首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Patterns associated with the evolution of parasite diversity, speciation and diversification were analysed using Dactylogyrus species (gill monogeneans) and their cyprinid hosts as a model. The aim of this study was to use this highly specific host–parasite systems to review: (1) the diversity and distribution of Dactylogyrus species, (2) the patterns of organization and structure of Dactylogyrus communities, (3) the evolution and determinants of host specificity and (4) the mode of Dactylogyrus speciation and co‐evolutionary patterns in this Dactylogyrus–cyprinid systems. Dactylogyrus are a highly diverse group of parasites, with their biogeography and distribution clearly linked to the evolutionary history of their cyprinid hosts. The coexistence of several Dactylogyrus species on one host is facilitated by increasing niche distances and the differing morphology of their reproductive organs. The positive interspecific and intraspecific interactions seem to be the most important factors determining the structure of Dactylogyrus communities. Host specificity is partially constrained by parasite phylogeny. Being a strict specialist is an ancestral character for Dactylogyrus, being the intermediate specialists or generalists are the derived characters. The evolution of attachment organ morphology is associated with both parasite phylogeny and host specificity. Considering larger and long‐lived hosts or hosts with several ecological characters as the measures of resource predictability, specialists with larger anchors occurred on larger or longer‐living fish species. Intra‐host speciation, a mode of speciation not often recorded in parasites, was observed in Dactylogyrus infecting sympatric cyprinids. Sister parasite species coexisting on the same host occupied niches that differed in at least one niche variable. Intra‐host speciation, however, was not observed in Dactylogyrus species of congeneric hosts from geographically isolated areas, which suggested association by descent and host‐switching events.  相似文献   

2.

Aim

Identifying barriers that govern parasite community assembly and parasite invasion risk is critical to understand how shifting host ranges impact disease emergence. We studied regional variation in the phylogenetic compositions of bird species and their blood parasites (Plasmodium and Haemoproteus spp.) to identify barriers that shape parasite community assembly.

Location

Australasia and Oceania.

Methods

We used a data set of parasite infections from >10,000 host individuals sampled across 29 bioregions. Hierarchical models and matrix regressions were used to assess the relative influences of interspecies (host community connectivity and local phylogenetic distinctiveness), climate and geographic barriers on parasite local distinctiveness and composition.

Results

Parasites were more locally distinct (co‐occurred with distantly related parasites) when infecting locally distinct hosts, but less distinct (co‐occurred with closely related parasites) in areas with increased host diversity and community connectivity (a proxy for parasite dispersal potential). Turnover and the phylogenetic symmetry of parasite communities were jointly driven by host turnover, climate similarity and geographic distance.

Main conclusions

Interspecies barriers linked to host phylogeny and dispersal shape parasite assembly, perhaps by limiting parasite establishment or local diversification. Infecting hosts that co‐occur with few related species decreases a parasite's likelihood of encountering related competitors, perhaps increasing invasion potential but decreasing diversification opportunity. While climate partially constrains parasite distributions, future host range expansions that spread distinct parasites and diminish barriers to host shifting will likely be key drivers of parasite invasions.  相似文献   

3.
4.
Parasites may have strong eco‐evolutionary interactions with their hosts. Consequently, they may contribute to host diversification. The radiation of cichlid fish in Lake Victoria provides a good model to study the role of parasites in the early stages of speciation. We investigated patterns of macroparasite infection in a community of 17 sympatric cichlids from a recent radiation and 2 older species from 2 nonradiating lineages, to explore the opportunity for parasite‐mediated speciation. Host species had different parasite infection profiles, which were only partially explained by ecological factors (diet, water depth). This may indicate that differences in infection are not simply the result of differences in exposure, but that hosts evolved species‐specific resistance, consistent with parasite‐mediated divergent selection. Infection was similar between sampling years, indicating that the direction of parasite‐mediated selection is stable through time. We morphologically identified 6 Cichlidogyrus species, a gill parasite that is considered a good candidate for driving parasite‐mediated speciation, because it is host species‐specific and has radiated elsewhere in Africa. Species composition of Cichlidogyrus infection was similar among the most closely related host species (members of the Lake Victoria radiation), but two more distantly related species (belonging to nonradiating sister lineages) showed distinct infection profiles. This is inconsistent with a role for Cichlidogyrus in the early stages of divergence. To conclude, we find significant interspecific variation in parasite infection profiles, which is temporally consistent. We found no evidence that Cichlidogyrus‐mediated selection contributes to the early stages of speciation. Instead, our findings indicate that species differences in infection accumulate after speciation.  相似文献   

5.
Locally adapted parasites have higher infectivity and/or fitness on sympatric than on allopatric hosts. We tested local adaptation of a holoparasitic plant, Cuscuta europaea, to its host plant, Urtica dioica. We infected hosts from five sites with holoparasites from the same five sites and measured local adaptation in terms of infectivity and parasite performance (biomass) in a reciprocal cross‐infection experiment. The virulence of the parasite did not differ between sympatric and allopatric hosts. Overall, parasites had higher infectivity on sympatric hosts but infectivity and parasite performance varied among populations. Parasites from one of the populations showed local adaptation in terms of performance, whereas parasites from one of the populations had higher infectivity on allopatric hosts compared with sympatric hosts. This among‐population variation may be explained by random variation in parasite adaptation to host populations or by time‐lagged co‐evolutionary oscillations that lead to fluctuations in the level of local adaptation.  相似文献   

6.
7.
Within the Atlantic–Mediterranean region, the ‘sand gobies’ are abundant and widespread, and play an important role in marine, brackish, and freshwater ecosystems. They include the smallest European freshwater fish, Economidichthys trichonis, which is threatened by habitat loss and pollution, as are several other sand gobies. Key to good conservation management is an accurate account of the number of evolutionary significant units. Nevertheless, many taxonomic and evolutionary questions remain unresolved within the clade, and molecular studies are lacking, especially in the Balkans. Using partial 12S and 16S mitochondrial ribosomal DNA sequences of 96 specimens of at least eight nominal species (both freshwater and marine populations), we assess species relationships and compare molecular and morphological data. The results obtained do not support the monophyly of Economidichthys, suggesting the perianal organ to be a shared adaptation to hole‐brooding rather than a synapomorphy, and urge for a taxonomic revision of Knipowitschia. The recently described Knipowitschia montenegrina seems to belong to a separate South‐East Adriatic lineage. Knipowitschia milleri, an alleged endemic of the Acheron River, and Knipowitschia cf. panizzae, are shown to be very closely related to other western Greek Knipowitschia populations, and appear conspecific. A distinct Macedonian–Thessalian lineage is formed by Knipowitschia thessala, whereas Knipowitschia caucasica appears as an eastern lineage, with populations in Thrace and the Aegean. The present study combines the phylogeny of a goby radiation with insights on the historical biogeography of the eastern Mediterranean, and identifies evolutionary units meriting conservation attention. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 105 , 73–91.  相似文献   

8.
Patterns and likely processes connected with evolution of host specificity in congeneric monogeneans parasitizing fish species of the Cyprinidae were investigated. A total of 51 Dactylogyrus species was included. We investigated (1) the link between host specificity and parasite phylogeny; (2) the morphometric correlates of host specificity, parasite body size, and variables of attachment organs important for host specificity; (3) the evolution of morphological adaptation, that is, attachment organ; (4) the determinants of host specificity following the hypothesis of specialization on more predictable resources considering maximal body size, maximal longevity, and abundance as measures of host predictability; and (5) the potential link between host specificity and parasite diversification. Host specificity, expressed as an index of host specificity including phylogenetic and taxonomic relatedness of hosts, was partially associated with parasite phylogeny, but no significant contribution of host phylogeny was found. The mapping of host specificity into the phylogenetic tree suggests that being specialist is not a derived condition for Dactylogyrus species. The different morphometric traits of the attachment apparatus seem to be selected in connection with specialization of specialist parasites and other traits favored as adaptations in generalist parasites. Parasites widespread on several host species reach higher abundance within hosts, which supports the hypothesis of ecological specialization. When separating specialists and generalists, we confirmed the hypothesis of specialization on a predictable resource; that is, specialists with larger anchors tend to live on fish species with larger body size and greater longevity, which could be also interpreted as a mechanism for optimizing morphological adaptation. We demonstrated that ecology of host species could also be recognized as an important determinant of host specificity. The mapping of morphological characters of the attachment organ onto the parasite phylogenetic tree reveals that morphological evolution of the attachment organ is connected with host specificity in the context of fish relatedness, especially at the level of host subfamilies. Finally, we did not find that host specificity leads to parasite diversification in congeneric monogeneans.  相似文献   

9.
We analyzed mandible shape variation of 17 genera belonging to three superfamilies (Cavioidea, Chinchilloidea, and Octodontoidea) of South American caviomorph rodents using geometric morphometrics. The relative influence of phylogeny and ecology on this variation was assessed using phylogenetic comparative methods. Most morphological variation was concentrated in condylar, coronoid, and angular processes, as well as the diastema. Features potentially advantageous for digging (i.e. high coronoid and condylar processes, relatively short angular process, and diastema) were present only in octodontoids; cavioids showed opposing trends, which could represent a structural constraint for fossorial habits. Chinchilloids showed intermediate features. Genera were distributed in the morphospace according to their classification into superfamilial clades. The phylogenetic signal for shape components was significant along phylogeny, whereas the relationship between mandibular shape and ecology was nonsignificant when phylogenetic structure was taken into account. An early evolutionary divergence in the mandible shape among major caviomorph clades would explain the observed strong phylogenetic influence on the variation of this structure. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 102 , 828–837.  相似文献   

10.
Parasites often affect the abundance and life‐history traits of their hosts. We studied the impact of a social parasite – a slavemaking ant – on host ant communities using two complementary field manipulations. In the first experiment, we analysed the effect of social parasite presence on host populations in one habitat. In a second experiment, conducted in two habitats, we used a cross‐fostering design, analysing the effect of sympatric and allopatric social parasites. In the first experiment, host colonies benefited to some extent from residing in parasite‐free areas, showing increased total production. Yet, in the second experiment, host colonies in plots containing social parasites were more productive, and this effect was most evident in response to allopatric social parasites. We propose several explanations for these inconsistent results, which are related to environmental variability. The discrepancies between the two habitats can be explained well by ecological variation as a result of differences in altitudes and climate. For example, ant colonies in the colder habitat were larger and, for one host species, colonies were more often polygynous. In addition, our long‐term documentation – a total of four measurements of community structure in 6 years – showed temporal variation in abundance and life‐history traits of ant colonies, unrelated to the manipulations. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 103 , 559–570.  相似文献   

11.
Pomacentridae are one of the most abundant fish families inhabiting reefs of tropical and temperate regions. This family, comprising 29 genera, shows a remarkable diversity of habitat preferences, feeding, and behaviours. Twenty‐four species belonging to seven genera have been reported in the Eastern Pacific region. The present study focuses on the relationship between the diet and the cephalic profile in the 24 endemic damselfishes of this region. Feeding habits were determined by means of underwater observations and the gathering of bibliographic data. Variations in cephalic profile were analyzed by means of geometric morphometrics and phylogenetic methods. The present study shows that the 24 species can be grouped into three main trophic guilds: zooplanktivores, algivores, and an intermediate group feeding on small pelagic and benthic preys. Shape variations were low within each genus except for Abudefduf. Phylogenetically adjusted regression reveals that head shape can be explained by differences in feeding habits. The morphometric phylogeny recovered the subfamily Stegastinae and the relationship between Abudefduf troschelii and Chromis species. The cephalic profile of damselfishes contains a clear and strong phylogenetic signal. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 102 , 593–613.  相似文献   

12.
Host specificity has a major influence on a parasite's ability to shift between human and animal host species. Yet there is a dearth of quantitative approaches to explore variation in host specificity across biogeographical scales, particularly in response to the varying community compositions of potential hosts. We built a global dataset of intermediate host associations for nine of the world's most widespread helminth parasites (all of which infect humans). Using hierarchical models, we asked if realised parasite host specificity varied in response to regional variation in the phylogenetic and functional diversities of potential host species. Parasites were recorded in 4–10 zoogeographical regions, with some showing considerable geographical variation in observed versus expected host specificity. Parasites generally exhibited the lowest phylogenetic host specificity in regions with the greatest variation in prospective host phylogenetic diversity, namely the Neotropical, Saharo‐Arabian and Australian regions. Globally, we uncovered notable variation in parasite host shifting potential. Observed host assemblages for Hydatigera taeniaeformis and Hymenolepis diminuta were less phylogenetically diverse than expected, suggesting limited potential to spillover into unrelated hosts. Host assemblages for Echinococcus granulosus, Mesocestoides lineatus and Trichinella spiralis were less functionally diverse than expected, suggesting limited potential to shift across host ecological niches. By contrast, Hyd. taeniaeformis infected a higher functional diversity of hosts than expected, indicating strong potential to shift across hosts with different ecological niches. We show that the realised phylogenetic and functional diversities of infected hosts are determined by biogeographical gradients in prospective host species pools. These findings emphasise the need to account for underlying species diversity when assessing parasite host specificity. Our framework to identify variation in realised host specificity is broadly applicable to other host–parasite systems and will provide key insights into parasite invasion potential at regional and global scales.  相似文献   

13.
Episodes of expansion and isolation in geographic range over space and time, during which parasites have the opportunity to expand their host range, are linked to the development of host–parasite mosaic assemblages and parasite diversification. In this study, we investigated whether island colonization events lead to host range oscillations in a taxon of host‐specific parasitic nematodes of the genus Spauligodon in the Canary Islands. We further investigated whether range oscillations also resulted in shifts in host breadth (i.e., specialization), as expected for parasites on islands. Parasite phylogeny and divergence time estimates were inferred from molecular data with Bayesian methods. Host divergence times were set as calibration priors after a priori evaluation with a global‐fit method of which individual host–parasite associations likely represent cospeciation links. Parasite colonization history was reconstructed, followed by an estimation of oscillation events and specificity level. The results indicate the presence of four Spauligodon clades in the Canary Islands, which originated from at least three different colonization events. We found evidence of host range oscillations to truly novel hosts, which in one case led to higher diversification. Contemporary host–parasite associations show strong host specificity, suggesting that changes in host breadth were limited to the shift period. Lineages with more frequent and wider taxonomic host range oscillations prior to the initial colonization event showed wider range oscillations during colonization and diversification within the archipelago. Our results suggest that a lineage's evolutionary past may be the best indicator of a parasite's potential for future range expansions.  相似文献   

14.
The evolution and determinants of host specificity in Lamellodiscus species (Monogenea, Diplectanidae) were investigated. The 20 known Mediterranean species were studied, all parasites of fishes from the family Sparidae (Teleostei). An index of specificity, which takes into account the phylogenetic relationships of their fish host species, was defined. The link between specificity and its potential determinants was investigated in a phylogenetic context using the method of independent contrasts. Host specificity in Lamellodiscus species appeared to be highly constrained by phylogeny, but also linked to host size. Mapping specificity onto the parasite phylogenetic tree suggests that specialist species do not represent an evolutionary dead end, and that specialization is not a derived condition. It is hypothesized that the ability to be generalist or specialist in Lamellodiscus is controlled by intrinsic, phylogenetically-related characteristics, and that specialist species tend to use large hosts, which may be more predictable.  © 2002 The Linnean Society of London, Biological Journal of the Linnean Society , 2002, 77, 431−443.  相似文献   

15.
Exceptionally well‐preserved Late Triassic unionoids from Silesia, Poland, show prominently ornamented juvenile shells and umbonal muscle attachments that are similar to Margaritifera, which are anatomically the least derived among extant unionoids. Their phosphatized (originally chitinous and impregnated with calcium phosphate) gill supports lacked transverse connections, and occasionally some of them were separated from others, being thus at the filibranch grade, like their trigonioid ancestors. Several separate small foot elevator attachments in these unionoids indicate Trigonodidae adaptation to marine or brackish water, in which the original trigonioid strong single attachment was already split into two in the Early Triassic. The ribbing of juvenile shells suggests a change to deeper infaunal life for juvenile stages, and generally less efficient near‐surface locomotion, with a wedge‐like foot, in adults. Much later the unionoids became eulamellibranchial, which promoted the brooding of the fish that their larvae parasitize. To accomodate the classification of the order under this scenario of evolutionary changes, a new suborder Silesunionina is proposed for its filibranch members. It includes the Silesunionidae fam. nov. , with the location of umbonal muscles similar to that in the extant underived unionoids, and the Unionellidae fam. nov. , with umbonal muscles attached to the external wall of the umbonal cavity. The early Late Triassic (Carnian) Silesunio parvus gen. et sp. nov. and latest Triassic (Rhaetian) Tihkia(?) silesiaca sp. nov. are proposed. © 2011 The Linnean Society of London, Zoological Journal of the Linnean Society, 2011, 163 , 863–883.  相似文献   

16.
Understanding traits influencing the distribution of genetic diversity has major ecological and evolutionary implications for host–parasite interactions. The genetic structure of parasites is expected to conform to that of their hosts, because host dispersal is generally assumed to drive parasite dispersal. Here, we used a meta‐analysis to test this paradigm and determine whether traits related to host dispersal correctly predict the spatial co‐distribution of host and parasite genetic variation. We compiled data from empirical work on local adaptation and host–parasite population genetic structure from a wide range of taxonomic groups. We found that genetic differentiation was significantly lower in parasites than in hosts, suggesting that dispersal may often be higher for parasites. A significant correlation in the pairwise genetic differentiation of hosts and parasites was evident, but surprisingly weak. These results were largely explained by parasite reproductive mode, the proportion of free‐living stages in the parasite life cycle and the geographical extent of the study; variables related to host dispersal were poor predictors of genetic patterns. Our results do not dispel the paradigm that parasite population genetic structure depends on host dispersal. Rather, we highlight that alternative factors are also important in driving the co‐distribution of host and parasite genetic variation.  相似文献   

17.
Heterogeneous exposure to parasites may contribute to host species differentiation. Hosts often harbour multiple parasite species which may interact and thus modify each other’s effects on host fitness. Antagonistic or synergistic interactions between parasites may be detectable as niche segregation within hosts. Consequently, the within-host distribution of different parasite taxa may constitute an important axis of infection variation among host populations and species. We investigated the microhabitat distributions and species interactions of gill parasites (four genera) infecting 14 sympatric cichlid species in Lake Victoria, Tanzania. We found that the two most abundant ectoparasite genera (the monogenean Cichlidogyrus spp. and the copepod Lamproglena monodi) were non-randomly distributed across the host gills and their spatial distribution differed between host species. This may indicate microhabitat selection by the parasites and cryptic differences in the host–parasite interaction among host species. Relationships among ectoparasite genera were synergistic: the abundances of Cichlidogyrus spp. and the copepods L. monodi and Ergasilus lamellifer tended to be positively correlated. In contrast, relationships among morphospecies of Cichlidogyrus were antagonistic: the abundances of morphospecies were negatively correlated. Together with niche overlap, this suggests competition among morphospecies of Cichlidogyrus. We also assessed the reproductive activity of the copepod species (the proportion of individuals carrying egg clutches), as it may be affected by the presence of other parasites and provide another indicator of the species specificity of the host–parasite relationship. Copepod reproductive activity did not differ between host species and was not associated with the presence or abundance of other parasites, suggesting that these are generalist parasites, thriving in all cichlid species examined from Lake Victoria.  相似文献   

18.
Hosts and their parasites have strong ecological and evolutionary relationships, with hosts representing habitats and resources for parasites. In the present study, we use approaches developed to evaluate the statistical dependence of species trait values on phylogenetic relationships to determine whether host–parasite relationships (i.e. parasite infections) are contingent on host phylogeny. If host–parasite relationships are contingent on the ability of hosts to provide habitat or resources to parasites, and if host phylogeny is an effective surrogate for among‐host variation in habitat and resource quality, host–parasite relationships should evince phylogenetic signals (i.e. be contingent on host phylogeny). Because the strength of ecological relationships between parasites and their hosts may affect the likelihood of phylogenetic signals occurring in host–parasite relationships, we hypothesized that (1) host specificity would be positively correlated with the strength of phylogenetic signals and (2) the strength of phylogenetic signals will be greater for parasites that rely more on their host throughout their life cycle. Analyses were conducted for ectoparasites from tropical bats and for ectoparasites, helminths, and coccidians from desert rodents. Phylogenetic signals were evaluated for parasite presence and for parasite prevalence. The frequency of phylogenetic signal occurrence was similar for parasite presence and prevalence, with a signal detected in 24–27% of cases at the species level and in 67% and 15% of cases at the genus level for parasites of bats and rodents, respectively. No differences in signal strength or the likelihood of detecting a signal existed between groups of parasites. Phylogenetic signal strength was correlated with host specificity, suggesting that mechanisms increasing host specificity also increase the likelihood of a phylogenetic signal in host use by parasites. Differences in the transmission mode did not affect signal strength or the likelihood of detecting a signal, indicating that variation in host switching opportunities associated with the transmission mode does not affect signal strength.  相似文献   

19.
Parasite host range can be influenced by physiological, behavioral, and ecological factors. Combining data sets on host–parasite associations with phylogenetic information of the hosts and the parasites involved can generate evolutionary hypotheses about the selective forces shaping host range. Here, we analyzed associations between the nest‐parasitic flies in the genus Philornis and their host birds on Trinidad. Four of ten Philornis species were only reared from one species of bird. Of the parasite species with more than one host bird species, P. falsificus was the least specific and P. deceptivus the most specific attacking only Passeriformes. Philornis flies in Trinidad thus include both specialists and generalists, with varying degrees of specificity within the generalists. We used three quantities to more formally compare the host range of Philornis flies: the number of bird species attacked by each species of Philornis, a phylogenetically informed host specificity index (Poulin and Mouillot's STD), and a branch length‐based STD. We then assessed the phylogenetic signal of these measures of host range for 29 bird species. None of these measures showed significant phylogenetic signal, suggesting that clades of Philornis did not differ significantly in their ability to exploit hosts. We also calculated two quantities of parasite species load for the birds – the parasite species richness, and a variant of the STD index based on nodes rather than on taxonomic levels – and assessed the signal of these measures on the bird phylogeny. We did not find significant phylogenetic signal for the parasite species load or the node‐based STD index. Finally, we calculated the parasite associations for all bird pairs using the Jaccard index and regressed these similarity values against the number of nodes in the phylogeny separating bird pairs. This analysis showed that Philornis on Trinidad tend to feed on closely related bird species more often than expected by chance.  相似文献   

20.
Statistical correlations of biodiversity patterns across multiple trophic levels have received considerable attention in various types of interacting assemblages, forging a universal understanding of patterns and processes in free‐living communities. Host–parasite interactions present an ideal model system for studying congruence of species richness among taxa as obligate parasites are strongly dependent upon the availability of their hosts for survival and reproduction while also having a tight coevolutionary relationship with their hosts. The present meta‐analysis examined 38 case studies on the relationship between species richness of hosts and parasites, and is the first attempt to provide insights into the patterns and causal mechanisms of parasite biodiversity at the community level using meta‐regression models. We tested the distinct role of resource (i.e. host) availability and evolutionary co‐variation on the association between biodiversity of hosts and parasites, while spatial scale of studies was expected to influence the extent of this association. Our results demonstrate that species richness of parasites is tightly correlated with that of their hosts with a strong average effect size (r= 0.55) through both host availability and evolutionary co‐variation. However, we found no effect of the spatial scale of studies, nor of any of the other predictor variables considered, on the correlation. Our findings highlight the tight ecological and evolutionary association between host and parasite species richness and reinforce the fact that host–parasite interactions provide an ideal system to explore congruence of biodiversity patterns across multiple trophic levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号