首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Process Biochemistry》2007,42(4):704-709
Four immobilized forms of glucose oxidase (GOD) were used for biotransformation removal of glucose from its mixture with dextran oligosaccharides. GOD was biospecifically bound to Concanavalin A-bead cellulose (GOD-ConA-TBC) and covalently to triazine-bead cellulose (GOD-TBC). Eupergit C and Eupergit CM were used for preparation of other two forms of immobilized GOD: GOD-EupC and GOD-EupCM. GOD-ConA-TBC and GOD-EupC exhibited the best operational and storage stabilities. pH and temperature optima of these two immobilized enzyme forms were broadened and shifted to higher values (pH 7 and 35 °C) in comparison with those of free GOD. The decrease of Vmax values after immobilization was observed, from 256.8 ± 7.0 μmol min−1 mgGOD−1 for free enzyme to 63.8 ± 4.2 μmol min−1 mgGOD−1 for GOD-ConA-TBC and 45 ± 2.7 μmol min−1 mgGOD−1 for GOD-EupC, respectively. Depending on the immobilization mode, the immobilized GODs were able to decrease the glucose content in solution to 3.8–15.6% of its initial amount The best glucose conversion, was achieved by an action of GOD-EupCM on a mixture of 100 g dextran with 9 g of glucose (i.e. 98.7% removal of glucose).  相似文献   

2.
While continuous cooling strategies may induce some ergonomic problems to occupational workers, cooling between work bouts may be an alternative for cooling them down in hot environments. The purpose of this study was to assess the effects of wearing a newly designed hybrid cooling vest (HCV) between two bouts of exercise. Inside a climatic chamber set at an air temperature of 37 °C and a relative humidity of 60%, twelve male participants underwent two bouts of intermittent exercise interspersed with a 30 min between-bout recovery session, during which HCV or a passive rest without any cooling (PAS) was administered. The results indicated that thermoregulatory, physiological, and perceptual strains were significantly lower in HCV than those in PAS during the recovery session (p≤0.022), which were accompanied with a large effect of cooling (Cohen's d=0.84–2.11). For the second exercise bout, the exercise time following HCV (22.13±12.27 min) was significantly longer than that following PAS (11.04±3.40 min, p=0.005, d=1.23) During this period, core temperature Tc was significantly lower by 0.14±0.0.15 °C in HCV than that in PAS. The heart rate drift over time was declined by 2±2 bpm min−1 (p=0.001, d=1.00) and the rise in physiological strain index was reduced by 0.11±0.12 unit min−1 (p=0.010, d=0.96) following the use of HCV. These findings suggested that using HCV could accelerate between-bout recovery and improve subsequent exercise performance by the enlarged body core temperature margin and blunted cardiovascular drift.  相似文献   

3.
Thermal limits of insects can be influenced by recent thermal history: here we used thermolimit respirometry to determine metabolic rate responses and thermal limits of the dominant meat ant, Iridomyrmex purpureus. Firstly, we tested the hypothesis that nest surface temperatures have a pervasive influence on thermal limits. Metabolic rates and activity of freshly field collected individuals were measured continuously while ramping temperatures from 44 °C to 62 °C at 0.25 °C/minute. At all the stages of thermolimit respirometry, metabolic rates were independent of nest surface temperatures, and CTmax did not differ between ants collected from nest with different surface temperatures. Secondly, we tested the effect of brain control on upper thermal limits of meat ants via ant decapitation experiments (‘headedness’). Decapitated ants exhibited similar upper critical temperature (CTmax) results to living ants (Decapitated 50.3±1.2 °C: Living 50.1±1.8 °C). Throughout the temperature ramping process, ‘headedness’ had a significant effect on metabolic rate in total (Decapitated CO2 140±30 µl CO2 mg−1 min−1: Living CO2 250±50 CO2 mg−1 min−1), as well as at temperatures below and above CTmax. At high temperatures (>44 °C) pre- CTmax the relationships between I. purpureus CTmax values and mass specific metabolic rates for living ants exhibited a negative slope whilst decapitated ants exhibited a positive slope. The decapitated ants also had a significantly higher Q10:25–35 °C when compared to living ants (1.91±0.43 vs. 1.29±0.35). Our findings suggest that physiological responses of ants may be able to cope with increasing surface temperatures, as shown by metabolic rates across the thermolimit continuum, making them physiologically resilient to a rapidly changing climate. We also demonstrate that the brain plays a role in respiration, but critical thermal limits are independent of respiration levels.  相似文献   

4.
At present there is no standardised heat tolerance test (HTT) procedure adopting a running mode of exercise. Current HTTs may misdiagnose a runner's susceptibility to a hyperthermic state due to differences in exercise intensity. The current study aimed to establish the repeatability of a practical running test to evaluate individual's ability to tolerate exercise heat stress. Sixteen (8M, 8F) participants performed the running HTT (RHTT) (30 min, 9 km h−1, 2% elevation) on two separate occasions in a hot environment (40 °C and 40% relative humidity). There were no differences in peak rectal temperature (RHTT1: 38.82±0.47 °C, RHTT2: 38.86±0.49 °C, Intra-class correlation coefficient (ICC)=0.93, typical error of measure (TEM)=0.13 °C), peak skin temperature (RHTT1: 38.12±0.45, RHTT2: 38.11±0.45 °C, ICC=0.79, TEM=0.30 °C), peak heart rate (RHTT1: 182±15 beats min−1, RHTT2: 183±15 beats min−1, ICC=0.99, TEM=2 beats min−1), nor sweat rate (1721±675 g h−1, 1716±745 g h−1, ICC=0.95, TEM=162 g h−1) between RHTT1 and RHTT2 (p>0.05). Results demonstrate good agreement, strong correlations and small differences between repeated trials, and the TEM values suggest low within-participant variability. The RHTT was effective in differentiating between individuals physiological responses; supporting a heat tolerance continuum. The findings suggest the RHTT is a repeatable measure of physiological strain in the heat and may be used to assess the effectiveness of acute and chronic heat alleviating procedures.  相似文献   

5.
AurF catalyzes the N-oxidation of p-aminobenzoic acid to p-nitrobenzoic acid in the biosynthesis of the antibiotic aureothin. Here we report the characterization of AurF under optimized conditions to explore its potential use in biocatalysis. The pH optimum of the enzyme was established to be 5.5 using phenazine methosulfate (PMS)/NADH as the enzyme mediator system, showing ∼10-fold higher activity than previous reports in literature. Kinetic characterization at optimized conditions give a Km of 14.7 ± 1.1 μM, a kcat of 47.5 ± 5.4 min−1 and a kcat/Km of 3.2 ± 0.4 μM−1 min−1. PMS/NADH and the native electron transfer proteins showed significant formation of the p-hydroxylaminobenzoic acid intermediate, however H2O2 produced mostly p-nitrobenzoic acid. Alanine scanning identified the role of important active site residues. The substrate specificity of AurF was examined and rationalized based on the protein crystal structure. Kinetic studies indicate that the Km is the main determinant of AurF activity toward alternative substrates.  相似文献   

6.
In order to expedite the process of classification of the members of the family of glutathione-S-transferases (GSTs) high performance liquid chromatography with photodiode array detection (HPLC-PDA) was used as a means for measuring enzymatic activity. The GST chosen for the development of the HPLC-PDA technique was from equine liver (E-GST). The characterizing substrates, ethacrynic acid (EA) and bromosulfophthalein (BSP), along with previously gathered characterization data allowed for the distinction of α, μ or π-class enzymes. In an initial characterization of the previously unclassified E-GST it was determined that the enzyme was of the π-class with specific activities of 0.062, ± 0.0015 μmol min 1 mg 1 and 0.0019, ± 0.00064 μmol min 1 mg 1 for EA and BSP, respectively. Finally, the activity of the E-GST with the EA and BSP substrates, was measured by HPLC-PDA, and was found to be 0.027, ± 0.003 μmol min 1 mg 1 and 0.002, ± 0.0005 μmol min 1 mg 1, respectively. While the HPLC-PDA data do not mirror the spectrophotometric results quantitatively the overall response by the E-GST was the same. In general, the E-GSTs were shown to belong to the π-class when characterized by HPLC-PDA due to an EA specific activity greater than 0.01 μmol min 1 mg 1 and a negligible BSP activity (≤ 0.002 μmol min 1 mg 1).  相似文献   

7.
The aim of the investigation was to verify our hypothesis that extreme tolerance of newborn rodents to anoxia is determined by their ability to maintain reduced body temperature and to keep on gasping.Newborn Wistar rats were used. In separate experiments we checked (1) effect of extreme thermal conditions on rectal temperature (Tre) of the newborns in their nests; (2) effect of ambient temperature (Ta) on oxygen consumption; (3) effects of controlled changes in Tre on thermoregulatory and respiratory responses to anoxia and on anoxia tolerance.In their nests rat pups controlled Tre at 32–36 °C while the TreTa difference changed within a range of 1–20 °C. The lowest oxygen consumption of ∼24 ml O2 kg−1 min−1 was recorded at Ta of 32 °C. Pups, exposed to anoxia at their normal Tre of 33 °C, were able to decrease Tre by another 1.7 °C and they kept on extremely slow and quiescent gasping for scheduled 25 min. In contrast, rats at Tre of 37 °C and 39 °C reached a critical phase of accelerated and shallow gasping after 14.95±0.40 min and 9.25±0.30 min, respectively.In conclusion, reduced Tre and unique gasping ability make newborn rats extremely tolerant to asphyxia.  相似文献   

8.
《Process Biochemistry》2014,49(8):1288-1296
This study details on cloning and characterization of Cu,Zn superoxide dismutase (Ca–Cu,Zn SOD) from a medicinally important plant species Curcuma aromatica. Ca–Cu,Zn SOD was 692 bp with an open reading frame of 459 bp. Expression of the gene in Escherichia coli cells followed by purification yielded the enzyme with Km of 0.047 ± 0.008 μM and Vmax of 1250 ± 24 units/mg of protein. The enzyme functioned (i) across a temperature range of −10 to +80 °C with temperature optima at 20 °C; and (ii) at pH range of 6–9 with optimum activity at pH 7.8. Ca–Cu,Zn SOD retained 50% of the maximum activity after autoclaving, and was stable at a wide storage pH ranging from 3 to 10. The enzyme tolerated varying concentrations of denaturating agent, reductants, inhibitors, trypsin, was fairly resistant to inactivation at 80 °C for 180 min (kd, 6.54 ± 0.17 × 10−3 min−1; t1/2, 106.07 ± 2.68 min), and had midpoint of thermal transition (Tm) of 70.45 °C. The results suggested Ca–Cu,Zn SOD to be a kinetically stable protein that could be used for various industrial applications.  相似文献   

9.
We have previously demonstrated in human subjects who under euglycemic clamp conditions GLP-1(9–36)amide infusions inhibit endogenous glucose production without substantial insulinotropic effects. An earlier report indicates that GLP-1(9–36)amide is cleaved to a nonapeptide, GLP-1(28–36)amide and a pentapeptide GLP-1(32–36)amide (LVKGR amide). Here we study the effects of the pentapeptide on whole body glucose disposal during hyperglycemic clamp studies. Five dogs underwent indwelling catheterizations. Following recovery, the dogs underwent a 180 min hyperglycemic clamp (basal glucose +98 mg/dl) in a cross-over design. Saline or pentapeptide (30 pmol kg−1 min−1) was infused during the last 120 min after commencement of the hyperglycemic clamp in a primed continuous manner. During the last 30 min of the pentapeptide infusion, glucose utilization (M) significantly increased to 21.4 ± 2.9 mg kg−1 min−1compared to M of 14.3 ± 1.1 mg kg−1 min−1 during the saline infusion (P = 0.026, paired t-test; P = 0.062, Mann–Whitney U test). During this interval, no significant differences in insulin (26.6 ± 3.2 vs. 23.7 ± 2.5 μU/ml, P = NS) or glucagon secretion (34.0 ± 2.1 vs. 31.7 ± 1.8 pg/ml, P = NS) were observed. These findings demonstrate that under hyperglycemic clamp studies the pentapeptide modulates glucose metabolism by a stimulation of whole-body glucose disposal. Further, the findings suggest that the metabolic benefits previously observed during GLP-1(9–36)amide infusions in humans might be due, at least in part, to the metabolic effects of the pentapeptide that is cleaved from the pro-peptide, GLP-1(9–36)amide in the circulation.  相似文献   

10.
《Process Biochemistry》2010,45(7):1036-1042
A recombinant strain of Escherichia coli with CYP102A1 gene was developed for the demethylation of colchicine into their derivatives. The CYP102A1 gene responsible for demethylation was isolated from Bacillus megaterium ACBT03 and amplified using suitable primers. The amplified product was cloned into pET28a+ expression vector using host E. coli BL21(DE3) cells. The CYP3A4 (product of CYP102A1 gene) protein expression and other parameters like substrate toxicity, product toxicity and enzyme activity were optimized in shake flasks; and further scaled-up to 5 l bioreactor with 3 l working volume. In 5 l bioreactor, dissolved oxygen (DO) was optimized for maximum specific growth and enhanced 3-demethylated colchicine (3-DMC) production. The optimized conditions from shake flasks were scaled-up to 70 l bioreactor and resulted into ∼80% conversion of 20 mM colchicine in 48 h with a volumetric productivity of 6.62 mg l−1 h−1. Scale-up factors were measured as volumetric oxygen transfer coefficient (kLa) i.e., 56 h−1 and impeller tip velocity (Vtip) i.e., 7.065 m s−1, respectively. The kinetic parameters Km, kcat, and kcat/Km of the CYP3A4 enzyme using colchicine as the substrate were determined to be 271 ± 30 μM, 8533 ± 25 min−1, and 31.49 μM min−1, respectively, when IPTG induced recombinant E. coli culture was used.  相似文献   

11.
《Aquatic Botany》2007,87(1):43-48
CH4 and CO2 fluxes across the water–atmosphere interface were measured over a 24 h day–night cycle in a shallow oxbow lake colonized by the water chestnut (Trapa natans L.) (Lanca di Po, Northern Italy). Only exchanges mediated by macrophytes were measured, whilst gas ebullition was not considered in this study. Measurements were performed from 29 to 30 July 2005 with short incubations, when T. natans stands covered the whole basin surface with a mean dry biomass of 504 ± 91 g m−2. Overall, the oxbow lake resulted net heterotrophic with plant and microbial respiration largely exceeding carbon fixation by photosynthesis. The water chestnut stand was a net sink of CO2 during the day-light period (−60.5 ± 8.5 mmol m−2 d−1) but it was a net source at night (207.6 ± 6.1 mmol m−2 d−1), when the greatest CO2 efflux rate was measured across the water surface (28.2 ± 2.4 mmol m−2 h−1). The highest CH4 effluxes (6.6 ± 1.8 mmol m−2 h−1) were determined in the T. natans stand during day-time, whilst CH4 emissions across the plant-free water surface were greatest at night (6.8 ± 2.1 mmol m−2 h−1). Therefore, we assumed that the water chestnut enhanced methane delivery to the atmosphere. On a daily basis, the oxbow lake was a net source to the atmosphere of both CO2 (147.1 ± 10.8 mmol m−2 d−1) and CH4 (116.3 ± 8.0 mmol m−2 d−1).  相似文献   

12.
β-Glucosidase catalyzes the sequential breakdown of cyanogenic glycosides in cyanogenic plants. The β-glucosidase from Prunus armeniaca L. was purified to 8-fold, and 20% yield was obtained, with a specific activity of 281 U/mg protein. The enzyme showed maximum activity in 0.15 M sodium citrate buffer, pH 6, at 35 °C with p-nitrophenylglucopyranoside as substrate. The β-glucosidase from wild apricot was used successfully for the saccharification of cellobiose into D-glucose. This enzyme has a Vmax of 131.6 μmol min−1 mg−1 protein, Km of 0.158 mM, Kcat of 144.8 s−1, Kcat/Km of 917.4 mM−1 s−1, and Km/Vmax of 0.0012 mM min mg μmole−1, using cellobiose as substrate. The half-life, deactivation rate coefficient, and activation energy of this β-glucosidase were 12.76 h, 1.509 × 10−5 s−1, and 37.55 kJ/mol, respectively. These results showed that P. armeniaca is a potential source of β-glucosidase, with high affinity and catalytic capability for the saccharification of cellulosic material.  相似文献   

13.
A new class of steroidal therapeutics based on phylogenetic-guided design of covalent inhibitors that target parasite-specific enzymes of ergosterol biosynthesis is shown to prevent growth of the protozoan-Trypanosoma brucei, responsible for sleeping sickness. In the presence of approximately 15 ± 5 μM 26,27-dehydrolanosterol, T. brucei procyclic or blood stream form growth is inhibited by 50%. This compound is actively converted by the parasite to an acceptable substrate of sterol C24-methyl transferase (SMT) that upon position-specific side chain methylation at C26 inactivates the enzyme. Treated cells show dose-dependent depletion of ergosterol and other 24β-methyl sterols with no accumulation of intermediates in contradistinction to profiles typical of tight binding inhibitor treatments to azoles showing loss of ergosterol accompanied by accumulation of toxic 14-methyl sterols. HEK cells accumulate 26,27-dehydrolanosterol without effect on cholesterol biosynthesis. During exposure of cloned TbSMT to 26,27-dehydrozymosterol, the enzyme is gradually inactivated (kcat/kinact = 0.13 min 1/0.08 min 1; partition ratio of 1.6) while 26,27-dehydrolanosterol binds nonproductively. GC–MS analysis of the turnover product and bound intermediate released as a C26-methylated diol (C3-OH and C24-OH) confirmed substrate recognition and covalent binding to TbSMT. This study has potential implications for design of a novel class of chemotherapeutic leads functioning as mechanism-based inhibitors of ergosterol biosynthesis to treat neglected tropical diseases.  相似文献   

14.
Heat balance can be difficult for young and/or small animals in polar regions because environmental conditions in combination with small body size or physiological immaturity can increase heat loss. We investigated how thermoregulatory patterns change with ontogeny in 5 age classes of harp seal (Pagophilus groenlandicus) from birth to post-molt to further understand the timing of thermoregulatory development in relation to their potential vulnerability to ongoing fluctuations in the extent and stability of Arctic pack ice. We measured changes in the amount, conductivity, and resistance of the seal pups׳ insulative layers (blubber and fur), the potential for endogenous heat-generation by shivering (muscle enzyme activity), and nonshivering thermogenesis (NST; brown adipose tissue (BAT) uncoupling protein 1 (UCP1) expression and mitochondrial density). There was no significant difference in blubber conductivity among age classes, though the amount of blubber insulation significantly increased from birth to weaning. Pelage conductivity was low (0.12±0.01 W m−1 °C−1) except in 9-day old pups (0.40±0.08 W m−1 °C−1); the significantly higher conductivity may signal the beginning of the molt, and this age group may be the most vulnerable to early water entry. Citrate synthase activity significantly increased (49.68±3.26 to 75.08±3.52 μmol min−1 g wet weight−1) in the muscle; however it is unlikely that increasing a single enzyme greatly impacts heat generation. BAT of younger pups contained UCP1, though expression and mitochondrial density quickly declined, and the ability of pups to produce heat via NST was lost by weaning. While total thermal resistance did not differ, neonatal and early nursing animals gained the majority of their thermal resistance from lanugo (82.5±0.03%); however, lanugo is not insulative when wet, and NST may be important to maintain euthermia and dry the coat if early immersion in water occurs. By late nursing, blubber seems sufficient as insulation (75.87±0.01% of resistance after 4 weeks), but high conductivity of fur may be responsible for retention of UCP1 expression. Weaned animals rely on blubber insulation, and no longer need NST, as wetted fur is no longer a threat to euthermia.  相似文献   

15.
In the current work nanoparticles (NPs) of α-amylase were generated in an aqueous solution using high-intensity ultrasound, and were subsequently immobilized on polyethylene (PE) films, or polycarbonate (PC) plates, or on microscope glass slides. The α-amylase NPs coated on the solid surfaces have been characterized by ESEM, TEM, FTIR, XPS and AFM. The substrates immobilized with α-amylase were used for hydrolyzing soluble potato starch to maltose. The amount of enzyme introduced in the substrates, leaching properties, and the catalytic activity of the immobilized enzyme were compared. The catalytic activity of the amylase deposited on the three solid surfaces was compared to that of the same amount of free enzyme at different pHs and temperatures. α-Amylase coated on PE showed the best catalytic activity in all the examined parameters when compared to native amylase, especially at high temperatures. When immobilized on glass, α-amylase showed better activity than the native enzyme over all pH and temperature values studied. However, the immobilization on PC did not improve the enzyme activity at any pH and any temperature compared to the free amylase. The kinetic parameters, Km and Vmax were also calculated. The amylase coated PE showed the most favorable kinetic parameters (Km = 5 g L−1 and Vmax = 5E−07 mol mL−1 min−1). In contrast, the anchored enzyme-PC exhibited unfavorable kinetic parameters (Km = 16 g L−1, Vmax = 4.2E−07 mol mL−1 min−1). The corresponding values for amylase-glass were Km = 7 g L−1, Vmax = 1.8E−07 mol mL−1 min−1, relative to those obtained for the free enzyme (Km = 6.6 g L−1, Vmax = 3.3E−07 mol mL−1 min−1).  相似文献   

16.
The red-tailed phascogale is a small arboreal dasyurid marsupial that inhabits semi-arid to arid regions of Western Australia's wheat belt. Its body mass (34.7 g) is only ~15% of that predicted based on its phylogenetic position among other dasyuromorphs; we interpret this as an adaptation to its scansorial and semi-arid/arid lifestyle. The standard physiology of this species at a thermoneutral ambient temperature of 30 °C conforms to that of other dasyurid marsupials; body temperature (34.7 ± 0.37 °C), basal metabolic rate (0.83 ± 0.076 mL O2 g?1 h?1), evaporative water loss (1.68 ± 0.218 mg H2O g?1 h?1) and wet thermal conductance (3.8 ± 0.26 J g?1 h?1 °C?1) all fall within the 95% predication limits for the respective allometric relationships for other dasyurid species. Thermolability confers an energy savings at low Ta and water savings at high Ta. Torpor, observed at low Ta, was found to be more beneficial for energy savings than for water economy. The red-tailed phascogale therefore has a physiology suitable for the challenges of arid environments without any obvious requirement for adaptations to its scansorial lifestyle, other than its considerably lower-than-expected body mass.  相似文献   

17.
The purpose of this study was to investigate the effect of active pre-warming combined with three regimens of fluid ingestion: (1) fluid replacement equal to sweat rate (FF), (2) fluid replacement equal to half the sweat rate (HF), and (3) no fluid replacement (NF). Eight males cycled to voluntary fatigue at 70% of peak power output (PPO) in 31.3±0.4°C, 63.3±1.2% relative humidity in a randomised fashion in either of FF, HF or NF conditions. For each trial the time to fatigue test was preceded by 2×20 min active pre-warming periods where subjects also cycled at 70% PPO. Subjects commenced each exercise period with identical rectal temperatures (Tre). The rate of increase in Tre for each condition during the first 20 min of active pre-warming was not different. However, the rate of increase in Tre was significantly reduced in the second active pre-warming period for all fluid conditions but no differences between conditions were noted. During the fatigue test, the rate of increase in Tre for FF was 0.29°C h−1 and 0.58°C h−1 for HF but were not significantly different. The rate of increase in Tre for the NF trial was 0.92°C h−1 and was significantly higher compared to the FF trial. Overall mean skin temperatures and mean body temperatures were higher for NF compared to FF and HF. The rate of heat storage during the fatigue test was similar for FF (80.1±11.7 W m−2) and HF (73.0±13.7 W m−2) conditions but increased to 155.8±31.2 W m−2 (P<0.05) in the NF trial. The results indicate that fluid ingestion equal to sweat rate has no added benefit over fluid ingestion equal to half the sweat rate in determining time to fatigue over 40 min of sub-maximal exercise in warm humid conditions. Fluid restriction accelerates the rate of increase in Tre after 40 min of exercise, thereby reducing the time to fatigue. The data support the model that anticipation of impending thermal limits reduces efferent command to working skeletal muscle ensuring cellular preservation.  相似文献   

18.
Sequence-based screening was carried out to find a type of cytosolic mandelate oxidase that converted l-mandelate to phenylglyoxylate using oxygen as the final electron acceptor. The sequence features of the cytosolic mandelate oxidase were summarized, and were used in the screening process. Mandelate oxidases from Streptomyces coelicolor (HmoSC) and Amycolatopsis orientalis (HmoAO) were screened and then they were heterologously expressed and characterized. At pH 7.3 40 °C, the HmoAO showed kcat and Km values of 140 min−1 and 10.2 mM, the HmoSC showed kcat and Km values of 105.1 min−1 and 2.06 mM. The HmoSC was thermal stable and retained its 90% activity at 60 °C for up to 5 h, while HmoAO lost most of its activity at this temperature. The HmoSC could effectively catalyze the conversion of l-mandelate to phenylglyoxylate at higher temperature using oxygen as the final electron acceptor.  相似文献   

19.
《Aquatic Botany》2005,83(3):187-192
We investigated the effect of intraspecific competition on growth parameters and photosynthesis of the salt marsh species Atriplex prostrata Boucher in order to distinguish the effects of density-dependent growth inhibition from salt stress. High plant density caused a reduction of 30% in height, 82% in stem dry mass, 80% in leaf dry mass, and 95% in root dry mass. High density also induced a pronounced 72% reduction in leaf area, 29% decrease in length of mature internodes and 50% decline in net photosynthetic rate. The alteration of net photosynthesis paralleled growth inhibition, decreasing from 7.6 ± 0.9 μmol CO2 m−2 s−1 at low density to 3.5 ± 0.4 μmol CO2 m−2 s−1 at high density, indicating growth inhibition caused by intraspecific competition is mainly due to a decline in net photosynthesis rate. Plants grown at high density also exhibited a reduction in stomatal conductance from 0.7 ± 0.1 mol H2O m−2 s−1 at low density to 0.3 ± 0.1 mol H2O m−2 s−1 at high density and a reduction in transpiration rate from 6.0 ± 0.3 mmol H2O m−2 s−1 at low density to 4.3 ± 0.3 mmol H2O m−2 s−1 at high density. Biomass production was inhibited by an increase in plant density, which reduced the rate of photosynthesis, stomatal conductance and leaf area of plants.  相似文献   

20.
Two mutants of Rhodobacter Capsulatus (JP91 and IR3), a photosynthetic purple non-sulfur bacterium, were grown in a batch photobioreactor under illumination with 30 mmol l−1 dl-lactate and 5 mmol l−1 l-glutamate as carbon and nitrogen source, respectively. Bacterial growth was measured by monitoring the increase in absorbance at 660 nm. The photosynthetic growth processes under different cultivated temperatures are well fitted by a specific logistic model to analyze the kinetics of photosynthetic growth of two strains, thus the apparent growth rates (k) of these photosynthetic bacteria, the variations of cell dry weight (CDW) as well as their relationship with temperature are obtained. In present work, k is (0.1465 ± 0.0146), (0.2266 ± 0.0207) and (0.3963 ± 0.0257) h−1 for JP91 and (0.1117 ± 0.0122), (0.1218 ± 0.0133) and (0.2223 ± 0.0152) h−1 for IR3 at 26, 30 and 34 °C, respectively. And the difference between CDWmax and CDW0 is (0.8997 ± 0.0097), (0.8585 ± 0.0093) and (0.9241 ± 0.0099) g l−1 for JP91 and (0.8167 ± 0.0089), (0.7878 ± 0.0086) and (0.8358 ± 0.0091) g l−1 for IR3 at 26, 30 and 34 °C, respectively. Also real-time monitoring of hydrogen production rates is acquired by recording the flow rates of photohydrogen for these two strains under different temperatures. The effects of temperature on the bacteria growth, hydrogen production capability and substrate conversion efficiency are discussed based on these results. The most preferment temperature, 30 °C, showed good substrate conversion efficiency of 52.7 and 68.2% for JP91 and IR3, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号