首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
In nectar-feeding butterflies, reproductive potential is usually thought to depend on the size of the reproductive reserves in the abdomen, the adult food quality and, for females, the amount of resources received in the spermatophores at mating. Recent findings show that thorax mass and nitrogen content decrease with age in some butterfly species, and that thorax resources may be used for reproduction in the butterfly Pieris napi , just as in some other insects. In order to determine whether this is a general pattern and ascertain how it relates to the investment of resources in reproduction we studied the dynamics of thorax and abdomen mass changes in 11 Swedish butterfly species. By regressing thorax and abdomen mass on age of field-collected specimens, we show that loss of mass from both the thorax and the abdomen is a common phenomenon among nectar-feeding temperate zone butterflies under natural conditions. We argue that our results indicate that resources from flight muscles can be reallocated to reproduction by these butterflies, thus increasing their reproductive potential. Within species, females use proportionately more resources from the thorax than do males, as expected from the difference in investment of resources in reproduction. Among males we expect species with a higher reproductive investment to have a larger decrease in thorax and abdomen mass, and our data indicate that this is the case. Looking at the change in relative thorax mass, our results suggest that the use of resources from the thorax does not affect flight performance negatively, something that could constrain the use of muscle resources.  © 2005 The Linnean Society of London, Biological Journal of the Linnean Society , 2005, 86 , 363–380.  相似文献   

2.
  • 1 The flight apparatus in butterflies, as well as in other insects, is costly to manufacture. Since most animals live in a world where resources are limited, trade‐offs are expected and available resources must thus be allocated between flight and other functions, such as reproduction.
  • 2 To mitigate this trade‐off, previous studies have shown that butterflies can break down flight muscles in the thorax as they age in order to use muscle nutrients for reproduction.
  • 3 Although breakdown of flight muscles is expected to reduce flight ability, relative flight muscle mass (thorax mass/body mass) in many butterfly species does not decrease with age. The aim of the present study was to test the relationship between flight endurance and adult age in the green‐veined white butterfly Pieris napi (L.). The tests were performed in the laboratory at five different temperatures.
  • 4 The results showed that age has a significant influence on butterfly flight endurance; older butterflies showed reduced flight endurance. Male butterflies fly for a longer time than females and flight endurance increases with temperature in both sexes.
  相似文献   

3.
Differences in the growth of dorsolongitudinal flight muscles and gonads in 1–28 days old long-winged (macropterous) and short-winged (brachypterous) adults of the firebug (Pyrrhocoris apterus L.) and the resource allocation to these organs were studied by means of total protein analysis. We found predominant allocation of food resources to flight muscles compared to reproductive organs in both macropterous males and females during the first 5 days of adult life. Subsequent histolysis of developed flight muscles coincided with increased total protein content in some reproductive organs. Initiation of intensive food intake after starvation or application of higher dose of methoprene on macropterous adults changed the resource allocation in favour of growth of reproductive organs and induced precocious histolysis of flight muscles. It indicates an involvement of juvenile hormone in wing morph-related differential allocation of resources in the bug. Increased total protein contents in the ovaries and accessory glands of starved macropterous females and males treated with methoprene, respectively, indicate that proteins derived from the methoprene-induced histolysis of the flight muscles are re-utilized for the growth of the reproductive organs. It is the first report of persistence of differential resource allocation to flight muscles and reproductive organs in the wing-polymorphic insects with non-functional macropterism.  相似文献   

4.
1. There are numerous data that support the trade‐off between flight capability and reproduction in female wing polymorphic insects, but the relationship between wing form and fitness remains poorly investigated in males. 2. In the present study, the development of flight muscle and gonads, spermatophore size, and multiple copulation ability were investigated in both long‐winged (LW) and short‐winged (SW) males to verify this trade‐off, using a wing dimorphic cricket species Velarifictorus aspersus (Walker). 3. The LW males had better‐developed wing muscles than the SW males on the day of emergence, and both of them developed wing muscles after emergence, but the peak of weight in SW males was achieved 4 days later than that of the LW males. The accessory glands (AG) of the LW males developed significantly slower than that of the SW males. These results suggest that development and maintenance of flight muscles have a cost on the development of reproductive organs in male V. asperses. 4. The SW males produced significantly heavier spermatophores in a single copulation and mated more often than LW males. This indicates the SW males have a higher mating success than the LW males, thereby increasing their chance of siring offspring.  相似文献   

5.
饥饿和交配对小地老虎飞行肌发育的影响   总被引:1,自引:0,他引:1  
王伟  尹姣  曹雅忠  李克斌 《昆虫知识》2013,(6):1573-1585
小地老虎Agrotis ypsilon(Rottemburg)成虫飞行肌的发育常受一些因素影响而发生变化,为探讨饥饿和交配行为对飞行肌发育的影响,通过电子显微镜对雌虫飞行肌(背纵肌)的肌原纤维、线粒体结构进行观察,结果显示:4日龄饥饿雌虫,肌原纤维直径、肌节长度、肌原纤维体积均显著(P<0.05)小于取食的。7日龄饥饿雌虫肌原纤维直径、肌节长度、肌原纤维体积分数较4日龄的差异均不显著(P≥0.05),而7日龄饥饿的肌原纤维直径显著(P<0.05)大于7日龄取食的;羽化10 d后,饥饿雌虫肌节长度显著(P<0.05)大于取食雌虫的,而肌纤维体积分数和线粒体体积分数均却小于后者。7、10、13日龄交配雌虫肌原纤维横切直径分别显著(P<0.05)小于同日龄非交配的;7、10、13日龄交配雌虫肌原纤维体积分数显著(P<0.05)小于非交配的,线粒体体积分数虽然无差异(P≥0.05),但是交配雌虫的早在4日龄便已明显(P<0.05)减小。上述结果表明:正常取食的小地老虎飞行肌4日龄后会发生降解现象;饥饿抑制飞行肌前期发育和中期的降解,而促进成虫末期肌原纤维的分解;交配能促进飞行肌的降解。  相似文献   

6.
Morphology, flight muscles, and reproductive development were compared between long‐winged (LW) and short‐winged (SW) morphs of the cricket Velarifictorus ornatus (Shiraki) (Orthoptera: Gryllidae). There was no difference in body weight and pre‐oviposition between the two morphs, but LW individuals had better‐developed flight muscles than SW individuals during and after emergence of the adult. The flight muscles at adult emergence represented 11.9% of the total body weight in the LW female and 4.9% in the SW female. In addition, the weight of the flight muscle of LW females increased by 50% during the first 5 days, whereas the flight muscle of the SW variant increased only slightly after adult emergence. The process of oviposition in LW, SW, and de‐alated females varied: SW females produced more eggs at the early stage than LW females, but de‐alation could shorten the time until the peak of egg laying and caused histolysis of flight muscles of LW females. There was no significant difference in total egg production between the above three groups. In the male, unlike the female, the accessory glands of the two wing morphs enlarged continuously at the same rate. There was no difference between the two wing morphs in the mass of the testes during the first 7 days after adult emergence.  相似文献   

7.
Wing dimorphism, where some macropterous long‐winged (LW) individuals can fly whereas micropterous short‐winged (SW) individuals cannot, is common in insects and believed to be maintained in part by trade‐offs between flight capability and reproductive traits. In this paper we examine differences in whole‐organism respiration rate between wing morphs of the sand cricket Gryllus firmus. We hypothesized that maintenance of the flight apparatus would result in elevated CO2 respired because of the high metabolic cost of these tissues, which, in turn, constrain resources available for egg production in females. As the trade‐off involves calling behaviour in males, we predicted no equivalent constraint on organ development in this sex. We found female macropters (particularly older crickets) had significantly higher residual respiration rates than micropters. In males, we found only marginal differences between wing morphs. In both sexes there was a highly significant effect of flight muscles status on residual respiration rate, individuals with functional muscles having higher respiration rates. Both female and male macropters had significantly smaller gonads than micropters. Whole‐organism residual respiration rate was negatively correlated with fecundity: macropterous females with high respiration rates had smaller gonads compared with macropterous females with lower respiration rates.  相似文献   

8.
A life‐history trade‐off exists between flight capability and reproduction in many wing dimorphic insects: a long‐winged morph is flight‐capable at the expense of reproduction, while a short‐winged morph cannot fly, is less mobile, but has greater reproductive output. Using meta‐analyses, I investigated specific questions regarding this trade‐off. The trade‐off in females was expressed primarily as a later onset of egg production and lower fecundity in long‐winged females relative to short‐winged females. Although considerably less work has been done with males, the trade‐off exists for males among traits primarily related to mate acquisition. The trade‐off can potentially be mitigated in males, as long‐winged individuals possess an advantage in traits that can offset the costs of flight capability such as a shorter development time. The strength and direction of trends differed significantly among insect orders, and there was a relationship between the strength and direction of trends with the relative flight capabilities between the morphs. I discuss how the trade‐off might be both under‐ and overestimated in the literature, especially in light of work that has examined two relevant aspects of wing dimorphic species: (1) the effect of flight‐muscle histolysis on reproductive investment; and (2) the performance of actual flight by flight‐capable individuals.  相似文献   

9.
Sexual selection should cause sex differences in patterns of resource allocation. When current and future reproductive effort trade off, variation in resource acquisition might further cause sex differences in age‐dependent investment, or in sensitivity to changes in resource availability over time. However, the nature and prevalence of sex differences in age‐dependent investment remain unclear. We manipulated resource acquisition at juvenile and adult stages in decorated crickets, Gryllodes sigillatus, and assessed effects on sex‐specific allocation to age‐dependent reproductive effort (calling in males, fecundity in females) and longevity. We predicted that the resource and time demands of egg production would result in relatively consistent female strategies across treatments, whereas male investment should depend sharply on diet. Contrary to expectations, female age‐dependent reproductive effort diverged substantially across treatments, with resource‐limited females showing much lower and later investment in reproduction; the highest fecundity was associated with intermediate lifespans. In contrast, long‐lived males always signalled more than short‐lived males, and male age‐dependent reproductive effort did not depend on diet. We found consistently positive covariance between male reproductive effort and lifespan, whereas diet altered this covariance in females, revealing sex differences in the benefits of allocation to longevity. Our results support sex‐specific selection on allocation patterns, but also suggest a simpler alternative: males may use social feedback to make allocation decisions and preferentially store resources as energetic reserves in its absence. Increased calling effort with age therefore could be caused by gradual resource accumulation, heightened mortality risk over time, and a lack of feedback from available mates.  相似文献   

10.
The identification and characterization of age‐related degenerative changes is a critical goal because it can elucidate mechanisms of aging biology and contribute to understanding interventions that promote longevity. Here, we document a novel, age‐related degenerative change in C. elegans hermaphrodites, an important model system for the genetic analysis of longevity. Matricidal hatching—intra‐uterine hatching of progeny that causes maternal death—displayed an age‐related increase in frequency and affected ~70% of mated, wild‐type hermaphrodites. The timing and incidence of matricidal hatching were largely independent of the levels of early and total progeny production and the duration of male exposure. Thus, matricidal hatching appears to reflect intrinsic age‐related degeneration of the egg‐laying system rather than use‐dependent damage accumulation. Consistent with this model, mutations that extend longevity by causing dietary restriction significantly delayed matricidal hatching, indicating age‐related degeneration of the egg‐laying system is controlled by nutrient availability. To identify the underlying tissue defect, we analyzed serotonin signaling that triggers vulval muscle contractions. Mated hermaphrodites displayed an age‐related decline in the ability to lay eggs in response to exogenous serotonin, indicating that vulval muscles and/or a further downstream function that is necessary for egg laying degenerate in an age‐related manner. By characterizing a new, age‐related degenerative event displayed by C. elegans hermaphrodites, these studies contribute to understanding a frequent cause of death in mated hermaphrodites and establish a model of age‐related reproductive complications that may be relevant to the birthing process in other animals such as humans.  相似文献   

11.
Flightin is a protein in flight muscles and is crucial for the flight capacity. Flightin also has been proposed as a protein with deep ancestry and functions outside of flight muscles. However, functional and molecular characterization of flightin achieved so far is mainly in flight muscles of Drosophila. Here, we cloned the flightin (Bd-flightin) gene and tested its expression and function in Bactrocera dorsalis, an important migratory pest. Phylogenetic analysis based on flightin orthologs revealed that the divergence of flightin is consistent with the taxonomic classification of insects. Motif analysis indicated obvious variations in flightin orthologs, which may have occurred during speciation and functional differentiation. The expression is quite low during egg and larval stages, which largely increased during pupal stage and then peaked at the beginning of the adult stage. Bd-flightin also showed tissue- and age-specific expression patterns during adult stage. The relative expression level is low in wing, head, ovary and testis, which is relatively higher in leg and abdominal wall and much higher in thorax. Injection of late pupae and newly eclosed adults with 1 μg flightin dsRNA per insect both significantly reduced the expression of flightin and the flight capacity in males and females. In addition, silencing the expression of flightin also decreased the weight ratio of thorax and whole-body. These results suggested that flightin plays important roles in flight muscle development and flight function in B. dorsalis, which can potentially be used to control the flight behaviour of the fruit fly.  相似文献   

12.
ABSTRACT Many birds lose mass when feeding dependent young and multiple hypotheses have been proposed to explain this loss. The reproductive‐stress hypothesis suggests that mass loss results from an energy deficit. The flight‐efficiency hypothesis suggests that breeders lose mass in advance of feeding young to save energy during flight. The reserve‐mobilization hypothesis suggests that female breeders accumulate energy reserves during egg production and incubation and mobilize those reserves to meet their own energy needs after eggs hatch. Finally, birds may lose mass due to gonadal regression. From 1999 to 2001, we attracted Florida Scrub‐Jays (Aphelocoma coerulescens), sedentary cooperative breeders, to a portable electronic balance. Our objective was to determine which hypotheses might best explain mass variation during breeding. Both male and female Florida Scrub‐Jays lost mass during the period of nestling care (males, 3.2%; females, 6.5%), but not when feeding fledglings, despite this being the period of peak effort. Such results are consistent with both the flight‐efficiency and reserve‐mobilization (females only) hypotheses. We also found a significant negative influence of brood size on mass change in males, providing support for the reproductive‐stress hypothesis, and we conclude that, for males, both the flight‐efficiency and reproductive‐stress hypotheses apply. For female scrub‐jays, our results were consistent with the flight‐efficiency and energy‐reserve mobilization hypotheses, both of which view mass loss as beneficial.  相似文献   

13.
The thoracic musculature of adult Sericoderus lateralis is described based on histological sectioning and 3D computer reconstruction. The thoracic musculature of Corylophidae is not strongly affected by miniaturization: S. lateralis has an almost complete set of muscles found in large Cucuiformia beetles. The intravital flight muscle degeneration related to the development of the reproductive system is described.  相似文献   

14.
The eyes of stalk‐eyed flies (Diopsidae) are positioned at the end of rigid peduncles (‘stalks’) protruding laterally from the head. Eye‐stalk length varies within the family and, in some species, varies between males and females. Larger eye‐stalks in males result from sexual selection for longer stalks, a trait that increases male reproductive success. In the present study, we examined whether an increase in eye‐stalk length results in an adjustment of wing size and shape to deal with the burden of bearing an exaggerated ‘ornament’. We compared wing morphology among ten species of stalk‐eyed flies that differ in eye‐span and the degree of sexual dimorphism. Mass‐specific wing length differed between males and females in seven out of the ten species. Nondimensional wing shape parameters differed between the species (P < 0.001), but mostly did not differ between males and females of the same species. Dimorphism in eye‐span closely correlated with dimorphism in wing length (r = 0.89, P < 0.001) and the correlation remained significant (r = 0.81, P = 0.006) after correcting for phylogenetic relationships. Once corrected for phylogenetic relatedness, the mass‐specific wing length of males (but not females) was weakly correlated with mass‐specific eye‐span (r = 0.66, P = 0.042). We propose that the observed proportional increase in wing length associated with increased eye‐span can facilitate aerial manoeuverability, which would otherwise be handicapped by the elevated moment of inertia imposed by the wider head. © 2009 The Linnean Society of London, Biological Journal of the Linnean Society, 2009, 98 , 860–871.  相似文献   

15.
1. Flight is an energy‐demanding behaviour in insects. In parasitic wasps, strategies of nutrient acquisition and allocation, resulting life‐history trade‐offs and relationships with foraging strategies and resource availability have received much attention. However, despite the ecological importance of dispersal between host and food patches, and the great impact energy diverted to flight should have on lifetime reproductive success, the eco‐physiology of flight in parasitoids is poorly understood. 2. The objective of this study is to (i) identify the energetic resources used to fuel flight, and (ii) relate nutrient type and rate of utilisation to selective pressures in terms of resource availability posed by the environment. 3. Using a flight mill and biochemical assays, we compared flight performance and nutrient dynamics during flight between two reproductive modes of the parasitoid Venturia canescens Gravenhorst, which is known to thrive preferentially in contrasted environments (i.e. natural vs. anthropogenic habitat), differing notably in host and food distribution. 4. Biochemical analyses of different nutrient types showed that glycogen is the flight fuel used by this species, yet no significant differences in its dynamics in flight were found between the two reproductive modes. 5. Results suggest that both glycogen quantity and flight performance are related to the diverging ecological conditions experienced by thelytokous and arrhenotokous strains.  相似文献   

16.
Migratory species may display striking phenotypic plasticity during individual lifetimes. This may include differential investment in body parts and functions, differential resource use and allocation, and behavioural changes between migratory and non‐migratory phases. While migration‐related phenotypic changes are well‐reported, their underlying mechanisms are usually poorly understood. Here we compare individuals from migratory (reproductive diapause) and non‐migratory (reproductive) phases of closely related aposematic butterfly species to study how sexual dimorphism and migratory behaviour underlie significant morphological tradeoffs, and propose a plausible scenario to explain the migration‐related phenotypic plasticity observed in females of migratory species. We found that female butterflies invested significantly more in their abdominal mass compared to males irrespective of their migratory phase, and underwent a clear shift in their body mass allocation after the switch from the reproductive diapause phase to the reproductive phase. In reproductive phase, females invested much more in reproductive tissue. This switch occurred as a result of increased abdominal mass (i.e. reproductive tissue mass) without significant reduction in the thoracic mass (i.e. flight muscle mass). Migratory males, however, were not significantly different from non‐migratory males in terms of relative investment in flight and reproductive tissues. These patterns were consistent between migratory and non‐migratory aposematic species within and across clades. While migratory habits may influence the physiology and behaviour of both sexes, long‐distance migration affected female morphology much more markedly compared to that of males. These results show the sex‐specific nature of adaptations to migratory behaviour, and suggest that seemingly disparate life‐history traits such as aposematism and migration may have similar influences on the lifetime energetic investments of insects.  相似文献   

17.
Energy investment in reproduction and somatic growth was investigated for summer spawners of the Argentinean shortfin squid Illex argentinus in the southwest Atlantic Ocean. Sampled squids were examined for morphometry and intensity of feeding behavior associated with reproductive maturation. Residuals generated from length‐weight relationships were analyzed to determine patterns of energy allocation between somatic and reproductive growth. Both females and males showed similar rates of increase for eviscerated body mass and digestive gland mass relative to mantle length, but the rate of increase for total reproductive organ weight relative to mantle length in females was three times that of males. For females, condition of somatic tissues deteriorated until the mature stage, but somatic condition improved after the onset of maturity. In males, there was no correlation between somatic condition and phases of reproductive maturity. Reproductive investment decreased as sexual maturation progressed for both females and males, with the lowest investment occurring at the functionally mature stage. Residual analysis indicated that female reproductive development was at the expense of body muscle growth during the immature and maturing stages, but energy invested in reproduction after onset of maturity was probably met by food intake. However, in males both reproductive maturation and somatic growth proceeded concurrently so that energy allocated to reproduction was related to food intake throughout the process of maturation. For both males and females, there was little evidence of trade‐offs between the digestive gland and reproductive growth, as no significant correlation was found between dorsal mantle length‐digestive gland weight residuals. The role of the digestive gland as an energy reserve for gonadal growth should be reconsidered. Additionally, feeding intensity by both males and females decreased after the onset of sexual maturity, but feeding never stopped completely, even during spawning.  相似文献   

18.
Summary We test whether palatability of Neotropical butterflies is associated with distribution of mass to the thorax and abdomen. Thoracic mass is predominantly muscle mass, whereas abdominal mass includes organs of digestion, food storage, and reproduction. To escape from predation, butterflies palatable to the rufous-tailed jacamar (Galbula ruficauda) use fast, erratic flight, whereas unpalatable butterflies have defensive chemicals and slow, regular flight patterns. We adjusted for effects of phylogeny and report partial correlations for two levels of analysis: 1) comparisons among-lineage means, which test for correlations between traits of distantly related lineages, and 2) comparisons among deviations from lineage means (or within lineages), which test for correlations between traits of more closely related species.Among lineages for both males (n=10 lineages) and females (n=9), palatability and thoracic mass were positively correlated, whereas palatability and abdominal mass were negatively correlated. An inverse correlation between thoracic and abdominal mass is a consequence of the two segments composing 75% of the total body mass. Predation, indexed by palatability, may select for increased flight speed and thoracic mass at the expense of the abdomen, but relative flight speed and thoracic mass were not significantly correlated.Within lineages (n=45 species for each sex), thoracic mass was uncorrelated with palatability in both sexes. Relative flight speed correlated positively with thoracic mass and negatively with body mass. Palatability and abdominal mass were negatively correlated for males but not females. Hence differences between the sexes in mass distribution suggest differences in reproductive constraints and predation stress.  相似文献   

19.
Higher flight activity has been observed in aged, high-density cultures ofProstephanus truncatus (Horn) (Coleoptera: Bostrichidae), but adults in new, lowdensity culture jars showed less flight activity. In order to understand this change in behavior, the effects of population density, age, resource quality, and sex on the flight ofP. truncatus were studied in a wind tunnel. While an immediate density on the release platform had no significant effect on flight, beetles from high-density cultures were more inclined to fly than those from low-density cultures. Resource quality exerted a major influence on flight; insects in food suitable for boring and oviposition seldomly exhibited flight, however, when food was absent or of inferior quality for boring and oviposition, the dominant behavior was flight. Also, insects maintained for a week in food suitable for boring and oviposition were less ready to fly than those maintained in food unsuitable for boring and oviposition. The optimum age range for flight activity was before the peak of reproduction and insects rarely flew before 4 days or after 32 days of emergence. There were no significant differences between the flight activity of males and that of females. Based on these results, we conclude that age and resource quality are major influences on the flight activity ofP. truncatus and a hypothesis is proposed in which reproductively active male and female beetles disperse from habitats of low resource quality to those that support their reproductive behavior. The practical implications of these results and the possible role of the male-produced aggregation pheromone are discussed.  相似文献   

20.
Adult butterflies feed largely on floral nectar and tree sap, both of which consist mainly of carbohydrates and include little nitrogen. They depend on the larval diet for nitrogenous resources. Consequently, there is a trade‐off between the reproductive and somatic nitrogenous investments of adults. Furthermore, male butterflies invest a considerable amount into spermatophores, containing nitrogen, which they give to their sexual partners. One way in which male butterflies could potentially replenish their spermatophores is by flight muscle histolysis, which may reduce locomotor ability and lifespan. In the present study, the effect of mating experience on nitrogen dynamics and the lifespan of males is investigated in the satyrine butterfly Lethe diana (Butler). Mated males do not have less thoracic nitrogen than virgin males, suggesting that mating experiences do not induce spermatophore recovery through flight muscle histolysis. Mated males possess less abdominal nitrogen than virgin males at death, indicating that they cannot recover the lost nitrogenous resource used for a single mating. Lifespan does not differ between mated and virgin males. Thus, reproduction and longevity are not fuelled necessarily by the same shared resource pools. Spermatophore mass increases as males get older. Considering that resources for producing spermatophores are limited, males may adjust the spermatophore mass strategically, depending on their chances of future reproduction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号