首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We showed previously that the vasopeptidase inhibitor (VPI) omapatrilat improves peri-myocardial infarction (MI) survival, but the mechanisms involved and whether these effects are sustained remained to be determined, and are the subject of this study. Rats (n = 272) received omapatrilat (20 mg x kg-1x day-1) starting 7 days before MI and continued peri- and post-MI, or no treatment (control). One group of rats had continuous ambulatory ECG and blood pressure recordings started 6 h before MI and continued until 24 h after MI, when survival was evaluated, and the rats were killed, and MI size was evaluated. A second group had left ventricular (LV) remodeling evaluated by echocardiography at 30 days and, at 38 days, had cardiac hemodynamics and morphology done and survival evaluated. Survival 24 h after MI (n = 255) improved with omapatrilat (60% vs. 46% for control; P = 0.0378). Over the next 37 days, there was no further improvement with omapatrilat but the early benefit was sustained. Omapatrilat reduced MI size 24 h after MI (36 +/- 2 vs. 42 +/- 2 mm2 for controls; P = 0.034). Omapatrilat reduced ventricular arrhythmia score 1-12 h after MI. Omapatrilat decreased blood pressure, but not during the first 24 h after MI. Omapatrilat reduced LV diastolic and systolic dimensions and LV and right ventricular weights compared with control large MI, indicating a decrease in reactive hypertrophy. Improvement in cardiac remodeling was accompanied by improved cardiac hemodynamics. Thus this study indicates that pre-, peri-, and post-MI treatment with the VPI omapatrilat is beneficial in survival, ventricular arrhythmias, LV remodeling, and cardiac function.  相似文献   

2.
The purpose of this study was to evaluate and compare the effects of simultaneous angiotensin-converting enzyme (ACE) and neutral endopeptidase 24.11 (NEP) inhibition by the vasopeptidase inhibitor omapatrilat (10 and 40 mg x kg(-1) x day(-1)) with those of the selective ACE inhibitor captopril (160 mg x kg(-1) x day(-1)) on survival, cardiac hemodynamics, and cytokine mRNA expression in left ventricular (LV) tissues 4 days after myocardial infarction (MI) in rats. The effects of the co-administration of both B1 and B2 kinin receptor antagonists (2.5 mg x kg(-1) x day(-1) each) with and without omapatrilat were also evaluated to assess the role of bradykinin (BK) during this post-MI period. Both omapatrilat and captopril treatments improve early (4 days) post-MI survival when started 4 h post-MI. The use of kinin receptor antagonists had no significant effect on survival in untreated MI rats and omapatrilat-treated MI rats. This improvement in survival with omapatrilat and captopril is accompanied by a reduced LV end-diastolic pressure (LVEDP) and pulmonary congestion. The use of kinin receptor antagonists had little effect on cardiac hemodynamics or morphologic measurements. Acute MI significantly increased the expression of cardiac cytokines (TNF-alpha, TGF-beta1, and IL-10). Captopril significantly attenuated this activation, while omapatrilat had variable effects: sometimes increasing but generally not changing activation depending on the cytokine measured and the dose of omapatrilat used. The co-administration of both kinin receptor antagonists attenuates the increase in expression of cardiac TNF-alpha and TGF-beta1 after omapatrilat treatment. Taken together, these results would suggest that despite very marked differences in the way these drugs modified the expression of cardiac cytokines, both omapatrilat and captopril improved early (4 days) post-MI survival and cardiac function to a similar extent.  相似文献   

3.
Rad is a member of a subclass of small GTP-binding proteins, the RGK family. In the present study we investigated the role of Rad protein in regulating cardiomyocyte viability. DNA fragmentation and TUNEL assays demonstrated that Rad promoted rat neonatal cardiomyocyte apoptosis. Rad silencing fully blocked serum deprivation induced apoptosis, indicating Rad is necessary for trigger cardiomyocyte apoptosis. Rad overexpression caused a dramatic decrease of the anti-apoptotic molecule Bcl-xL, whereas Bcl-xL overexpression protected cardiomyocytes against Rad-induced apoptosis. Rad-triggered apoptosis was mediated by the activation of p38 MAPK. The p38 blocker SB203580 effectively protected cardiomyocytes against Rad-evoked apoptosis.  相似文献   

4.
Background: Brain-derived neurotrophic factor (BDNF) is associated with coronary artery diseases. However, its role and mechanism in myocardial infarction (MI) is not fully understood.Methods: Wistar rat and Kunming mouse model of MI were induced by the ligation of left coronary artery. Blood samples were collected from MI rats and patients. Plasma BDNF level, protein expression of BDNF, tropomyosin-related kinase B (TrkB) and its downstream transient receptor potential canonical (TRPC)3/6 channels were examined by enzyme-linked immunosorbent assay and Western blot. Infarct size, cardiac function and cardiomyocyte apoptosis were measured after intra-myocardium injection with recombinant human BDNF. Protective role of BDNF against cardiomyocyte apoptosis was confirmed by BDNF scavenger TrkB-Fc. The regulation of TRPC3/6 channels by BDNF was validated by pretreating with TRPC blocker (2-Aminoethyl diphenylborinate, 2-APB) and TRPC3/6 siRNAs.Results: Circulating BDNF was significantly enhanced in MI rats and patients. Protein expression of BDNF, TrkB and TRPC3/6 channels were upregulated in MI. 3 days post-MI, BDNF treatment markedly reduced the infarct size and serum lactate dehydrogenase activity. Meanwhile, echocardiography indicated that BDNF significantly improved cardiac function of MI mice. Furthermore, BDNF markedly inhibited cardiomyocyte apoptosis by upregulating Bcl-2 expression and downregulating caspase-3 expression and activity in ischemic myocardium. In neonatal rat ventricular myocytes, cell viability was dramatically increased by BDNF in hypoxia, which was restored by TrkB-Fc. Furthermore, protective role of BDNF against hypoxia-induced apoptosis was reversed by 2-APB and TRPC3/6 siRNAs.Conclusion: BDNF/TrkB alleviated cardiac ischemic injury and inhibited cardiomyocytes apoptosis by regulating TRPC3/6 channels, which provides a novel potential therapeutic candidate for MI.  相似文献   

5.
Loss of cardiomyocytes by apoptosis is proposed to cause heart failure. Angiotensin II (ANG II), an important neurohormonal factor during heart failure, can induce cardiomyocyte apoptosis. Inasmuch as hexarelin has been reported to have protective effects in this process, we examined whether hexarelin can prevent cardiomyocytes from ANG II-induced cell death. Cultured cardiomyocytes from neonatal rats were stimulated with ANG II. Apoptosis was evaluated using fluorescence microscopy, TdT-mediated dUTP nick-end labeling (TUNEL) method, flow cytometry, DNA laddering, and analysis of cell viability by (3,4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT). It was found that incubation with 0.1 micromol/l ANG II for 48 h increased cardiomyocyte apoptosis. Administration of 0.1 micromol/l hexarelin significantly decreased this ANG II-induced apoptosis and DNA fragmentation and increased myocyte viability. To further investigate the underlying mechanisms, caspase-3 activity assay and mRNA expression of Bax, Bcl-2, and growth hormone secretagogue receptor (GHS-R; the supposed hexarelin binding site) were examined. GHS-R mRNA was abundantly expressed in cardiomyocytes and was upregulated after administration of hexarelin. These results suggest that hexarelin abates cardiomyocytes from ANG II-induced apoptosis possibly via inhibiting the increased caspase-3 activity and Bax expression induced by ANG II and by increasing the expression of Bcl-2, which is depressed by ANG II. Whether the upregulated expression of GHS-R induced by hexarelin is associated with this antiapoptotic effect deserves further investigation.  相似文献   

6.

Background

Myocardial ischemia/reperfusion injury is the major cause of morbidity and mortality for cardiovascular diseases. Dopamine D2 receptors are expressed in cardiac tissues. However, the roles of dopamine D2 receptors in myocardial ischemia/reperfusion injury and cardiomyocyte apoptosis are unclear. Here we investigated the effects of both dopamine D2 receptors agonist (bromocriptine) and antagonist (haloperidol) on apoptosis of cultured neonatal rat ventricular myocytes induced by ischemia/reperfusion injury.

Methods

Myocardial ischemia/reperfusion injury was simulated by incubating primarily cultured neonatal rat cardiomyocytes in ischemic (hypoxic) buffer solution for 2 h. Thereafter, these cells were incubated for 24 h in normal culture medium.

Results

Treatment of the cardiomyocytes with 10 μM bromocriptine significantly decreased lactate dehydrogenase activity, increased superoxide dismutase activity, and decreased malondialdehyde content in the culture medium. Bromocriptine significantly inhibited the release of cytochrome c, accumulation of [Ca2+]i, and apoptosis induced by ischemia/reperfusion injury. Bromocriptine also down-regulated the expression of caspase-3 and -9, Fas and Fas ligand, and up-regulated Bcl-2 expression. In contrast, haloperidol (10 μM) had no significant effects on the apoptosis of cultured cardiomyocytes under the aforementioned conditions.

Conclusions

These data suggest that activation of dopamine D2 receptors can inhibit apoptosis of cardiomyocytes encountered during ischemia/reperfusion damage through various pathways.  相似文献   

7.

Background

Cardiomyocyte autophagy and apoptosis are crucial events underlying the development of cardiac abnormalities and dysfunction after myocardial infarction (MI). A better understanding of the cell signaling pathways involved in cardiac remodeling may support the development of new therapeutic strategies for the treatment of heart failure (HF) after MI.

Methods

A cardiac MI injury model was constructed by ligating the left anterior descending (LAD) coronary artery. Neonatal cardiomyocytes were isolated and cultured to investigate the mechanisms underlying the protective effects of nicorandil on MI-induced injury.

Results

Nicorandil reduced cardiac enzyme release, mitigated left ventricular enlargement and cardiac dysfunction after MI, as evaluated by echocardiography and hemodynamic measurements. According to the results of the western blot analysis and immunofluorescence staining, nicorandil enhanced autophagic flux and reduced apoptosis in cardiomyocytes subjected to hypoxic injury. Interestingly, nicorandil increased Mst1 and p-Mst1 levels in cardiomyocytes subjected to MI injury. Mst1 knockout abolished the protective effects of nicorandil on cardiac remodeling and dysfunction after MI. Mst1 knockout also abolished the beneficial effects of nicorandil on cardiac enzyme release and cardiomyocyte autophagy and apoptosis.

Conclusions

Nicorandil alleviates post-MI cardiac dysfunction and remodeling. The mechanisms were associated with enhancing autophagy and inhibiting apoptosis through Mst1 inhibition.  相似文献   

8.
9.
The purposes of this study were to evaluate and to compare the effects of simultaneous angiotensin-converting enzyme (ACE) and neutral endopeptidase 24.11 (NEP) inhibition by the vasopeptidase inhibitor omapatrilat (1 mg. kg(-1). day(-1)) with those of the selective ACE inhibitor enalapril (1 mg. kg(-1). day(-1)) on survival, cardiac hemodynamics, and bradykinin (BK) and des-Arg(9)-BK levels in cardiac tissues 24 h after myocardial infarction (MI) in rats. The effect of the co-administration of both B(1) and B(2) kinin receptor antagonists (2.5 mg. kg(-1). day(-1) each) with metallopeptidase inhibitors was also evaluated. The pharmacological treatments were infused subcutaneously using micro-osmotic pumps for 5 days starting 4 days before the ligation of the left coronary artery. Immunoreactive kinins were quantified by highly sensitive and specific competitive enzyme immunoassays. The post-MI mortality of untreated rats with a large MI was high; 74% of rats dying prior to the hemodynamic study. Mortality in the other MI groups was not significantly different from that of the untreated MI rats. Cardiac BK levels were not significantly different in the MI vehicle-treated group compared with the sham-operated rats. Both omapatrilat and enalapril treatments of MI rats significantly increased cardiac BK concentrations compared with the sham-operated group (P < 0.05). However, cardiac BK levels were significantly increased only in the MI omapatrilat-treated rats compared with the MI vehicle-treated group (P < 0.01). Cardiac des-Arg(9)-BK concentrations were not significantly modified by MI, and MI with omapatrilat or enalapril treatment compared with the sham-operated group. The co-administration of both kinin receptor antagonists with MI omapatrilat- and enalapril-treated rats had no significant effect on cardiac BK and des-Arg(9)-BK levels. Thus, the significant increase of cardiac BK concentrations by omapatrilat could be related to a biochemical or a cardiac hemodynamic parameter on early (24 h) post-MI state.  相似文献   

10.

Background

Myocardial ischemia/reperfusion injury is the major cause of morbidity and mortality for cardiovascular diseases. Dopamine D2 receptors are expressed in cardiac tissues. However, the roles of dopamine D2 receptors in myocardial ischemia/reperfusion injury and cardiomyocyte apoptosis are unclear. Here we investigated the effects of both dopamine D2 receptors agonist (bromocriptine) and antagonist (haloperidol) on apoptosis of cultured neonatal rat ventricular myocytes induced by ischemia/reperfusion injury.

Methods

Myocardial ischemia/reperfusion injury was simulated by incubating primarily cultured neonatal rat cardiomyocytes in ischemic (hypoxic) buffer solution for 2 h. Thereafter, these cells were incubated for 24 h in normal culture medium.

Results

Treatment of the cardiomyocytes with 10 μM bromocriptine significantly decreased lactate dehydrogenase activity, increased superoxide dismutase activity, and decreased malondialdehyde content in the culture medium. Bromocriptine significantly inhibited the release of cytochrome c, accumulation of [Ca2+]i, and apoptosis induced by ischemia/reperfusion injury. Bromocriptine also down-regulated the expression of caspase-3 and -9, Fas and Fas ligand, and up-regulated Bcl-2 expression. In contrast, haloperidol (10 μM) had no significant effects on the apoptosis of cultured cardiomyocytes under the aforementioned conditions.

Conclusions

These data suggest that activation of dopamine D2 receptors can inhibit apoptosis of cardiomyocytes encountered during ischemia/reperfusion damage through various pathways.  相似文献   

11.
Sox4 participates in the progression of embryo development and regulation of apoptosis in tumors. However, the effect and mechanism of Sox4 in myocardial infarction (MI) remains unclear. Therefore, we aimed at examining the role and molecular mechanism of Sox4 in the process of cardiomyocytes apoptosis during MI. The expression of Sox4 were obviously increased both in MI mice and in neonatal mouse cardiomyocytes treated with H2O2. Overexpression of Sox4 promoted cardiomyocyte apoptosis with or without H2O2, whereas knocking down of Sox4 alleviated H2O2‐induced apoptosis in cardiomyocytes. Furthermore, silencing Sox4 by AAV‐9 carried short hairpin RNA targeting Sox4 (AAV‐9‐sh‐Sox4) markedly decreased cardiac infarct area, imprfoved cardiac dysfunction, and reversed apoptosis in MI mice. Mechanistically, there is a potential Sox4‐binding site in the promoter region of Bim, and forced expression of Sox4 significantly promoted Bim expression in cultured cardiomyocytes with or without H2O2, whereas knocking down of Sox4 inhibited the expression of Bim. Further studies showed that silencing Bim attenuated Sox4‐induced apoptosis in cardiomyocytes, indicating that Sox4 promoted cardiomyocytes apoptosis through regulation of Bim expression, which can be used as a potential therapeutic target for MI.  相似文献   

12.
《Genomics》2020,112(1):574-580
BackgroundlncUCA1 is abundantly expressed in the heart, indicating it may be important in maintaining normal myocardial function. However, the underlying mechanism of lncUCA1 in heart disease, particularly myocardial infarction (MI), is still in its infancy.MethodsLncUCA1 and miR-143 expression were measured in hearts of MI models. Overexpression and knockdown of lncUCA1 in neonatal rat cardiomyocytes were performed to confirm the effects of lncUCA1 in hypoxia-induced apoptosis.ResultsThe expression of lncUCA1 decreased but miR-143 increased inversely in MI heart. Overexpressing lncUCA1 protected cardiomyocytes from H/R induced apoptosis via inhibiting miR-143, which regulates apoptosis by targeting MDM2/p53 pathway. While silencing lncUCA1 caused miR-143 upregulation and H/R-induced apoptosis increase. Moreover, miR-143 was proved to be a competitive target of lncUCA1.ConclusionslncUCA1 might protect cardiomyocyte against H/R induced apoptosis by suppressing miR-143 and modulated the following downstream MDM2/p53 signaling pathway, indicating the therapeutic potential of targeting lncUCA1 for MI.  相似文献   

13.
Temporary or persistent heart failure is one of the major complications after myocardial infarction (MI). In order to elucidate the pathogenesis of MI, we studied the spaciotemporal alteration of 8-hydroxy-2'-deoxyguanosine (8-OHdG) levels in cardiomyocytes in a rat model of ligation of the left anterior descending branch of the coronary artery. The lethality in this model was 18%. Hearts were dissected at 0, 3, 6, 12, 24, 48 h, and 1, 2, 4, 6 weeks after the operation. The cardiac level of 8-OHdG was evaluated biochemically as well as by immunohistochemistry with monoclonal antibody N45.1. Three to 6 h after ligation, the 8-OHdG levels were increased in the cardiomyocytes of MI (six-fold) and peri-MI (four-fold) areas. After 24 h, the myocardium in the MI area was necrotized, and thereafter the 8-OHdG level decreased. 8-OHdG levels in the myocardium of peri-MI areas returned once to a normal level, but were significantly increased at 2-4 weeks along with the appearance of apoptotic cardiomyocytes in this area. The heart after MI has been generally considered as clinically stable after four weeks. However, cardiomyocytes near the infarcted area were oxidatively stressed even after four weeks when the affected lesion was extensive. The present data support the use of supplementary antioxidant therapies to save functional myocardium after MI. (213 words)  相似文献   

14.
This study aims to elucidate the signaling pathway for insulin-like growth factor-1 (IGF-1) in cultured neonatal rat cardiomyocytes and particularly the role of IGF-1 in cardiac apoptosis. IGF-1 stimulated polyphosphoinositide turnover, translocation of protein kinase C (PKC) isoforms (alpha, epsilon, and delta) from the soluble to the particulate fraction, activation of phospholipid-dependent and Ca(2+)-, phospholipid-dependent PKC, and activation of the extracellular-regulated kinase (ERK). IGF-1 attenuated sorbitol-induced cardiomyocyte viability and nuclear DNA fragmentation. These antiapoptotic effects of IGF-1 were blocked by PD-098059 (an MEK inhibitor) but not by bisindolylmaleimide I (BIM, a specific PKC inhibitor). The ERK pathway may therefore be an important component in the mechanism whereby IGF-1 exerts its antiapoptotic effect on the cardiomyocyte.  相似文献   

15.
Mouse mast cell protease-4 (mMCP4) is a chymase that has been implicated in cardiovascular diseases, including myocardial infarction (MI). This study tested a direct role of mMCP4 in mouse post-MI cardiac dysfunction and myocardial remodeling. Immunoblot and immunofluorescent double staining demonstrated mMCP4 expression in cardiomyocytes from the infarct zone from mouse heart at 28 day post-MI. At this time point, mMCP4-deficient Mcpt4?/? mice showed no difference in survival from wild-type (WT) control mice, yet demonstrated smaller infarct size, improved cardiac functions, reduced macrophage content but increased T-cell accumulation in the infarct region compared with those of WT littermates. mMCP4-deficiency also reduced cardiomyocyte apoptosis and expression of TGF-β1, p-Smad2, and p-Smad3 in the infarct region, but did not affect collagen deposition or α-smooth muscle actin expression in the same area. Gelatin gel zymography and immunoblot analysis revealed reduced activities of matrix metalloproteinases and expression of cysteinyl cathepsins in the myocardium, macrophages, and T cells from Mcpt4?/? mice. Immunoblot analysis also found reduced p-Smad2 and p-Smad3 in the myocardium from Mcpt4?/? mice, yet fibroblasts from Mcpt4?/? mice showed comparable levels of p-Smad2 and p-Smad3 to those of WT fibroblasts. Flow cytometry, immunoblot analysis, and immunofluorescent staining demonstrated that mMCP4-deficiency reduced the expression of proapoptotic cathepsins in cardiomyocytes and protected cardiomyocytes from H2O2-induced apoptosis. This study established a role of mMCP4 in mouse post-MI dysfunction by regulating myocardial protease expression and cardiomyocyte death without significant impact on myocardial fibrosis or survival post-MI in mice.  相似文献   

16.
The mechanism of action of Hydrogen sulfide (H2S) as a novel endogenous gaseous messenger and potential cardioprotectant is not fully understood. We therefore investigated the prevention of cardiomyocyte apoptosis by exogenous H2S and the signaling pathways leading to cardioprotection. Using a simulated ischemia–reperfusion (I/Re) model with primary cultured rat neonatal cardiomyocytes, I/Re induced a rapid, time-dependent phosphorylation of c-Jun N-terminal kinase (JNK), with significant elevation at 0.25 h and a peak at 0.5 h during reperfusion. NaHS (H2S donor) significantly inhibited the early phosphorylation of JNK, especially at 0.5 h. Both NaHS and SP600125 (specific JNK inhibitor) decreased the number of apoptotic cells, lowered cytochrome C release and enhanced Bcl-2 expression. When NaHS application was delayed 1 h after reperfusion, the inhibition of apoptosis by H2S was negated. In conclusion, this is novel evidence that early JNK inhibition during reperfusion is associated with H2S-mediated protection against cardiomyocyte apoptosis.  相似文献   

17.
Apoptosis of rat cardiomyocytes induced by staurosporine is prevented by a stilbene derivative (DIDS), which is a known blocker of both Cl(-)/HCO(3)(-) exchangers and Cl(-) channels. To clarify its target, staurosporine-induced activation of caspase-3, DNA laddering and cell death were examined in cultured rat cardiomyocytes. Removal of ambient HCO(3)(-), which minimizes the function of Cl(-)/HCO(3)(-) exchangers, failed to affect the preventive effect of DIDS on apoptosis. A carboxylate analog Cl(-) channel blocker, which does not block Cl(-)/HCO(3)(-) exchangers, also inhibited apoptotic events. Thus, rescue by DIDS of cardiomyocytes from apoptosis is mediated by blockage of Cl(-) channels.  相似文献   

18.
Tissue factor pathway inhibitor (TFPI) is an endogenous inhibitor of tissue factor (TF) induced coagulation. In addition to its anticoagulation activity, TFPI has other functions such as antiproliferation and inducing apoptosis. In the present study, we investigated whether or not TFPI induced apoptosis in cultured rat mesangial cells (MsCs) and the possible signal pathway that involved in the apoptotic process. We demonstrated that recombinant TFPI (rTFPI) induced apoptosis in cultured MsCs via its Kunitz-3 domain and C-terminal in a dose- and time-dependent manner by Hoechst 33258 assay, flow cytometry, nucleosomal laddering of DNA, caspase 3 assay. Because the serine/threonine protein kinase Akt has attracted attention as a mediator of survival (anti-apoptotic) signal in MsCs, we investigated the expression of phosphospecific-Akt and its downstream signal phospho-IκB-α and some other signal molecules like Fas and bcl-2. The results indicated that the process of apoptosis triggered by rTFPI is, at least in part, actively conducted by rat MsCs possibly through PI3-Kinase-Akt signal pathway not by binding to tissue factor. Our findings suggest that rTFPI has the potential usefulness in inducing apoptosis of MsCs under inflammatory conditions.  相似文献   

19.
Oxidative stress is one of the main causes of myocardial injury, which is associated with cardiomyocyte death. Mitochondria play a key role in triggering the necrosis and apoptosis pathway of cardiomyocytes under oxidative stress. Although prohibitin (PHB) has been acknowledged as a mitochondrial chaperone, its functions in cardiomyocytes are poorly characterized. The present research was designed to investigate the cardioprotective role of PHB in mitochondria. Oxidative stress can increase the PHB content in mitochondria in a time-dependent manner. Overexpression of PHB in cultured cardiomyocytes by transfection of recombinant adenovirus vector containing PHB sense cDNA resulted in an increase of PHB in mitochondria. Compared with the non-transfection cardiomyocytes, PHB overexpression could protect the mitochondria from oxidative stress-induced injury. The mitochondria-mediated apoptosis pathway was consistently suppressed in PHB-overexpressed cardiomyocytes after hydrogen peroxide (H2O2) treatment, including a reduced change in mitochondrial membrane permeability transition and an inhibited release of cytochrome c from mitochondria to cytoplasma. As a result, the oxidative stress-induced cardiomyocyte apoptosis was suppressed. These data indicated that PHB protected the cardiomyocytes from oxidative stress-induced damage, and that increasing PHB content in mitochondria constituted a new therapeutic target for myocardium injury. XiaoHua Liu and Zhe Ren contributed equally to this work. ● Prohibitin is an evolutionarily conserved and ubiquitously expressed protein involved in mitochondrial structure, function, and inheritance whose function in cardiomyocyte is not known. In this study, we found oxidative stress could induce increased expression in cardiomyocytes and mitochondrial translocation of PHB, and PHB can protect against oxidative stress in cultured neonatal cardiomyocyte.  相似文献   

20.
The calcium-sensing receptor (CaSR) exists in many tissues, and its expression has been identified in rat cardiac tissue. However, the physiological importance and pathophysiological involvement of CaSR in homeostatic regulation of cardiac function are unclear. To investigate the relation of CaSR and apoptosis in cardiomyocytes, we examined the role of the CaSR activator gadolinium chloride (GdCl(3)) in rat neonatal ventricular cardiomyocytes. Expression of the CaSR protein was observed by Western blot. The apoptotic ratio of rat neonatal ventricular cardiomyocytes was measured with flow cytometry and immunofluorescence techniques. A laser scan confocal microscope was used to detect the intracellular concentration of calcium ([Ca(2+)](i)) in rat neonatal ventricular cardiomyocytes using the acetoxymethyl ester of fluo-3 (fluo-3/(AM)) as a fluorescent dye. The results showed that GdCl(3) increased the phosphorylation of extracellular signal-regulated protein kinase (ERK), c-Jun NH(2)-terminal protein kinases (JNK), and p38. GdCl(3) also activated caspase 9 and increased apoptosis in myocyte by increasing [Ca(2+)](i). In conclusion, these results suggest that CaSR promotes cardiomyocyte apoptosis in rat neonatal ventricular cardiomyocytes through activation of mitogen-activated protein kinases and caspase 9 signaling pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号