首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
2.
3.
4.
The F-domain of rat HNF-4alpha1 has a crucial impact on the ligand binding affinity, ligand specificity and secondary structure of HNF-4alpha. (i) Fluorescent binding assays indicate that wild-type, full-length HNF-4alpha (amino acids 1-455) has high affinity (Kd=0.06-12 nm) for long chain fatty acyl-CoAs (LCFA-CoA) and low affinity (Kd=58-296 nm) for unesterified long chain fatty acids (LCFAs). LCFA-CoA binding was due to close molecular interaction as shown by fluorescence resonance energy transfer (FRET) from full-length HNF-4alpha tryptophan (FRET donor) to bound cis-parinaroyl-CoA (FRET acceptor), which yielded an intermolecular distance of 33 A, although no FRET to cis-parinaric acid was detected. (ii) Deleting the N-terminal A-D-domains, comprising the AF1 and DNA binding functions, only slightly affected affinities for LCFA-CoAs (Kd=0.9-4 nm) and LCFAs (Kd=93-581 nm). (iii) Further deletion of the F-domain robustly reduced affinities for LCFA-CoA and reversed ligand specificity (i.e. high affinity for LCFAs (Kd=1.5-32 nm) and low affinity for LCFA-CoAs (Kd=54-302 nm)). No FRET from HNF-4alpha-E (amino acids 132-370) tryptophan (FRET donor) to bound cis-parinaroyl-CoA (FRET acceptor) was detected, whereas an intermolecular distance of 28 A was calculated from FRET between HNF-4alpha-E and cis-parinaric acid. (iv) Circular dichroism showed that LCFA-CoA, but not LCFA, altered the secondary structure of HNF-4alpha only when the F-domain was present. (v) cis-Parinaric acid bound to HNF-4alpha with intact F-domain was readily displaceable by S-hexadecyl-CoA, a nonhydrolyzable thioether analogue of LCFA-CoAs. Truncation of the F-domain significantly decreased cis-parinaric acid displacement. Hence, the C-terminal F-domain of HNF-4alpha regulated ligand affinity, ligand specificity, and ligand-induced conformational change of HNF-4alpha. Thus, characteristics of F-domain-truncated mutants may not reflect the properties of full-length HNF-4alpha.  相似文献   

5.
6.
A fatty acid-binding protein from the nematode Ascaridia galli was characterized. The gene was isolated and recombinantly expressed in Escherichia coli. According to the deduced amino acid sequence A. galli fatty acid-binding protein (AgFABP) belongs to the family of nematode polyprotein allergens, as shown by Western blotting and PCR analysis with genomic DNA and cDNA. Both native and recombinant proteins bind fatty acids and retinoids with high affinity. The fluorescent fatty acid analogue 11-[(5-dimethylaminonaphthalene-1-sulfonyl)amino] undecanoic acid (DAUDA) shows substantial changes in its emission spectrum when bound to AgFABP; this binding is reversed by fatty acids such as oleate. Moreover, changes of the intrinsic fluorescence of retinol and retinoic acid confirm retinoid binding activity of AgFABP. Fluorescence titration experiments with DAUDA indicate stoichiometric binding to a single binding site per monomer unit with affinities (Kd) of 1.6 and 1.8 x 10(-7) m for native and the recombinant protein, respectively. The apparent binding affinities of the nonfluorescent ligands were calculated in displacement experiments with DAUDA and values in the same range were obtained for myristic, palmitic, oleic, linoleic, arachidonic and retinoic acid. Additionally, the binding affinity of AgFABP for oleate and palmitate was determined by direct and indirect radiochemical analysis and the values obtained were similar to those from the fluorescent experiments. Both proteins show a preference for the binding of long-chain saturated and unsaturated fatty acids, but not for short chain (C3-C12) and branched fatty acids, cholesterol and tryptophan.  相似文献   

7.
The primary ligands of human serum albumin (HSA), an abundant plasma protein, are non-esterified fatty acids. In vivo, the majority of fatty acids associated with the protein are unsaturated. We present here the first high-resolution crystal structures of HSA complexed with two important unsaturated fatty acids, the monounsaturated oleic acid (C18:1) and the polyunsaturated arachidonic acid (C20:4). Both compounds are observed to occupy the seven binding sites distributed across the protein that are also bound by medium and long-chain saturated fatty acids. Although C18:1 fatty acid binds each site on HSA in a conformation almost identical with that of the corresponding saturated compound (C18:0), the presence of multiple cis double bonds in C20:4 induces distinct binding configurations at some sites. The observed restriction on binding configurations plausibly accounts for differences in the pattern of binding affinities for the primary sites between polyunsaturated fatty acids and their saturated or monounsaturated counterparts.  相似文献   

8.
Long chain fatty acids, derived either from endogenous metabolism or by nutritional sources play significant roles in important biological processes of membrane structure, production of biologically active compounds, and participation in cellular signaling processes. Recently, the structure of dietary fatty acids has become an important issue in human health because ingestion of saturated fats (containing triglycerides composed of saturated fatty acids) is considered harmful, while unsaturated fats are viewed as beneficial. It is important to note that the molecular reason for this dichotomy still remains elusive. Since fatty acids are important players in development of pathology of cardiovascular and endocrine system, understanding the key molecular targets of fatty acids, in particular those that discriminate between saturated and unsaturated fats, is much needed. Recently, insights have been gained on several fatty acid-activated nuclear receptors involved in gene expression. In other words, we can now envision long chain fatty acids as regulators of signal transduction processes and gene regulation, which in turn will dictate their roles in health and disease. In this review, we will discuss fatty acid-mediated regulation of nuclear receptors. We will focus on peroxisome proliferators-activated receptors (PPARs), liver X receptors (LXR), retinoid X receptors (RXRs), and Hepatocyte Nuclear Factor alpha (HNF-4alpha), all of which play pivotal roles in dietary fatty acid-mediated effects. Also, the regulation of gene expression by Conjugated Linoleic Acids (CLA), a family of dienoic fatty acids with a variety of beneficial effects, will be discussed.  相似文献   

9.
Microsomes prepared from leek epidermal tissue readily elongate stearoyl-CoA to very long chain fatty acid with malonyl-CoA as the C2 unit. In the absence of stearoyl-CoA, but in the presence of ATP, microsomes elongate endogenous free fatty acids. Endogenous CoA is the source of CoA. Palmitoyl, stearoyl, and higher saturated acyl-CoAs are readily elongated by the microsomal system but oleoyl-CoA is ineffective; however, the higher monounsaturated acyl-CoAs can be elongated. Since the very long chain fatty acids of the leek epidermis are all saturated, it would appear that the reaction controlling the nature of the final acyl product is the inactivity of oleoyl-CoA as a substrate. There is no evidence that acyl carrier protein participates in the elongation reactions. Evidence is also presented suggesting that (a) there may be two elongation systems, one responsible for the conversion of stearoyl-CoA to arachidonyl-CoA and the second involved in the conversion of arachidonyl-CoA to very long chain fatty acids, and that (b) the elongation activities may be associated with a large polypeptide.  相似文献   

10.
11.
Rat intestinal fatty acid-binding protein (I-FABP) is an abundant, 15,124-Da polypeptide found in the cytosol of small intestinal epithelial cells (enterocytes). It is homologous to rat liver fatty acid-binding protein (L-FABP), a 14,273-Da cytosolic protein which is found in enterocytes as well as hepatocytes. It is unclear why the small intestinal epithelium contains two abundant fatty acid-binding proteins. A systematic comparative analysis of the ligand binding characteristics of the two FABPs has not been reported. To undertake such a study we expressed the coding region of a full length I-FABP cDNA in Escherichia coli and purified large quantities of the protein. We also purified rat L-FABP from a similar, previously described expression system (Lowe, J. B., Strauss, A. W., and Gordon, J. I. (1984) J. Biol. Chem. 259, 12696-12704). Analysis of fatty acids associated with each of the homogeneous E. coli-derived FABPs suggested that the two proteins differed in their ligand binding specificity and capacity. All of the fatty acids associated with I-FABP were saturated while 30% of the E. coli fatty acids bound to L-FABP were unsaturated (16:1, 18:1, 18:2). We directly analyzed the ability of I- and L-FABP to bind fatty acids of different chain length and degree of saturation using a hydroxyalkoxypropyl dextran-based assay. Scatchard analysis revealed that each mole of L-FABP can bind up to 2 mol of long chain fatty acid while each mole of I-FABP can bind only 1 mole of fatty acid. L-FABP exhibited a relatively higher affinity for unsaturated fatty acids (oleate, arachidonate) than for saturated fatty acid (palmitate). By contrast, we were not able to detect a significant difference in the affinity of I-FABP for palmitate, oleate, and arachidonate. Neither protein exhibited any appreciable affinity for fatty acids whose chain length was less than C16. The observed differences in ligand affinities and capacities suggest that these proteins may have distinct roles in metabolism and/or compartmentalization of fatty acids within enterocytes.  相似文献   

12.
Seven-day-old leek seedlings actively synthesize lipids in vivo from [1-14C]acetate, both in the light and in the dark. In the dark, phospholipid synthesis is more effective than galactolipid synthesis. Whatever the time of acetate incorporation by the etiolated seedlings, very long chain fatty acids having from 20 to 26 carbon atoms are found in all the polar lipids, including the acyl-CoAs. All of the labelled very long chain fatty acids incorporated into the polar lipids are saturated. On the other hand, the labelled C18-fatty acids are unsaturated in phospholipids and galactolipids and almost no label is found in the saturated or unsaturated C18-fatty acids of the acyl-CoAs.  相似文献   

13.
Liver and intestinal cytosol contain abundant levels of long chain fatty acyl-CoA binding proteins such as liver fatty acid binding protein (L-FABP) and acyl-CoA binding protein (ACBP). However, the relative function and specificity of these proteins in microsomal utilization of long chain fatty acyl-CoAs (LCFA-CoAs) for sequential transacylation of glycerol-3-phosphate to form phosphatidic acid is not known. The results showed for the first time that L-FABP and ACBP both stimulated microsomal incorporation of the monounsaturated oleoyl-CoA and polyunsaturated arachidonoyl-CoA 8–10-fold and 2–3-fold, respectively. In contrast, these proteins inhibited microsomal utilization of the saturated palmitoyl-CoA by 69% and 62%, respectively. These similar effects of L-FABP and ACBP on microsomal phosphatidic acid biosynthesis were mediated primarily through the activity of glycerol-3-phosphate acyltransferase (GPAT), the rate limiting step, rather than by protecting the long chain acyl-CoAs from microsomal hydrolase activity. In fact, ACBP but not L-FABP protected long chain fatty acyl-CoAs from microsomal acyl-CoA hydrolase activity in the order: palmitoyl-CoA>oleoyl-CoA>arachidonoyl-CoA. In summary, the data established for the first time a role for both L-FABP and ACBP in microsomal phosphatidic acid biosynthesis. By preferentially stimulating microsomal transacylation of unsaturated long chain fatty acyl-CoAs while concomitantly exerting their differential protection from microsomal acyl-CoA hydrolase, L-FABP and ACBP can uniquely function in modulating the pattern of fatty acids esterified to phosphatidic acid, the de novo precursor of phospholipids and triacylglycerols. This may explain in part the simultaneous presence of these proteins in cell types involved in fatty acid absorption and lipoprotein secretion.  相似文献   

14.
15.
This study describes the effect of some saturated and unsaturated free fatty acids and acyl-CoA thioesters on Trypanosoma cruzi glucose 6-phosphate dehydrogenase and hexokinase activities. Glucose 6-phosphate dehydrogenase was sensitive to the destabilizing effect provoked by free fatty acids, while hexokinase remained unaltered. Glucose 6-phosphate dehydrogenase inhibition by free fatty acids was dependent on acid concentration and chain length. Both enzymes were inhibited when they were incubated with acyl-CoA thioesters. The acyl-CoA thioesters inhibited glucose 6-phosphate dehydrogenase at a lower concentration than the free fatty acids; the ligands glucose 6-phosphate and NADP+ afforded protection. The inhibition of hexokinase by acyl-CoAs was not reverted when the enzyme was incubated with ATP. The type of inhibition found with acyl-CoAs in relation to glucose 6-phosphate dehydrogenase and hexokinase suggests that this type inhibition may produce an in vivo modulation of these enzymatic activities.  相似文献   

16.
Alpha-1 acid glycoprotein (AGP, orosomucoid), a major acute phase protein in plasma, displays potent cytoprotective and anti-inflammatory activities whose molecular mechanisms are largely unknown. Because AGP binds various exogenous drugs, we have searched for endogenous ligands for AGP. We found that AGP binds lysophospholipids in a manner discernible from albumin in several ways. First, mass spectrometric analyses showed that AGP isolated from plasma and serum contained lysophosphatidylcholine (LPC) enriched in mono and polysaturated acyl chains, whereas albumin contained mostly saturated LPC. Second, AGP bound LPC in a 1:1 molar ratio and with a higher affinity than free fatty acids, whereas albumin bound LPC in a 3:1 ratio but with a lower affinity than that of free fatty acids. Consequently, free fatty acids displaced LPC more avidly from albumin than from AGP. Competitive ligand displacement indicated the highest affinity for AGP to LPC20:4, 18:3, 18:1, and 16:0 (150-180 nM), lysophosphatidylserine (Kd 190 nM), and platelet activating factor (PAF) (Kd 235 nM). The high affinity of AGP to LPC in equilibrium was verified by stopped-flow kinetics, which implicated slow dissociation after fast initial binding, being consistent with an induced-fit mechanism. AGP also bound pyrene-labeled phospholipids directly from vesicles and more efficiently than albumin. AGP prevented LPC-induced priming and PAF-induced activation of human granulocytes, thus indicating scavenging of the cellular effects of the lipid ligands. The results suggest that AGP complements albumin as a lysophospholipid scavenging protein, particularly in inflammatory conditions when the capacity of albumin to sequester LPC becomes impaired.  相似文献   

17.
We report that long-chain fatty acyl-CoAs are potent inhibitors of the thyroid hormone (T3) receptor isolated from rat liver nuclei. Both saturated and unsaturated fatty acyl-CoAs were similarly potent. Fifty per cent inhibition of T3 binding by the receptor was observed at an oleoyl-CoA concentration as low as 1.3 microM, and the affinity of oleoyl-CoA for the receptor (Ki) was estimated to be 0.45 microM. Fatty acyl-CoAs also promoted dissociation of the hormone bound to the receptor. The action of fatty acyl-CoAs was competitive for the hormone binding site, resulting in a reduction in the receptor's affinity for T3. These observations suggest that fatty acyl-CoAs modulate the binding of the thyroid hormone to its nuclear receptor, in vitro. Whether or not such events occur in vivo remains to be determined.  相似文献   

18.
19.
Intestinal enterocytes contain two homologous fatty acid-binding proteins, intestinal fatty acid-binding protein (I-FABP)2 and liver fatty acid-binding protein (L-FABP). Since the functional basis for this multiplicity is not known, the fatty acid-binding specificity of recombinant forms of both rat I-FABP and rat L-FABP was examined. A systematic comparative analysis of the 18 carbon chain length fatty acid binding parameters, using both radiolabeled (stearic, oleic, and linoleic) and fluorescent (trans-parinaric and cis-parinaric) fatty acids, was undertaken. Results obtained with a classical Lipidex-1000 binding assay, which requires separation of bound from free fatty acid, were confirmed with a fluorescent fatty acid-binding assay not requiring separation of bound and unbound ligand. Depending on the nature of the fatty acid ligand, I-FABP bound fatty acid had dissociation constants between 0.2 and 3.1 microM and a consistent 1:1 molar ratio. The dissociation constants for L-FABP bound fatty acids ranged between 0.9 and 2.6 microM and the protein bound up to 2 mol fatty acid per mole of protein. Both fatty acid-binding proteins exhibited relatively higher affinity for unsaturated fatty acids as compared to saturated fatty acids of the same chain length. cis-Parinaric acid or trans-parinaric acid (each containing four double bonds) bound to L-FABP and I-FABP were displaced in a competitive manner by non-fluorescent fatty acid. Hill plots of the binding of cis- and trans- parinaric acid to L-FABP showed that the binding affinities of the two sites were very similar and did not exhibit cooperativity. The lack of fluorescence self-quenching upon binding 2 mol of either trans- or cis-parinaric acid/mol L-FABP is consistent with the presence of two binding sites with dissimilar orientation in the L-FABP. Thus, the difference in binding capacity between I-FABP and L-FABP predicts a structurally different binding site or sites.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号