首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This study determined the effects of endurance or resistance exercise training on maximal O2 consumption (VO2max) and the cardiovascular responses to exercise of 70- to 79-yr-old men and women. Healthy untrained subjects were randomly assigned to a control group (n = 12) or to an endurance (n = 16) or resistance training group (n = 19). Training consisted of three sessions per week for 26 wk. Resistance training consisted of one set of 8-12 repetitions on 10 Nautilus machines. Endurance training consisted of 40 min at 50-70% VO2max and at 75-85% VO2max for the first and last 13 wk of training, respectively. The endurance training group increased its VO2max by 16% during the first 13 wk of training and by a total of 22% after 26 wk of training; this group also increased its maximal O2 pulse, systolic blood pressure, and ventilation, and decreased its heart rate and perceived exertion during submaximal exercise. The resistance training group did not elicit significant changes in VO2max or in other maximal or submaximal cardiovascular responses despite eliciting 9 and 18% increases in lower and upper body strength, respectively. Thus healthy men and women in their 70s can respond to prolonged endurance exercise training with adaptations similar to those of younger individuals. Resistance training in older individuals has no effect on cardiovascular responses to submaximal or maximal treadmill exercise.  相似文献   

2.
Lovell DI  Cuneo R  Wallace J  McLellan C 《Steroids》2012,77(5):413-418
The hormonal response of 32 older men (70-80years) to a bout of sub-maximum aerobic exercise was examined before, after 16weeks of resistance or aerobic training and again after 4weeks of detraining. Blood samples were obtained at rest and immediately post sub-maximum exercise (30min @ 70% VO(2) max) to determine the concentrations of growth hormone (GH), insulin-like growth factor-1 (IGF-1), testosterone (Test), sex hormone-binding globulin (SHBG) and the calculation of free testosterone (FT). Both training groups had significant increases in leg strength and VO(2) max after 16weeks training but leg strength and VO(2) max returned to pre-training levels in the aerobic training and resistance training groups, respectively. During the 20week study there was no change in resting concentrations of any hormones among the three groups. There was no increase in GH, IGF-1 or SHBG immediately post sub-maximum exercise in any of the groups before training, after 16weeks training or after 4weeks detraining. Testosterone and FT increased immediately post sub-maximum exercise within all groups before training, after 16weeks training and after 4weeks detraining with the increase in Test and FT higher after 16weeks of resistance training compared to before training and after 4weeks detraining within the resistance training group. The increased responsiveness of Test and FT after 16weeks of resistance training was lost after 4weeks of detraining. Our results indicate that some physiological and hormonal adaptations gained after 16weeks training are lost after only 4weeks detraining.  相似文献   

3.
The present study was performed to clarify the effects of intermittent exposure to an altitude of 4,500 m with endurance training and detraining on ventilatory chemosensitivity. Seven subjects (sea-level group) trained at sea level at 70% maximal oxygen uptake (VO2 max) for 30 min/day, 5 days/wk for 2 wk, whereas the other seven subjects (altitude group) trained at the same relative intensity (70% altitude VO2 max) in a hypobaric chamber. VO2 max, hypoxic ventilatory response (HVR), and hypercapnic ventilatory response, as an index of central hypercapnic chemosensitivity (HCVR) and as an index of peripheral chemosensitivity (HCVRSB), were measured. In both groups VO2 max increased significantly after training, and a significant loss of VO2 max occurred during 2 wk of detraining. HVR tended to increase in the altitude group but not significantly, whereas it decreased significantly in the sea-level group after training. HCVR and HCVRSB did not change in each group. After detraining, HVR returned to the pretraining level in both groups. These results suggest that ventilatory chemosensitivity to hypoxia is more variable by endurance training and detraining than that to hypercapnia.  相似文献   

4.
The purpose of this study was to compare the effects of an 8-week training period of resistance training alone (GR), or combined resistance and endurance training (GCOM), followed by 12 weeks of detraining (DT) on body composition, explosive strength, and ·VO?max adaptations in a large sample of adolescent school boys. Forty-two healthy boys recruited from a Portuguese public high school (age: 13.3 ± 1.04 years) were assigned to 2 experimental groups to train twice a week for 8 weeks: GR (n = 15), GCOM (n = 15), and a control group (GC: n = 12; no training program). Significant training-induced differences were observed in 1- and 3-kg medicine ball throw gains (GR: +10.3 and +9.8%, respectively; GCOM: +14.4 and +7%, respectively), whereas no significant changes were observed after a DT period in both the experimental groups. Significant training-induced gains in the height and length of the countermovement (vertical-and-horizontal) jumps were observed in both the experimental groups. No differences were perceived after a DT period in lower limb power. Time at 20 m decreased significantly for both intervention programs (GR: -11.5% and GCOM: -12.4%, <0.00), but either GR or GCOM groups kept the running speed after a DT period of 12 weeks. After training, the ·VO?max increased only significantly for GCOM (4.6%, p = 0.01). A significant loss was observed after a DT period in GR but not in GCOM. Performing resistance and endurance training in the same workout does not impair strength development in young school boys. As expected, strength training by itself does not improve aerobic capacity. Our results also suggest that training program effects even persist at the end of the DT period.  相似文献   

5.
To assess the influences of age and sex on regional changes in 1 repetition maximum (1RM) strength, 10 young men (20-30 years), 8 young women (20-30 years), 11 older men (65- 75 years), and 10 older women (65-75 years) were studied before and after a 24-week whole-body strength training program. Changes in 1RM strength were analyzed for each individual exercise, as well as by calculating a total body score (TBS), an upper body score (UBS), and a lower body score (LBS). The effect of age and sex on changes in 1RM strength was analyzed using a repeated measures analysis of variance. When changes in strength for individual exercises were analyzed, the chest press, lat pulldown, shoulder press, and triceps pushdown were affected by both age (p < 0.05) and sex (p < 0.05), while the biceps curls were only influenced by age (p < 0.05). For the lower body, the leg press changes in 1RM strength were influenced by age (p < 0.0001), while leg extension was influenced by sex (p < 0.05). Total body score, UBS, and LBS showed significant increases with 24 weeks of ST (p < 0.001, all). Changes in TBS and UBS were affected by age (p < 0.001, both) and sex (p < 0.05 and p < 0.001, respectively). Younger subjects showed a greater increase in strength than older subjects, and men showed a greater increase in strength compared with women. Changes in LBS were affected by age (p < 0.001), with younger subjects showing a greater increase in strength compared with the older subjects, but not by sex (p = 0.464). These data indicate that regional increases in strength are differentially affected by age and sex.  相似文献   

6.
This study compared the body water turnover in endurance athletes and age-matched sedentary men. Eight competitive endurance athletes (20.8+/-1.9 yr) and age-matched eight sedentary men (21.6+/-2.5 yr) participated in this study. Total body water and body water turnover were measured using the deuterium (D(2)O) dilution technique. Urine samples were obtained every day for 10 days after oral administration of D(2)O. The day-by-day concentrations were used to calculate the biological half-life of D(2)O and body water turnover. Maximal oxygen uptake (VO(2max)) and oxygen uptake corresponding to ventilatory threshold (VO(2VT)) as an index of aerobic capacity were determined during a graded exercise test. Both VO(2max) and VO(2VT) were higher in the exercise group than in the sedentary group (P<0.05). The biological half-life of D(2)O was significantly shorter in the exercise group than in the sedentary group (5.89+/-0.81 days vs. 7.52+/-0.77 days, P<0.05), and the percentage of the body water turnover was significantly higher in the exercise group than in the sedentary group (11.99+/-1.96% vs. 9.39+/-1.21%, P<0.05). The body water turnover was correlated with VO(2max) and VO(2VT), respectively (P<0.05). Based on these findings, this study speculates that a level of physical activity may induce a body water turnover higher in the healthy state, since the better trained subjects have a higher body water turnover.  相似文献   

7.
With the advent of the ski-skating technique, upper body power has increasingly been shown to be a major factor in cross-country skiing success. The purpose of this study was to evaluate 4 commonly used training methods (weight, circuit, rollerboard, and ski-specific training) for the development of upper body power (UBP) in junior cross-country skiers. Fifty-eight adolescent cross-country skiers (Boys: n = 29, age = 16.0 +/- 1.2 y and Girls: n = 29, age = 15.5 +/- 1.5 y) were assigned to one of the UBP training methods for a 10-week training program. Fourteen cross-country runners served as controls (boys: n = 7, age = 15.8 +/- 1.7 y; girls: n = 7, age = 14.9 +/- 1.3 y). Skiers were evaluated pre- and post-training for upper body strength (UBS) using a 10 repetition maximum (RM) rollerboard test, for UBP using a double-poling ergometer and for upper body endurance (UBE) with a 3-km, arms-only, rollerski endurance time trial. Competitive race results were collected during the winters before and after training as were all training data. Only the rollerboard training group improved significantly greater than the control group (p < 0.05) in UBP and UBS. Improvements in UBP, UPS, and UBE were significantly related (r = 0.545, 0.303, and 0.407, respectively) to improvements in competitive performance. These data suggest that training using a rollerboard with 5-12RM and explosive speed is more effective in developing UBP than other common training methods for adolescent cross-country skiers. The practical importance of these data was verified by the significant relationships between improvements in UBP, UBS, and UBE related to improvements in competitive race performance.  相似文献   

8.
The purpose of this study was to investigate the influence of additional resistance training on cardiorespiratory endurance in young (15.8 ± 0.8 yrs) male basketball players. Experimental group subjects (n=23) trained twice per week for 12 weeks using a variety of general free-weight and machine exercises designed for strength acquisition, beside ongoing regular basketball training program. Control group subject (n=23) participated only in basketball training program. Oxygen uptake (VO(2max)) and related gas exchange measures were determined continuously during maximal exercise test using an automated cardiopulmonary exercise system. Muscle power of the extensors and flexors was measured by a specific computerized tensiometer. Results from the experimental group (VO(2max) 51.6 ± 5.7 ml.min(-1).kg(-1) pre vs. 50.9 ± 5.4 ml.min(-1).kg(-1) post resistance training) showed no change (p>0.05) in cardiorespiratory endurance, while muscle strength and power of main muscle groups increased significantly. These data demonstrate no negative cardiorespiratory performance effects on adding resistance training to ongoing regular training program in young athletes.  相似文献   

9.
The purpose of this study was to examine the effects of a drink containing creatine, amino acids, and protein vs. a carbohydrate placebo on body composition, strength, muscular endurance, and anaerobic performance before and after 10 weeks of resistance training. Fifty-one men (mean +/- SD; age: 21.8 +/- 2.9 years) were randomly assigned to either the test drink (TEST; n = 23) or the placebo (PLAC; n = 28) and performed two 30-second Wingate Anaerobic Tests for determination of peak power (PP) and mean power (MP), were weighed underwater for percent body fat (%fat) and fat-free mass (FFM), and were tested for 1 repetition maximum (1RM) dynamic constant external resistance strength and muscular endurance (END; number of repetitions performed with 80% of 1RM) on the bilateral leg extension (LE) and free-weight bench press (BP) exercises. The testing was conducted before (PRE) and after (POST) 10 weeks of resistance training (3 sets of 10 repetitions with 80% of the subject's 1RM performed 3 times per week) on the LE and BP exercises. Body weight, FFM, LE 1RM, LE END, BP 1RM, and BP END increased (p < 0.05), whereas %fat decreased (p < 0.05) from PRE to POST for both the TEST and PLAC groups. Peak power and MP, however, increased for the TEST group, but not for the PLAC group. These results suggested that the creatine-, amino acid-, and protein-containing drink provided no additional benefits when compared with carbohydrates alone for eliciting changes in body composition, strength, and muscular endurance after a 10-week resistance training period. The TEST drink was, however, more effective than carbohydrates alone for improving anaerobic power production.  相似文献   

10.
In order to test for possible sex differences in endurance capacity, groups of young, physically active women (n = 6) and men (n = 7) performed bicycle ergometer exercise at 80% and 90% of their maximal oxygen uptakes (VO2 max). The groups were matched for age and physical activity habits. At 80% VO2 max the women performed significantly longer (P less than 0.05), 53.8 +/- 12.7 min vs 36.8 +/- 12.2 min, respectively (means +/- SD). Mid-exercise and terminal respiratory exchange ratio (R) values were significantly lower in women, suggesting a later occurrence of muscle glycogen depletion as a factor in their enhanced endurance. At 90% VO2 max the endurance times were similar for men and women, 21.2 +/- 10.3 min and 22.0 +/- 5.0 min, respectively. The blood lactate levels reached in these experiments were only marginally lower (mean differences 1.5 to 2 mmol X l-1) than those obtained at VO2 max, suggesting high lactate levels as a factor in exhaustion. The changes in body weight during the 80% experiments and the degree of hemoconcentration were not significantly different between men and women.  相似文献   

11.
This study examined the effects of 3 wk of either endurance or strength training on plasticity of the neural mechanisms involved in the soleus H reflex and V wave. Twenty-five sedentary healthy subjects were randomized into an endurance group (n = 13) or strength group (n = 12). Evoked V-wave, H-reflex, and M-wave recruitment curves, maximal voluntary contraction (MVC), and time-to-task-failure (isometric contraction at 40% MVC) of the plantar flexors were recorded before and after training. Following strength training, MVC of the plantar flexors increased by 14.4 ± 5.2% in the strength group (P < 0.001), whereas time-to-task-failure was prolonged in the endurance group (22.7 ± 17.1%; P < 0.05). The V wave-to-maximal M wave (V/M(max)) ratio increased significantly (55.1 ± 28.3%; P < 0.001) following strength training, but the maximal H wave-to-maximal M wave (H(max)/M(max)) ratio remained unchanged. Conversely, in the endurance group the V/M(max) ratio was not altered, whereas the H(max)/M(max) ratio increased by 30.8 ± 21.7% (P < 0.05). The endurance training group also displayed a reduction in the H-reflex excitability threshold while the H-reflex amplitude on the ascending limb of the recruitment curve increased. Strength training only elicited a significant decrease in H-reflex excitability threshold, while H-reflex amplitudes over the ascending limb remained unchanged. These observations indicate that the H-reflex pathway is strongly involved in the enhanced endurance resistance that occurs following endurance training. On the contrary, the improvements in MVC following strength training are likely attributed to increased descending drive and/or modulation in afferents other than Ia afferents.  相似文献   

12.
Caloric restriction (CR) results in fat loss; however, it may also result in loss of muscle and thereby reduce strength and aerobic capacity (VO2 max). These effects may not occur with exercise-induced weight loss (EX) because of the anabolic effects of exercise on heart and skeletal muscle. We tested the hypothesis that CR reduces muscle size and strength and VO2 max, whereas EX preserves or improves these parameters. Healthy 50- to 60-yr-old men and women (body mass index of 23.5-29.9 kg/m2) were studied before and after 12 mo of weight loss by CR (n = 18) or EX (n = 16). Lean mass was assessed by dual-energy X-ray absorptiometry, thigh muscle volume by MRI, isometric and isokinetic knee flexor strength by dynamometry, and treadmill VO2 max by indirect calorimetry. Both interventions caused significant decreases in body weight (CR: -10.7 +/- 1.4%, EX: -9.5 +/- 1.5%) and lean mass (CR: -3.5 +/- 0.7%, EX: -2.2 +/- 0.8%), with no significant differences between groups. Significant decreases in thigh muscle volume (-6.9 +/- 0.8%) and composite knee flexion strength (-7.2 +/- 3%) occurred in the CR group only. Absolute VO2 max decreased significantly in the CR group (-6.8 +/- 2.3%), whereas the EX group had significant increases in both absolute (+15.5 +/- 2.4%) and relative (+28.3 +/- 3.0%) VO2 max. These data provide evidence that muscle mass and absolute physical work capacity decrease in response to 12 mo of CR but not in response to a similar weight loss induced by exercise. These findings suggest that, during EX, the body adapts to maintain or even enhance physical performance capacity.  相似文献   

13.
Twenty-six active university students were randomly allocated to resistance (R, n = 9), endurance (E, n = 8), and concurrent resistance and endurance (C, n = 9) training conditions. Training was completed 3 times per week in all conditions, with endurance training preceding resistance training in the C group. Resistance training involved 4 sets of upper- and lower-body exercises with loads of 4-8 repetition maximum (RM). Each endurance training session consisted of five 5-minute bouts of incremental cycle exercise at between 40 and 100% of peak oxygen uptake (.VO2peak). Parameters measured prior to and following training included strength (1RM and isometric and isokinetic [1.04, 3.12, 5.20, and 8.67 rad.s(-1)] strength), .VO2peak and Wingate test performance (peak power output [PPO], average power, and relative power decline). Significant improvements in 1RM strength were observed in the R and C groups following training. .VO2peak significantly increased in E and C but was significantly reduced in R after training. Effect size (ES) transformations on the other dependent variables suggested that performance changes in the C group were not always similar to changes in the R or E groups. These ES data suggest that statistical power and dependent variable selection are significant issues in enhancing our insights into concurrent training. It may be necessary to assess a range of performance parameters to monitor the relative effectiveness of a particular concurrent training regimen.  相似文献   

14.
Previous research has advocated that plyometric training improves endurance performance. However, a consequence of such a training is the immediate and prolonged appearance of exercise-induced muscle damage (EIMD). This study examined whether a single bout of plyometric exercise, designed to elicit muscle damage, affected cycling endurance performance. Seventeen participants were randomly assigned to either a muscle damage (n = 7 men, 1 woman) or nonmuscle damage (n = 8 men, 1 woman) group. Before and at 48 hours, participants were measured for perceived muscle soreness, peak isokinetic strength, and physiological, metabolic, and perceptual responses during 5-minute submaximal cycling at ventilatory threshold (VT) and a 15-minute time trial. Perceived muscle soreness and isokinetic strength (p < 0.05) were significantly altered in the muscle damage group after EIMD. No changes in heart rate or blood lactate were evident during submaximal exercise (p > 0.05). However, VO2, V(E), and rating of perceived exertion (RPE) values were increased at VT in the muscle damage group at 48 hours after EIMD (p < 0.05). During the time trial, mean power output, distance covered, and VO2 were lower in the muscle damage group at 48 hours after EIMD (p < 0.05). However, there was no change in RPE (p > 0.05), suggesting effort perception was unchanged during time-trial performance after EIMD. In conclusion, individuals using concurrent plyometric and endurance training programs to improve endurance performance should be aware of the acute impact of muscle-damaging exercise on subsequent cycling performance.  相似文献   

15.
The aim of this study was to investigate the relation between upper body muscle strength and endurance, and exercise capacity during an incremental cycle exercise test in sedentary healthy male subjects before and after 6 months of combined supervised group training. Exercise capacity was measured as maximal oxygen consumption (VO?peak) and maximum work rate (WR(peak)). Muscle strength and endurance of the upper body were assessed by bench press and isometric measurement of trunk extensor and flexor maximum voluntary contraction (MVC) and trunk extensor and flexor endurance. Thirty-one subjects were studied before and after the training period. Bench press and trunk extensor MVC correlated to exercise capacity at baseline and after training. Training improved VO?peak and WR(peak). The correlation between trunk extensor MVC and exercise capacity improved after training. Upper body strength may affect exercise capacity by increasing the rider's ability to generate force on the handlebar that can be transmitted to the pedals. Resistance training of the arms, chest, and trunk may help improve cycling performance.  相似文献   

16.
We used endurance training and acute anemia to assess the interactions among maximal oxygen consumption (VO2max), muscle oxidative capacity, and exercise endurance in rats. Animals were evaluated under four conditions: untrained and endurance-trained with each group subdivided into anemic (animals with reduced hemoglobin concentrations) and control (animals with unchanged hemoglobin concentrations). Anemia was induced by isovolemic plasma exchange transfusion. Hemoglobin concentration and hematocrit were decreased by 38 and 41%, respectively. Whole body VO2max was decreased by 18% by anemia regardless of training condition. Anemia significantly reduced endurance by 78% in untrained rats but only 39% in trained animals. Endurance training resulted in a 10% increase in VO2max, a 75% increase in the distance run to exhaustion, and 35, 45, and 58% increases in skeletal muscle pyruvate-malate, alpha-ketoglutarate, and palmitylcarnitine oxidase activities, respectively. We conclude that endurance is related to the interactive effects of whole body VO2max and muscle oxidative capacities for the following reasons: 1) anemic untrained and trained animals had similar VO2max but trained rats had higher muscle oxidative capacities and greater endurance; 2) regardless of training status, the effect of acute anemia was to decrease VO2max and endurance; and 3) trained anemic rats had lower VO2max but had greater muscle oxidative capacity and greater endurance than untrained controls.  相似文献   

17.
The purpose of the present study was to investigate the relationship between aerobic characteristics and sprint skiing performance, and the effects of high-intensity endurance training on sprint skiing performance and aerobic characteristics. Ten male and 5 female elite junior cross-country skiers performed an 8-week intervention training period. The intervention group (IG, n = 7) increased the volume of high-intensity endurance training performed in level terrain, whereas the control group (CG, n = 8) continued their baseline training. Before and after the intervention period, the skiers were tested for 1.5-km time-trial performance on roller skis outdoors in the skating technique. Maximal oxygen uptake (VO?max) and oxygen uptake at the ventilatory threshold (VO?VT) were measured during treadmill running. VO?max and VO?VT were closely related to sprint performance (r = ~0.75, both p < 0.008). The IG improved sprint performance, VO?max, and VO?VT from pre to posttesting and improved sprint performance and VO?VT when compared to the CG (all p < 0.01). This study shows a close relationship between aerobic power and sprint performance in cross-country skiing and highlights the positive effects of high-intensity endurance training in level terrain.  相似文献   

18.
The purpose of this study was to investigate the effects of a concurrent strength and endurance training program on running performance and running economy of middle-aged runners during their marathon preparation. Twenty-two (8 women and 14 men) recreational runners (mean ± SD: age 40.0 ± 11.7 years; body mass index 22.6 ± 2.1 kg·m?2) were separated into 2 groups (n = 11; combined endurance running and strength training program [ES]: 9 men, 2 women and endurance running [E]: 7 men, and 4 women). Both completed an 8-week intervention period that consisted of either endurance training (E: 276 ± 108 minute running per week) or a combined endurance and strength training program (ES: 240 ± 121-minute running plus 2 strength training sessions per week [120 minutes]). Strength training was focused on trunk (strength endurance program) and leg muscles (high-intensity program). Before and after the intervention, subjects completed an incremental treadmill run and maximal isometric strength tests. The initial values for VO2peak (ES: 52.0 ± 6.1 vs. E: 51.1 ± 7.5 ml·kg?1·min?1) and anaerobic threshold (ES: 3.5 ± 0.4 vs. E: 3.4 ± 0.5 m·s?1) were identical in both groups. A significant time × intervention effect was found for maximal isometric force of knee extension (ES: from 4.6 ± 1.4 to 6.2 ± 1.0 N·kg?1, p < 0.01), whereas no changes in body mass occurred. No significant differences between the groups and no significant interaction (time × intervention) were found for VO2 (absolute and relative to VO2peak) at defined marathon running velocities (2.4 and 2.8 m·s?1) and submaximal blood lactate thresholds (2.0, 3.0, and 4.0 mmol·L?1). Stride length and stride frequency also remained unchanged. The results suggest no benefits of an 8-week concurrent strength training for running economy and coordination of recreational marathon runners despite a clear improvement in leg strength, maybe because of an insufficient sample size or a short intervention period.  相似文献   

19.
Twelve subjects participated in an exercise program of cycling and running 40 min/day, 6 days/wk. After 10 wk, they continued to train with either a one-third or two-thirds reduction in work rates for an additional 15 wk. Frequency and duration for the additional training remained the same as during the 10 wk of training. The average increases in maximum O2 uptake (VO2 max) were between 11 and 20% when measured during cycling and treadmill running after 10 wk of training. VO2 max was not maintained at the 6-day/wk training levels with a one-third reduction in training intensity but was still higher than pretraining levels. With a two-thirds reduction in intensity, VO2 max declined to an even greater extent than with the one-third reduction. Short-term endurance (approximately 5 min) was maintained in the one-third reduced group but was markedly reduced in the two-thirds reduced group. Long-term endurance was decreased significantly from training by 21% in the one-third reduced group (184-145 min) and by 30% in the two-thirds reduced group (202-141 min). Calculated left ventricular mass, obtained from echocardiographic measurements, increased approximately 15% after training but returned to control levels after reduced training in both groups. These results demonstrate that training intensity is an essential requirement for maintaining the increased aerobic power and cardiac enlargement with reduced training.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
This study investigates whether a 6-wk intermittent hypoxia training (IHT), designed to avoid reductions in training loads and intensities, improves the endurance performance capacity of competitive distance runners. Eighteen athletes were randomly assigned to train in normoxia [Nor group; n = 9; maximal oxygen uptake (VO2 max) = 61.5 +/- 1.1 ml x kg(-1) x min(-1)] or intermittently in hypoxia (Hyp group; n = 9; VO2 max = 64.2 +/- 1.2 ml x kg(-1) x min(-1)). Into their usual normoxic training schedule, athletes included two weekly high-intensity (second ventilatory threshold) and moderate-duration (24-40 min) training sessions, performed either in normoxia [inspired O2 fraction (FiO2) = 20.9%] or in normobaric hypoxia (FiO2) = 14.5%). Before and after training, all athletes realized 1) a normoxic and hypoxic incremental test to determine VO2 max and ventilatory thresholds (first and second ventilatory threshold), and 2) an all-out test at the pretraining minimal velocity eliciting VO2 max to determine their time to exhaustion (T(lim)) and the parameters of O2 uptake (VO2) kinetics. Only the Hyp group significantly improved VO2 max (+5% at both FiO2, P < 0.05), without changes in blood O2-carrying capacity. Moreover, T(lim) lengthened in the Hyp group only (+35%, P < 0.001), without significant modifications of VO2 kinetics. Despite similar training load, the Nor group displayed no such improvements, with unchanged VO2 max (+1%, nonsignificant), T(lim) (+10%, nonsignificant), and VO2 kinetics. In addition, T(lim) improvements in the Hyp group were not correlated with concomitant modifications of other parameters, including VO2 max or VO2 kinetics. The present IHT model, involving specific high-intensity and moderate-duration hypoxic sessions, may potentialize the metabolic stimuli of training in already trained athletes and elicit peripheral muscle adaptations, resulting in increased endurance performance capacity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号