that most of the SSR primers (335 out of 396, 84.6%) developed in cultivated rice successfully amplified products from DNA samples of wild rice O. officinalis. The polymorphism ratio of SSR bands between O. sativa and O. officinalis was as high as 93.9%, indicating differences between the two species with respect to SSRs. When the SSR markers were applied in the interspecific hybrids, only a portion of SSR primers amplified O. officinalis-specific bands in the F(1) hybrid (52.5%), BC(1) (52.5%), and MAALs (37.0%); a number of the bands disappeared. Of the 124 SSR loci that detected officinalis-specific bands in MAAL plants, 96 (77.4%) showed synteny between the A and C-genomes, and 20 (16.1%) showed duplication in the C-genome. Sequencing analysis revealed that indels, substitution and duplication contribute to the diversity of SSR loci between the genomes of O. sativa and O. officinalis.  相似文献   

16.
Molecular‐marker‐aided evaluation of germplasm plays an important role in defining the genetic diversity of plant genotypes for genetic and population improvement studies. A collection of African cassava landraces and elite cultivars was analysed for genetic diversity using 20 amplified fragment length polymorphic (AFLP) DNA primer combinations and 50 simple sequence repeat (SSR) markers. Within‐population diversity estimates obtained with both markers were correlated, showing little variation in their fixation index. The amount of within‐population variation was higher for landraces as illustrated by both markers, allowing discrimination among accessions along their geographical origins, with some overlap indicating the pattern of germplasm movement between countries. Elite cultivars were grouped in most cases in agreement with their pedigree and showed a narrow genetic variation. Both SSR and AFLP markers showed some similarity in results for the landraces, although SSR provided better genetic differentiation estimates. Genetic differentiation (Fst) in the landrace population was 0.746 for SSR and 0.656 for AFLP. The molecular variance among cultivars in both populations accounted for up to 83% of the overall variation, while 17% was found within populations. Gene diversity (He) estimated within each population varied with an average value of 0.607 for the landraces and 0.594 for the elite lines. Analyses of SSR data using ordination techniques identified additional cluster groups not detected by AFLP and also captured maximum variation within and between both populations. Our results indicate the importance of SSR and AFLP as efficient markers for the analysis of genetic diversity and population structure in cassava. Genetic differentiation analysis of the evaluated populations provides high prospects for identifying diverse parental combinations for the development of segregating populations for genetic studies and the introgression of desirable genes from diverse sources into the existing genetic base.  相似文献   

17.
Limited availability of validated, polymorphic microsatellite markers in mung bean (Vigna radiata), an important food legume of India, has been a major hurdle towards its improvement and higher yield. The present study was undertaken in order to develop a new set of microsatellite markers and utilize them for the analysis of genetic diversity within mung bean accessions from India. A GA/CT enriched library was constructed from V. radiata which resulted in 1,250 putative recombinant clones of which 850 were sequenced. SSR motifs were identified and their flanking sequences were utilized to design 328 SSR primer pairs. Of these, 48 SSR markers were employed for assessing genetic diversity among 76 mung bean accessions from various geographical locations in India. Two hundred and thirty four alleles with an average of 4.85 alleles per locus were detected at 48 loci. The polymorphic information content (PIC) per locus varied from 0.1 to 0.88 (average: 0.49 per locus). The observed and expected heterozygosities ranged from 0.40 to 0.95 and 0.40 to 0.81 respectively. Based on Jaccard’s similarity matrix, a dendrogram was constructed using the unweighted pair-group method with arithmetic averages (UPGMA) analysis which revealed that one accession from Bundi, Rajasthan was clustered out separately while remaining accessions were grouped into two major clusters. The markers generated in this study will help in expanding the repertoire of the available SSR markers thereby facilitating analysis of genetic diversity, molecular mapping and ultimately broadening the scope for genetic improvement of this legume.  相似文献   

18.
One hundred and fifty-one rice hybrids produced in two sets of half-dialell crosses and their parents (13 cytoplasmic male sterile lines and 19 restorers) were used to predict the F1 performances of seven yield traits through the parental genetic distances (GD) based on SSR markers. The positive loci (PL) and effect-increasing loci (IL), which were screened from SSR polymorphic loci by the F1 traits of 32 parents, together with total loci (TL), were utilized to estimate parental GD and the models were found to predict the traits of hybrids derived from different parents, fixed parents, and different environments, respectively. The results were as follows: (1) 550 polymorphic loci were detected from 174 SSR markers: a dendrogram based on these loci could separate all the sterile and restorer lines used in the present study, which indicated that parental genetic diversity of F1 was large; (2) the correlations between F1 traits and parental GDs based on IL ranged from 0.61 to 0.87 with a mean of 0.76, and they were higher than those on TL or on PL; (3) predictions based on IL for F1 traits (except grain weight per plant) derived from different environments were ideal, but worse for F1 traits derived from different parents; and (4) IL was more effective than TL and PL in predicting traits of F1 with fixed parents, and predictions for fixed restorer combinations were more effective than those for fixed sterile line combinations. These results should facilitate molecular prediction for hybrid yield and other traits by means of both elite sterile and restorer lines.  相似文献   

19.
In order to develop simple sequence repeat (SSR) markers in Italian ryegrass, we constructed a genomic library enriched for (CA)n-containing SSR repeats. A total of 1,544 clones were sequenced, of which 1,044 (67.6%) contained SSR motifs, and 395 unique clones were chosen for primer design. Three hundred and fifty-seven of these clones amplified products of the expected size in both parents of a two-way pseudo-testcross F1 mapping population, and 260 primer pairs detected genetic polymorphism in the F1 population. Genetic loci detected by a total of 218 primer pairs were assigned to locations on seven linkage groups, representing the seven chromosomes of the haploid Italian ryegrass karyotype. The SSR markers covered 887.8 cM of the female map and 795.8 cM of the male map. The average distance between two flanking SSR markers was 3.2 cM. The SSR markers developed in this study will be useful in cultivar discrimination, linkage analysis, and marker-assisted selection of Italian ryegrass and closely related species.Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

20.
Expressed sequence tag (EST) databases offer opportunity for the rapid development of simple sequence repeat (SSR) markers in crops. Sequence assembly and clustering of 57?895 ESTs of castor bean resulted in the identification of 10?960 unigenes (6459 singletons and 4501 contigs) having 7429 SSRs. On an average, the unigenes contained 1 SSR for every 1.23?kb of unigene sequence. The identified SSRs mostly consisted of dinucleotide (62.4%) and trinucleotide (33.5%) repeats. The AG class was the most common among the dinucleotide motifs (68.9%), whereas the AAG class (25.9%) was predominant among the trinucleotide motifs. A total of 611 primer pairs were designed for the SSRs, having repeat length more than or equal to 20 nucleotides, of which a set of 130 markers were tested and 92 of these yielding robust amplicons were analyzed for their utility in genetic purity assessment of castor bean hybrids. Nine markers were able to detect polymorphism between the parental lines of nine commercial castor bean hybrids (DCH-32, DCH-177, DCH-519, GCH-2, GCH-4, GCH-5, GCH-6, GCH-7, and RHC-1), and their utility in genetic purity testing was demonstrated. These novel EST-SSR markers would be a valuable addition to the growing molecular marker resources that could be used in genetic improvement programmes of castor bean.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号