首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The constitutive androstane receptor (CAR, NR1I3) is a central regulator of xenobiotic metabolism. CAR activation induces hepatic expression of detoxification enzymes and transporters and increases liver size. Here we show that CAR-mediated hepatomegaly is a transient, adaptive response to acute xenobiotic stress. In contrast, chronic CAR activation results in hepatocarcinogenesis. In both acute and chronic xenobiotic responses, hepatocyte DNA replication is increased and apoptosis is decreased. These effects are absent in CAR null mice, which are completely resistant to tumorigenic effects of chronic xenobiotic stress. In the acute response, direct up-regulation of Mdm2 expression by CAR contributes to both increased DNA replication and inhibition of p53-mediated apoptosis. These results demonstrate an essential role for CAR in regulating both liver homeostasis and tumorigenesis in response to xenobiotic stresses, and they also identify a specific molecular mechanism linking chronic environmental stress and tumor formation.  相似文献   

3.
Activation of the constitutive androstane receptor (CAR) in hepatocytes occurs as a body adaptation in response to a number of external influences, and its functional activity is primarily related to induction of enzymes detoxifying xenobiotics. However, special attention was recently given to CAR due to the fact that its key role becomes unveiled in various physiological and pathophysiological processes occurring in the liver: gluconeogenesis, metabolism of fatty acids and bilirubin, hormonal regulation, proliferation of hepatocytes, and hepatocarcinogenesis. Here we review the main pathways and mechanisms that elevate hepatocyte proliferative activity related to CAR and whose disturbance may be a pivotal factor in hepatocarcinogenesis.  相似文献   

4.
5.
6.
7.
8.
9.
Phenobarbital (PB) induction of CYP2B genes is mediated by translocation of the constitutively active androstane receptor (CAR) to the nucleus. Interaction of CAR with p160 coactivators and enhancement of CAR transactivation by the coactivators have been shown in cultured cells. In the present studies, the interaction of CAR with the p160 coactivator glucocorticoid receptor-interacting protein 1 (GRIP1) was examined in vitro and in vivo. Binding of GRIP1 to CAR was shown by glutathione S-transferase (GST) pull-down and affinity DNA binding. N- or C-terminal fragments of GRIP1 that contained the central receptor-interacting domain bound to GST-CAR, but the presence of ligand increased the binding to GST-CAR of only the fragments containing the C-terminal region. In gel shift analysis, binding to CAR was observed only with GRIP1 fragments containing the C-terminal region, and the binding was increased by a CAR agonist and decreased by a CAR antagonist. Expression of GRIP1 enhanced CAR-mediated transactivation in cultured hepatic-derived cells 2-3-fold. In hepatocytes transfected in vivo, expression of exogenous GRIP1 alone induced transactivation of the CYP2B1 PB-dependent enhancer 15-fold, whereas CAR expression alone resulted in only a 3-fold enhancement in untreated mice. Remarkably, CAR and GRIP1 together synergistically transactivated the enhancer about 150-fold, which is approximately equal to activation by PB treatment. In PB-treated mice, expression of exogenous CAR alone had little effect, expression of GRIP1 increased transactivation about 2-fold, and with CAR and GRIP, a 4-fold activation was observed. In untreated mice, expression of GRIP resulted in nuclear translocation of green fluorescent protein-CAR. These results strongly suggest that a p160 coactivator functions in CAR-mediated transactivation in vivo in response to PB treatment and that the synergistic activation of CAR by GRIP in untreated animals results from both nuclear translocation and activation of CAR.  相似文献   

10.
The constitutive androstane receptor CAR is a xenosensing nuclear receptor that can be activated by natural polyphenols such as flavonoids and catechins. We examined alcoholic beverage phytochemicals for their ability to activate CAR. HepG2 cells were transfected with CAR expression vector and its reporter gene, and then treated with trans-resveratrol, ellagic acid, β-caryophyllene, myrcene, and xanthohumol. A luciferase assay revealed that ellagic acid and trans-resveratrol activated both human and mouse CAR. Since CAR regulates many genes involved in energy metabolism, the possibility exists that these polyphenols would reduce the risk of certain alcohol-induced metabolic disorders with the help of CAR.  相似文献   

11.
The constitutive androstane receptor (CAR) transactivation can occur in the absence of exogenous ligand and this activity is enhanced by agonists TCPOBOP and meclizine. We use biophysical and cell-based assays to show that increased activity of CAR(TCPOBOP) relative to CAR(meclizine) corresponds to a higher affinity of CAR(TCPOBOP) for the steroid receptor coactivator-1. Additionally, steady-state fluorescence spectra suggest conformational differences between CAR(TCPOBOP):RXR and CAR(meclizine):RXR. Hydrogen/deuterium exchange (HDX) data indicate that the CAR activation function 2 (AF-2) is more stable in CAR(TCPOBOP):RXR and CAR(meclizine):RXR than in CAR:RXR. HDX kinetics also show significant differences between CAR(TCPOBOP):RXR and CAR(meclizine):RXR. Unlike CAR(meclizine):RXR, CAR(TCPOBOP):RXR shows a higher overall stabilization that extends into RXR. We identify residues 339-345 in CAR as an allosteric regulatory site with a greater magnitude reduction in exchange kinetics in CAR(TCPOBOP):RXR than CAR(meclizine):RXR. Accordingly, assays with mutations on CAR at leucine-340 and leucine-343 confirm this region as an important determinant of CAR activity.  相似文献   

12.
13.
The human constitutive androstane receptor (CAR, NR1I3) is an important ligand-activated regulator of oxidative and conjugative enzymes and transport proteins. Because of the lack of a crystal structure of the ligand-binding domain (LBD), wide species differences in ligand specificity and the scarcity of well characterized ligands, the factors that determine CAR ligand specificity are not clear. To address this issue, we developed highly defined homology models of human CAR LBD to identify residues lining the ligand-binding pocket and to perform molecular dynamics simulations with known human CAR modulators. The roles of 22 LBD residues for basal activity, ligand selectivity, and interactions with co-regulators were studied using site-directed mutagenesis, mammalian co-transfection, and yeast two-hybrid assays. These studies identified several amino acids within helices 3 (Asn(165)), 5 (Val(199)), 11 (Tyr(326), Ile(330), and Gln(331)), and 12 (Leu(343) and Ile(346)) that contribute to the high basal activity of human CAR. Unique residues within helices 3 (Ile(164) and Asn(165)), 5 (Cys(202) and His(203)), and 7 (Phe(234) and Phe(238)) were found control the selectivity for CAR activators and inhibitors. A single residue in helix 7 (Phe(243)) appears to explain the human/mouse species difference in response of CAR to 17alpha-ethynyl-3,17beta-estradiol.  相似文献   

14.
15.
D B Tully  J A Cidlowski 《Biochemistry》1989,28(5):1968-1975
Sucrose density gradient shift assays were used to study the interactions of human glucocorticoid receptors (GR) with small DNA fragments either containing or lacking glucocorticoid response element (GRE) DNA consensus sequences. When crude cytoplasmic extracts containing [3H]triamcinolone acetonide [( 3H]TA) labeled GR were incubated with unlabeled DNA under conditions of DNA excess, a GRE-containing DNA fragment obtained from the 5' long terminal repeat of mouse mammary tumor virus (MMTV LTR) formed a stable 12-16S complex with activated, but not nonactivated, [3H]TA receptor. By contrast, if the cytosols were treated with calf thymus DNA-cellulose to deplete non-GR-DNA-binding proteins prior to heat activation, a smaller 7-10S complex was formed with the MMTV LTR DNA fragment. When similar experiments were conducted under conditions of large receptor excess, using 3' [32P]-MMTV LTR DNA, the trace quantity of DNA formed a stable 10-14S complex with DNA-cellulose pretreated cytosols or with untreated cytosols in the presence of excess Escherichia coli competitor DNA. If trace quantities of the 3' [32P]-MMTV LTR DNA were incubated with untreated crude cytosols, much larger complexes were formed, indicating the association of other cytosolic proteins with the MMTV LTR DNA fragment. Activated [3H]TA receptor from DNA-cellulose pretreated cytosols also interacted with two similarly sized fragments from pBR322 DNA, but with lower apparent affinities in the order MMTV LTR DNA fragment much greater than pBR322 fragment containing a single GRE DNA consensus sequence greater than non-GRE-containing pBR322 fragment.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Bupivacaine, a local anesthetic and cationic amphiphile, forms stable liposomal-like structures upon direct mixing with plasmid DNA in aqueous solutions. These structures are on the order of 50-70 nm as determined by scanning electron microscopy, and are homogeneous populations as analyzed by density gradient centrifugation. The DNA within these structures is protected from nuclease degradation and UV-induced damage in vitro. Bupivacaine:DNA complexes have a negative zeta potential (surface charge), homogeneous nature, and an ability to rapidly assemble in aqueous solutions. Bupivacaine:DNA complexes, as well as similar complexes of DNA with other local anesthetics, have the potential to be a novel class of DNA delivery agents for gene therapy and DNA vaccines.  相似文献   

17.
18.
19.
20.
Compared with its rodent orthologs, little is known about the chemical specificity of human constitutive androstane receptor (hCAR) and its regulation of hepatic enzyme expression. Phenytoin (PHY), a widely used antiepileptic drug, is a potent inducer of CYP2B6 in primary human hepatocytes, but does not activate human pregnane X receptor (PXR) significantly in cell-based transfection assays at the same concentrations associated with potent induction of CYP2B6. Based on this observation, we hypothesized that PHY may be a selective activator of hCAR. In primary human hepatocytes, expression of CYP2B6 reporter genes containing phenobarbital-responsive enhancer module (PBREM) or PBREM/xenobiotic-responsive enhancer module (XREM) response elements were activated up to 14- and 28-fold, respectively, by 50 microm PHY. By contrast, parallel experiments in HepG2 cell lines co-transfected with an hPXR expression vector did not show increased reporter activity. These results indicated that a PXR-independent pathway, which is retained in primary hepatocytes, is responsible for PHY induction of CYP2B6. Further experiments revealed that PHY effectively translocates hCAR from the cytoplasm into the nucleus in both primary human hepatocytes and CAR(-/-) mice. Compared with vehicle controls, PHY administration significantly increased CYP2B6 reporter gene expression, when this reporter construct was delivered together with hCAR expression vector into CAR(-/-) mice. However, PHY did not increase reporter gene expression in CAR(-/-) mice in the absence of hCAR vector, implying that CAR is essential for mediating PHY induction of CYP2B6 gene expression. Taken together, these observations demonstrate that, in contrast to most of the known CYP2B6 inducers, PHY is a selective activator of CAR in humans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号