首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 296 毫秒
1.
Summary The localization and origin of substance P (SP)-, neuropeptide Y (NPY)-, and noradrenaline/tyrosine hydroxylase (NA/TH)-immunoreactive (IR) nerves in the guinea-pig heart were investigated by means of immunohistochemistry; quantitative analysis was performed by radioimmunoassay (NPY) and high performance liquid chromatography (NA). Both untreated animals and animals subjected to stellatectomy, combined stellatectomy and local capsaicin pretreatment of the vagal nerves or systemic application of capsaicin were studied. A dense network of SP-IR nerves was observed in the right atrium in different locations: (1) around local cardiac ganglion cells, (2) close to blood vessels, (3) within the myocardium, and (4) close to and within peri and endocardium.A moderately dense SP-innervation, mainly related to blood vessels, was found in the ventricles. Very dense networks of NPY and TH-IR nerve fibers with an overlapping distributional pattern around blood vessels and in the myocardium were seen in both the atria and the ventricles. In addition, some cell bodies in local cardiac ganglia were NPY-IR. Bilateral stellatectomy resulted in a reduction of SP-IR in the right atrium (55% of control), which was more pronounced after additional capsaicin pretreatment of the vagal nerves (44% of control).In the left ventricle no significant depletion of SP-IR was seen by either stellatectomy or combined stellatectomy and capsaicin treatment of the vagal nerves. It was not possible to establish any defined target areas within the heart for vagal or spinal SP-IR afferents by use of immunohistochemical methods. Systemic capsaicin treatment caused a total loss of SP-IR nerves in the heart. After bilateral stellatectomy the levels of NPY-IR and NA were reduced to about 10% of control in both the right atrium and left ventricle. In accordance, NPY and TH-IR nerves were also almost totally absent in the heart after bilateral stellatectomy.  相似文献   

2.
Summary The innervation of human lower respiratory tract was studied with special emphasis on airways with sodium-potassium glyoxylic acid (SPG) and acetylcholinesterase (AChE) methods to demonstrate catecholamine-containing and acetylcholinesterase-containing nerve fibers. AChE-method revealed a rich network of cholinesterase positive nerves both inside the bronchial glands where they run around and between the acini, and the airway smooth muscle from secondary bronchi to terminal bronchioli. No AChE-positive fibers were found in connection with the blood vessels or within the epithelium of bronchi or bonchioli. The AChE-positive nerve fibers in bronchial smooth muscle greatly outnumbered those containing catecholamine. The SPG-method revealed the presence of adrenergic nerves from the level of secondary bronchi to that of terminal bronchioli. These nerve fibers were most abundant in bronchial glands, where their amount was equal and distribution similar to those of AChE-containing nerve fibers. Outside the glands adrenergic fibers were constantly seen in connection with the bronchial blood vessels in connective tissues surrounding bronchi. A few nerve fibers were also present in airway smooth muscle from the secondary bronchi to terminal bronchioli.  相似文献   

3.
Summary The occurrence and distribution of peptide-containing nerve fibres [substance P (SP), calcitonin gene-related peptide (CGRP), vasoactive intestinal polypeptide (VIP), peptide histidine isoleucine (PHI), neuropeptide Y (NPY)] and noradrenergic nerve fibres [tyrosine hydroxylase (TH)- and dopamine beta hydroxylase (DBH)-positive] in the airways of the pig were studied by means of immunohistochemistry. SP- and CGRP-immunoreactive (-IR) nerve fibres were present close to and within the lining respiratory epithelium, around blood vessels, within the tracheobronchial smooth muscle layer and around local tracheobronchial ganglion cells. The content of CGRP- and neurokinin A (NKA)-like immunoreactivity (-LI) measured by radioimmunoassay (RIA) was twice as high in the trachea compared to that in the peripheral bronchi. SP was a more potent constrictor agent than NKA on pig bronchi in vitro. CGRP had a relaxant effect on precontracted pig bronchi. On blood vessels CGRP exerted a relaxant effect that was more pronounced on pulmonary arteries than on bronchial arteries. VIP/PHI-IR fibres were seen in association with exocrine glands and in the tracheobronchial smooth muscle layer. VIP-positive nerve fibres were abundant around blood vessels in the trachea but sparse or absent around blood vessels in the peripheral bronchi. This histological finding was supported by RIA; it was shown that the content of peptides displaying VIP-like immunoreactivity (-LI) was 18 times higher in the trachea compared to peripheral bronchi. VIP was equally potent as CGRP in relaxing precontracted pig bronchi in vitro. Both bronchial and pulmonary arteries were relaxed by VIP. NPY was colocalized with VIP in tracheal periglandular nerve fibres and in nerve fibres within the tracheobronchial smooth muscle layer. NPY was also present in noradrenergic (DBH-positive) vascular nerve fibres. The content of NPY was much higher (15-fold) in the trachea compared to small bronchi. NPY caused a contraction of both pulmonary and bronchial arteries. The bronchial smooth muscle contraction to field stimulation in vitro was purely cholinergic. A non-cholinergic relaxatory effect following field stimulation was observed after bronchial precontraction. Capsaicin had no effect on pig bronchi in vitro.  相似文献   

4.
Release of substance P (SP) and neurokinin A (NKA), was demonstrated in the isolated perfused guinea-pig lung. Significant release was obtained by perfusion with capsaicin, high potassium, histamine, bradykinin dimethylphenylpiperazinium, and by electrical vagal nerve stimulation. Capsaicin-induced peptide release was not blocked by 1 microM clonidine. SP and NKA contracted respiratory smooth muscle, NKA being 42 times more potent. Both tachykinins were equipotent in relaxing pulmonary artery. It is concluded that multiple tachykinin can be released from capsaicin-sensitive sensory nerves in the respiratory tract, exerting multiple effects on the target tissues.  相似文献   

5.
By immunohistochemistry it was found that PHI- and VIP-like immunoreactivity (-IR) occurred in the same autonomic neurons in the upper respiratory tract, tongue and salivary glands with associated ganglia in rat, guinea-pig, cat, pig and man. VIP- and PHI-like immunoreactivity was also found in similar locations in the human heart. The N-terminally directed, but not the C-terminally directed, PHI antiserum or the VIP antiserum stained endocrine cells in the pig duodenum. This suggests the existence of an additional PHI-like peptide. Ligation of nerves acutely caused marked overlapping axonal accumulations of PHI- and VIP-IR central to the lesion. Two weeks after transection of the nerves, both types of immunoreactivities were still observed in accumulations both in the axons as well as in the corresponding cell bodies. The levels of PHI- and VIP-IR in normal tissues from the cat were around 10-50 pmol/g with a molar ratio of about 1 to 2. Systemic administrations of PHI and VIP induced hypotension, probably due to peripheral vasodilation in both guinea-pig and cat. Furthermore, both PHI and VIP caused an inhibition of the vagally induced increase in respiratory insufflation pressure in guinea-pig. PHI and VIP relaxed the guinea-pig trachea in vitro, suggesting a direct action on tracheobronchial smooth muscle. VIP was about 5-10 times more potent than PHI with regard to hypotensive effects and 2-3-fold, considering respiratory smooth muscle-relaxant effects in the guinea-pig. PHI was about 50-fold less potent to induce hypotension in the cat than in the guinea-pig. Although species differences seem to exist as regards biological potency, PHI should also be considered when examining the role of VIP as an autonomic neurotransmitter.  相似文献   

6.
Although airway and pulmonary vessel tone are regulated predominantly by cholinergic and adrenergic impulses, biologically active peptides such as calcitonin gene-related peptide (CGRP) may significantly influence human smooth muscle tone in normal and pathophysiological states. In the present study, the expression of CGRP and its receptor CGRPR-1 and the biological effect of the peptide were investigated in human airways and pulmonary arteries. Immunohistochemistry revealed the presence of CGRP in human airway nerves and neuro-epithelial cells, whereas the receptor was found in epithelial cells and smooth muscle myocytes of the bronchi and in pulmonary artery endothelium. On precontracted bronchi (3-4 mm in diameter) alpha-CGRP (0.01-10 nM) caused a concentration-dependent contraction on epithelium-denuded bronchi, whereas no significant effect was recorded in bronchi with intact epithelium. In pulmonary arteries (2-6 mm in diameter), alpha-CGRP caused a concentration-dependent relaxation of endothelium intact and denuded vessels. Pre-treatment with indomethacin, but not with l-NAME, prevented the relaxation induced by alpha-CGRP in pulmonary arteries suggesting that prostaglandins but not nitric oxide (NO) are involved in the intracellular signal transduction pathway. The effects induced by alpha-CGRP in bronchi and vessels were prevented by application of the antagonist CGRP((8-37)). In summary, the present studies examined the biological function of CGRP in human airways and demonstrated a constrictory effect of CGRP only in epithelium-denuded airway smooth muscle indicating an alteration of CGRP airway effects in respiratory tract pathological states with damaged epithelium such as chronic obstructive pulmonary disease or bronchial asthma.  相似文献   

7.
Summary The peptidergic innervation of lymphoid tissue and the lung in relation to mast cells was studied in rat. The sensitivity of neuropeptide-containing nerves to capsaicin treatment and immunization was also examined. Measurements of the content of neurokinin A and calcitonin gene-related peptide revealed that the lung contained the highest content of both neuropeptides; lymph nodes had intermediate levels, whereas the spleen had the lowest content. Immuhohistochemistry showed that the calcitonin gene-related peptide- and neurokinin A-immunoreactive nerves in lymph nodes were mainly found around blood vessels, whereas in the lung the nerves were present within the lining respiratory epithelium, bronchial smooth muscle, around blood vessels and close to lymphoid aggregates. Combined immunohistochemistry for serotonin (5-hydroxytryptamine), as a marker for mast cells, and tachykinins or calcitonin gene-related peptide revealed that a close association was often present between the nerves and 5-hydroxytryptamine-positive cells in the bronchi of the lung, while 5-hydroxytryptamine-positive cells were not observed in lymph nodes. The neurokinin A and calcitonin gene-related peptide content in lymph nodes, spleen and lung, but not the content of neuropeptide Y, was markedly decreased by capsaicin treatment, suggesting a sensory origin for the two former peptides. Aerosol immunization increased the levels of calcitonin gene-related peptide in the lung, whereas the content in mediastinal lymph nodes was not affected. These data demonstrate a peptidergic innervation mainly of blood vessels in lymphoid tissue and a close relation between sensory nerves and mast cells as well as lymphoid aggregates in the bronchi of the lung. This further suggests that the sensory innervation of lymph nodes is mainly related to regulation of vascular tone and lymph flow. Furthermore, at the site of immunization, i.e., in the airway mucosa, sensory nerve mediators may interact both with mast cells and lymphoid cells.  相似文献   

8.
The present study provides light and electron microscopical evidence of Vasoactive Intestinal Peptide - (VIP) like immunoreactive nerves in human lower respiratory tract. Peroxidase antiperoxidase (PAP) technique was used to localize VIP-like immunoreactivity light microscopically and ultrastructurally. Under light microscopy, VIP-like immunoreactive nerves were observed in the smooth muscle layer of secondary bronchi to small bronchioli, and in bronchial glands. In addition, positive immunoreactive nervous network to VIP was found around nerve cell bodies in small microganglia. The bronchial epithelium of airway tract did not receive any VIP positive nerve fibers. Ultrastructurally VIP-like positive immunoreaction was localized in large granular vesicles ranging from 90 to 210 nm. Usually VIP-like positive immunoreactive nerve profiles contained several immunoreactive large vesicles (100-210). However, nerve profiles containing only a few positive large vesicles (80-150) were also observed. Under electron microscopy VIP-positive nerve profiles corresponded ultrastructurally to nerve profiles containing large granular vesicles observed in conventional electronmicroscopy. The present study provides new information about the innervation of human lower airway tract and widens the concept of their functional regulation on the anatomical basis reported here.  相似文献   

9.
The cholinergic muscarinic 2 receptor (M2r) is known to be present on smooth muscle cells in the intestine. Pharmacological studies also suggest that M2rs regulate transmitter release from nerves in the enteric nervous system. This study localised M2rs in the guinea-pig ileum using different antibodies and fluorescence immunohistochemistry. Double labelling with antibodies against neurochemical markers was used to identify the type of nerves bearing M2r. Guinea-pig ileum were fixed, prepared for sections and wholemounts and incubated with antisera against the M2r sequence. Tissue was double labelled with antibodies against neuronal nitric oxide synthase (nNOS), common choline acetyltransferase (cChAT), substance P (SP), synaptophysin and vesicular acetylcholine transporter (VAChT). Immunofluorescence was viewed using confocal microscopy. Abundant M2r-immunoreactivity (IR) was present on the surface of circular and longitudinal smooth muscle cells. M2r-IR was present in many but not all nerve fibres in the circular muscle and ganglia. M2r-IR was present in VAChT-IR and cChAT-IR cholinergic nerve fibres and SP-IR nerve fibres in the myenteric ganglia and submucosal ganglia. M2r-IR was present on a few nNOS-IR nerve fibres and around nNOS-IR neurons in the myenteric ganglia. In the circular muscle and deep muscular plexus, M2r-IR was present in many VAChT-IR and SP-IR nerve fibres and in few nNOS-IR nerves. M2rs are not only present on muscle cells in the intestine, but also on nerve fibres. M2rs may mediate cholinergic reflexes via their location on muscle and also via neural transmission. The pre-synaptic location supports pharmacological studies suggesting M2rs mediate neurotransmitter release from nerve fibres. The presence of M2rs on VAChT-IR, SP-IR and nNOS-IR-containing nerve fibres suggests M2rs may regulate ACh, SP and nitric oxide release. Work in this study was funded by the National Health and Medical Research Council (grant numbers: 114215 and 216704; Senior Research Fellowship to B.S.), a Melbourne University Research Scholarship and the Murdoch Children’s Research Institute.  相似文献   

10.
The distribution of perivascular nerve fibers displaying calcitonin gene-related peptide (CGRP) immunoreactivity and the effect of CGRP on vascular smooth muscle were studied in the guinea-pig. Perivascular CGRP fibers were seen in all vascular beds. Generally, they were more numerous around arteries than veins. Small arteries in the respiratory tract, gastrointestinal tract and genitourinary tract had numerous CGRP fibers. The gastroepiploic artery in particular received a rich supply of such fibers. Coronary blood vessels had a moderate supply of CGRP fibers. In the heart, a moderate number of CGRP fibers was seen running close to myocardial fibers. The atria had a richer supply than the ventricles. Numerous CGRP immunoreactive nerve cell bodies and nerve fibers were seen in sensory (trigeminal, jugular and spinal dorsal root) ganglia. Sequential or double immunostaining with antibodies against substance P and CGRP suggested co-existence of the two peptides in nerve cell bodies in the ganglia and in perivascular fibers. In agreement with previous findings CGRP turned out to be a strong vasodilator in vitro as tested on several blood vessels (e.g. basilar, gastroepiploic and mesenteric arteries). Conceivably, perivascular CGRP/SP fibers have a dual role as regulator of local blood flow and as carrier of sensory information.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号