首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 60 毫秒
1.
Once thought to provide only structural support to tissues by acting as a scaffold to which cells bind, it is now widely recognized that the extracellular matrix (ECM) provides instructive signals that dictate cell behavior. Recently we demonstrated that mechanical cues intrinsic to the ECM directly regulate the behavior of pre-osteoblastic MC3T3-E1 cells. We hypothesized that one possible mechanism by which ECM compliance exerts its influence on osteogenesis is by modulating the mitogen-activated protein kinase (MAPK) pathway. To address this hypothesis, the differentiation of MC3T3-E1 cells cultured on poly(ethylene glycol) (PEG)-based model substrates with tunable mechanical properties was assessed. Alkaline phosphatase (ALP) levels at days 7 and 14 were found to be significantly higher in cells grown on stiffer substrates (423.9 kPa hydrogels and rigid tissue culture polystyrene (TCPS) control) than on a soft hydrogel (13.7 kPa). Osteocalcin (OCN) and bone sialoprotein (BSP) gene expression levels followed a similar trend. In parallel, MAPK activity was significantly higher in cells cultured on stiffer substrates at both time points. Inhibiting this activation pharmacologically, using PD98059, resulted in significantly lower ALP levels, OCN, and BSP gene expression levels on the hydrogels. Interestingly, the effectiveness of PD98059 was itself dependent on substrate stiffness, with marked inhibition of MAPK phosphorylation in cells grown on compliant hydrogels but insignificant reduction in cells grown on TCPS. Together, these data confirm a role for MAPK in the regulation of osteogenic differentiation by ECM compliance.  相似文献   

2.
MC3T3-E1 cells in culture exhibit a temporal sequence of development similar to in vivo bone formation. To examine whether the developmental expression of the osteoblast phenotype depends on serum derived factors, we compared the timedependent expression of alkaline phosphatase (ALP)-a marker of osteoblastic maturation- in MC3T3-E1 cells grown in the presence of fetal bovine serum (FBS) or resin/charcoal-stripped (AXC) serum. ALP was assessed by measuring enzyme activity, immunoblotting, and Northern analysis. Growth of MC3T3-E1 cells in FBS resulted in the programmed upregulation of alkaline phosphatase (ALP) post-proliferatively during osteoblast differentiation. In the presence of complete serum, actively proliferating cells during the initial culture period expressed low ALP levels consistent with their designation as pre-osteoblasts, whereas postmitotic cultures upregulated ALP protein, message, and enzyme activity. In addition, undifferentiated early cultures of MC3T3-E1 cells were refractory to forskolin (FSK) stimulation of ALP, but became forskolin responsive following prolonged culture in FBS containing media. In contrast, MC3T3-E1 cells grown in AXC serum displayed limited growth and failed to show a time-dependent increase in alkaline phosphatase. Neither the addition of IGF-I to AXC serum to augment cell number or plating at high density restored the time-dependent upregulation of alkaline phosphatase. Cells incubated in AXC serum for 14 days, however, though expressing low alkaline phosphatase levels, maintained the capacity to upregulate ALP after FBS re-addition or forskolin activation of cAMP-dependent pathways. Such time-dependent acquisition of FSK responsiveness and serum stimulation of ALP expression only in mature osteoblasts indicate the possible presence of differentiation switches that impart competency for a subset of osteoblast developmental events that require complete serum for maximal expression. © 1994 Wiley-Liss, Inc.  相似文献   

3.
Glycitein, as one of the three major isoflavones in soybeans, directly but significantly (about 5%) suppressed the proliferation of MC3T3-E1 and stimulated bone-related protein (alkaline phosphatase (ALP) and osteocalcin (OC)) expression. These results indicate that glycitein suppresses the proliferation of osteoblasts and promotes differentiation from its progenitor.  相似文献   

4.
Tang SY  Xie H  Yuan LQ  Luo XH  Huang J  Cui RR  Zhou HD  Wu XP  Liao EY 《Peptides》2007,28(3):708-718
The aim of this study was to investigate the effects of apelin on proliferation and apoptosis of mouse osteoblastic MC3T3-E1 cells. APJ was expressed in MC3T3-E1 cells. Apelin did not affect Runx2 expression, alkaline phosphatase (ALP) activity, osteocalcin and type I collagen secretion, suggesting that it has no effect on osteoblastic differentiation of MC3T3-E1 cells. However, apelin stimulated MC3T3-E1 cell proliferation and inhibited cell apoptosis induced by serum deprivation. Our study also shows that apelin decreased cytochrome c release and caspase-3, capase-8 and caspase-9 activation in serum-deprived MC3T3-E1 cells. Apelin activated c-Jun N-terminal kinase (JNK) and Akt (phosphatidylinositol 3-kinase downstream effector), and the JNK inhibitor SP600125, the phosphatidylinositol 3-kinase (PI3-K) inhibitor LY294002 or the Akt inhibitor 1L-6-hydroxymethyl-chiro-inositol 2-(R)-2-O-methyl-3-O-octadecylcarbonate (HIMO) inhibited its effects on proliferation and serum deprivation-induced apoptosis. Furthermore, apelin protected against apoptosis induced by the glucocorticoid dexamethasone or TNF-alpha. Apelin stimulates proliferation and suppresses serum deprivation-induced apoptosis of MC3T3-E1 cells and these actions are mediated via JNK and PI3-K/Akt signaling pathways.  相似文献   

5.
Nacre or mother of pearl is a calcified structure that forms the lustrous inner layer of some shells. We studied the biological activity of the water-soluble matrix (WSM) extracted from powdered nacre from the shell of the pearl oyster, Pinctada maxima, on the MC3T3-E1 pre-osteoblast cell line from mouse calvaria. This cell line has the ability to differentiate into osteoblasts and to mineralize in the presence of beta-glycerophosphate and ascorbic acid. Cell proliferation and alkaline phosphatase activity were measured as markers of osteoblast differentiation, and mineralization was analyzed. These studies revealed that WSM stimulates osteoblast differentiation and mineralization by day 6 instead of the 21-day period required for cells grown in normal mineralizing media. We compared the activity of WSM with that of dexamethasone on this cell line. WSM can inhibit alkaline phosphatase (ALP) activity and the activity of dexamethasone on MC3T3-E1 cells. This study shows that nacre WSM could speed up the differentiation and mineralization of this cell line more effectively than dexamethasone.  相似文献   

6.
In the present contribution, the potential for use of the ultrafine electrospun fiber mats of poly(3-hydroxybutyrate) (PHB) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) as scaffolding materials for skin and nerve regeneration was evaluated in vitro using mouse fibroblasts (L929) and Schwann cells (RT4-D6P2T) as reference cell lines. Comparison was made with PHB and PHBV films that were prepared by solution-casting technique. Indirect cytotoxicity assessment of the as-spun PHB and PHBV fiber mats with mouse fibroblasts (L929) and Schwann cells (RT4-D6P2T) indicated that the materials were acceptable to both types of cells. The attachment of L929 on all of the fibrous scaffolds was significantly better than that on both the film scaffolds and tissue-culture polystyrene plate (TCPS), while RT4-D6P2T appeared to attach on the flat surfaces of TCPS and the film scaffolds much better than on the rough surfaces of the fibrous scaffolds. For L929, all of the fibrous scaffolds were superior in supporting the cell proliferation to the film counterparts, but inferior to TCPS at days 3 and 5, while, for RT4-D6P2T, the rough surfaces of the fibrous scaffolds appeared to be very poor in supporting the cell proliferation when comparing with the smooth surfaces of TCPS and the film scaffolds. Scanning electron microscopy was also used to observe the behavior of both types of cells that were cultured on both the fibrous and the film scaffolds and glass substrate for 24 h.  相似文献   

7.
8.
Smad3, a critical component of the TGF-beta signaling pathways, plays an important role in the regulation of bone formation. However, how Smad3 affects osteoblast at the different differentiation stage remains still unknown. In the present study, we examined the effects of Smad3 on osteoblast phenotype by employing mouse bone marrow ST-2 cells and mouse osteoblastic MC3T3-E1 cells at the different differentiation stage. Smad3 overexpression significantly inhibited bone morphogenetic protein-2 (BMP-2)-induced ALP activity in ST-2 cells, indicating that Smad3 suppresses the commitment of pluripotent mesenchymal cells into osteoblastic cells. Smad3 increased the levels of COLI and ALP mRNA at 7 day cultures in MC3T3-E1 cells, and its effects on COL1 were decreased as the culture periods progress, although its effects on ALP were sustained during 21 day cultures. Smad3 overexpression enhanced the level of Runx2 and OCN mRNA at 14 day and 21 day cultures. Smad3 increased the levels of MGP and NPP-1 mRNA, although the extent of increase in MGP and NPP-1 was reduced and enhanced during the progression of culture period, respectively. Smad3 did not affect the level of ANK mRNA. On the other hand, Smad3 enhanced the level of MEPE mRNA at 14 and 21 day cultures, although Smad3 decreased it at 7 day cultures. In conclusion, Smad3 inhibits the osteoblastic commitment of ST-2 cells, while promotes the early stage of differentiation and maturation of osteoblastic committed MC3T3-E1 cells. Also, Smad3 enhanced the expression of mineralization-related genes at the maturation phase of MC3T3-E1 cells.  相似文献   

9.
Bone remodeling relies on a dynamic balance between bone formation and resorption, mediated by osteoblasts and osteoclasts, respectively. Under certain stimuli, osteoprogenitor cells may differentiate into premature osteoblasts and further into mature osteoblasts. This process is marked by increased alkaline phosphatase (ALP) activity and mineralized nodule formation. In this study, we induced osteoblast differentiation in mouse osteoprogenitor MC3T3-E1 cells and divided the process into three stages. In the first stage (day 3), the MC3T3-E1 cell under osteoblast differentiation did not express ALP or deposit a mineralized nodule. In the second stage, the MC3T3-E1 cell expressed ALP but did not form a mineralized nodule. In the third stage, the MC3T3-E1 cell had ALP activity and formed mineralized nodules. In the present study, we focused on morphological and proteomic changes of MC3T3-E1 cells in the early stage of osteoblast differentiation — a period when premature osteoblasts transform into mature osteoblasts. We found that mean cell area and mean stress fiber density were increased in this stage due to enhanced cell spreading and decreased cell proliferation. We further analyzed the proteins in the signaling pathway of regulation of the cytoskeleton using a proteomic approach and found upregulation of IQGAP1, gelsolin, moesin, radixin, and Cfl1. After analyzing the focal adhesion signaling pathway, we found the upregulation of FLNA, LAMA1, LAMA5, COL1A1, COL3A1, COL4A6, and COL5A2 as well as the downregulation of COL4A1, COL4A2, and COL4A4. In conclusion, the signaling pathway of regulation of the cytoskeleton and focal adhesion play critical roles in regulating cell spreading and actin skeleton formation in the early stage of osteoblast differentiation.  相似文献   

10.
The effects of Ce on the proliferation, osteogenic differentiation and mineralization function of a murine preosteoblast cell line MC3T3-E1 in vitro were investigated at cell and molecular levels. The results showed that Ce promoted the proliferation, osteogenic differentiation and mineralization function of MC3T3-E1 cells at concentrations of 0.0001, 0.001, 0.01, 0.1 and 1???M, but turned to inhibit the proliferation, osteogenic differentiation and mineralization function at concentrations of 10, 100 and 1000???M. Ce displayed the up-regulation of Runx2, BMP2, ALP, BSP, Col I and OCN genes at concentrations of 0.0001 and 0.1???M; these genes were down-regulated in the MC3T3-E1 cells treated with 1000???M Ce. The expression of BMP2, Runx2 and OCN proteins was promoted by Ce at concentrations of 0.0001 and 0.1???M, but these proteins were down-regulated after 1000???M Ce treatment. The results suggest that Ce likely up-regulates or down-regulates the expression of Runx2, which subsequently up- or down-regulates OB marker genes Col I and BMP2 at early stages and ALP and OCN at later stages of differentiation, thus causing to promote or inhibit the proliferation, osteogenic differentiation and mineralization function of MC3T3-E1 cells.  相似文献   

11.
We determined the effects of yolk water-soluble protein (YSP) on bone formation in pre-osteoblastic MC3T3-E1 cells. YSP (50-5,000 microg/ml) increased cell proliferation and collagen content. Alkaline phosphatase (ALP) activity was also increased by YSP treatment. After enhancement of ALP activity, significant augmentation of calcification was observed. These results suggest that YSP is a promising agent for the prevention and treatment of bone loss.  相似文献   

12.
Bone tissue homeostasis relies upon the ability of cells to detect and interpret extracellular signals that direct changes in tissue architecture. This study utilized a four-point bending model to create both fluid shear and strain forces (loading) during the time-dependent progression of MC3T3-E1 preosteoblasts along the osteogenic lineage. Loading was shown to increase cell number, alkaline phosphatase (ALP) activity, collagen synthesis, and the mRNA expression levels of Runx2, osteocalcin (OC), osteopontin, and cyclo-oxygenase-2. However, mineralization in these cultures was inhibited, despite an increase in calcium accumulation, suggesting that loading may inhibit mineralization in order to increase matrix deposition. Loading also increased fibroblast growth factor receptor-3 (FGFR3) expression coincident with an inhibition of FGFR1, FGFR4, FGF1, and extracellular signal-related kinase (ERK)1/2 phosphorylation. To examine whether these loading-induced changes in cell phenotype and FGFR expression could be attributed to the inhibition of ERK1/2 phosphorylation, cells were grown for 25 days in the presence of the MEK1/2 inhibitor, U0126. Significant increases in the expression of FGFR3, ALP, and OC were observed, as well as the inhibition of FGFR1, FGFR4, and FGF1. However, U0126 also increased matrix mineralization, demonstrating that inhibition of ERK1/2 phosphorylation cannot fully account for the changes observed in response to loading. In conclusion, this study demonstrates that preosteoblasts are mechanoresponsive, and that long-term loading, whilst increasing proliferation and differentiation of preosteoblasts, inhibits matrix mineralization. In addition, the increase in FGFR3 expression suggests that it may have a role in osteoblast differentiation.  相似文献   

13.
Choi EM  Suh KS  Kim YS  Choue RW  Koo SJ 《Phytochemistry》2001,56(7):733-739
To investigate the bioactivities of soybean, which act on bone metabolism, we studied the effect of a soybean ethanol extract on the activity of osteoblast MC3T3-E1 cells. Soy extract (0.01-0.1 g/l) dose-dependently increased survival (P<0.05) and DNA synthesis (P<0.05) of MC3T3-E1 cells. In addition, soy extract (0.05 g/l) increased alkaline phosphatase activity (P<0.05) and collagen synthesis (P<0.05) of MC3T3-E1 cells. Moreover, the anti-estrogen tamoxifen eliminated the stimulation of MC3T3-E1 cells on the proliferation, ALP activity and collagen synthesis by soy extract, indicating that the main action of the soy extract on osteoblastic MC3T3-E1 cells is similar to that of estrogen effects. Treatment with soy extract prevented apoptosis, as assessed by a one-step sandwich immunoassay and DNA gel electrophoresis studies. This effect may be associated with the activation of the estrogen receptor, since we observed soy extract-mediated survival against apoptosis was blocked by the estrogen receptor antagonist tamoxifen in cells, further supporting a receptor-mediated mechanism of cell survival. These results suggest that osteoblast function is promoted by soy extract and that the estrogen receptor is involved in the response, thereby playing an important role in bone remodeling. In conclusion, soy extract has a direct stimulatory effect on bone formation in cultured osteoblastic cell in vitro. Presumably, dietary soy products are useful in the prevention of osteoporosis.  相似文献   

14.
用原位合成纳米羟基磷灰石的方法制备多孔纳米羟基磷灰石/壳聚糖复合支架;在支架上接种MC3T3-E1细胞,瑞氏染色检测细胞形态,MTT法检测其增殖情况;在诱导培养基中培养30d后,碱性磷酸酶染色比较其分化水平;定量检测细胞的碱性磷酸酶活性;RT-PCR检测成骨相关基因的表达情况。实验结果表明:MC3T3-E1细胞在纳米级羟基磷灰石/壳聚糖复合支架上粘附铺展良好,其增殖率显著高于培养于纯壳聚糖支架上的细胞。碱性磷酸酶染色表明复合支架上的细胞有较高水平的碱性磷酸酶表达。进一步定量检测细胞的碱性磷酸酶活性,结果说明在复合支架上细胞比纯壳聚糖支架上培养的细胞碱性磷酸酶活性提高了约8倍。此外,骨分化相关特征基因骨桥蛋白OPN在复合支架上培养的细胞中的表达水平也明显高于纯壳聚糖上培养的细胞。分化成熟标志基因骨钙素OC在复合支架上培养的细胞中有表达,但是纯壳聚糖支架上培养的细胞中却未检测到。支架中纳米羟基磷灰石的加入不仅提高了前成骨细胞在复合支架上的增殖,而且还促进了它的分化。纳米羟基磷灰石/壳聚糖复合支架表现出良好的生物相容性和生物活性,是极具前景的骨组织工程支架材料。  相似文献   

15.
The role of osteoblasts in inducing the proliferation and differentiation of bone marrow cells was examined. Conditioned medium obtained from mouse osteoblastic cell (MC3T3-E1) cultures stimulated colony formation of mouse bone marrow cells (CSF) and differentiation of mouse myeloid leukemia cells (M1) into macrophage-like cells (D-factor). The CSF activity increased time dependently in parallel with the increase of alkaline phosphatase activity during the culturing of the MC3T3-E1 cells. The activity of the D-factor attained a maximum on days 12 - 15 and decreased thereafter. Both the CSF and the D-factor were eluted in a range of 25,000 to 67,000 daltons on gel filtration. The fraction containing both factors exhibited bone-resorbing activity. These results suggest that osteoblasts are involved in bone resorption at least in part by enhancing the proliferation and differentiation of osteoclast progenitors.  相似文献   

16.
目的:探讨牙源性间充质干细胞对成骨前体细胞成骨分化的影响。方法:将小鼠成骨前体细胞MC3T3-E1分为两组,观察组为牙源性间充质干细胞与MC3T3-E1细胞共培养,对照组为单一MC3T3-E1细胞培养。采用CCK-8法检测细胞增殖水平,采用酶联免疫法检测碱性磷酸酶(Alkaline phosphatase,ALP)活性并进行茜素红染色,采用qRT-PCR、Western blot检测ALP与骨桥素(osteopontin,OPN) m RNA与蛋白表达水平。结果:细胞共培养1 d与3 d后,观察组的细胞增殖指数、ALP活性显著高于对照组(P<0.05)。与对照组相比,观察组的矿化结节显著增加,经茜素红染色呈红褐色。细胞共培养1 d与3 d后,观察组的ALP、OPN m RNA与蛋白相对表达水平显著高于对照组(P<0.05)。结论:牙源性间充质干细胞能促进成骨前体细胞的ALP、OPN表达,提高ALP活性,增加细胞增殖能力,诱发矿化,从而促进成骨分化。  相似文献   

17.
BackgroundDipsaci Radix has been clinically used for thousands of years in China for strengthening muscles and bones. Sweroside is the major active iridoid glycoside isolated from Dipsaci Radix. It has been reported that sweroside can promote alkaline phosphatase (ALP) activity in both the human osteosarcoma cell line MG-63 and rat osteoblasts. However, the underlying mechanism involved in these osteoblastic processes is poorly understood.PurposeThis study aimed to characterize the bone protective effects of sweroside and to investigate the signaling pathway that is involved in its actions in MC3T3-E1 cells.MethodsCell proliferation, differentiation and mineralization were evaluated by the 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) assay, ALP test and Alizarin Red S staining, respectively. The concentration of sweroside in intracellular and extracellular fluids was determined by ultra-performance liquid chromatography coupled to triple quadrupole xevo-mass spectrometry (UPLC/TQ-XS-MS). Proteins associated with the osteoblastic signaling pathway were analysed by western blot and immunofluorescence methods.ResultsSweroside did not obviously affect the proliferation but significantly promoted the ALP activity and mineralization of MC3T3-E1 cells. The maximal absorption amount 0.465 ng/ml (1.3 × 10−9 M) of sweroside was extremely lower than the tested concentration of 358.340 ng/ml (10−6 M), indicating an extremely low absorption rate by MC3T3-E1 cells. Moreover, the ALP activity, the protein expression of ER-α and G protein-coupled receptor 30 (GPR30) induced by sweroside were markedly blocked by both the ER antagonist ICI 182780 and the GPR30 antagonist G15. In addition, sweroside also activated the phosphorylation of p38 kinase (p-p38), while the phosphorylation effects together with ALP and mineralization activities were completely blocked by a p38 antagonist, SB203580. Additionally, the phosphorylation of p38 induced by sweroside were markedly blocked by both the ER antagonist ICI 182780 and the GPR30 antagonist G15.ConclusionsThe present study indicated that sweroside, as a potential agent in treatment of osteoporosis, might exert beneficial effects on MC3T3-E1 cells by interaction with the membrane estrogen receptor-α and GPR30 that then activates the p38 signaling pathway. This is the first study to report the specific mechanism of the effects of sweroside on osteoblastic differentiation and mineralization of MC3T3-E1 cells.  相似文献   

18.
19.
Melatonin promotes osteoblast differentiation and bone formation.   总被引:10,自引:0,他引:10  
  相似文献   

20.
The murine-derived clonal MC3T3-E1 cell is a well-studied osteoblast-like cell line. To understand the effects of serial passages on its cellular function, we examined changes in cell morphology, gap junctional intercellular communication (GJIC), proliferation, and osteoblastic function between early passage (<20) and late passage (>65) cells. MC3T3-E1 cells developed an elongated, spindle shape after multiple passages. Intercellular communication decreased significantly (33%) in late vs. early passage cells. Transforming growth factor-beta1 (TGF-beta1) stimulated cell proliferation in early passage cells and induced c-fos expression, while it inhibited proliferation in late passage cells. Using alkaline phosphatase (ALP) activity and osteocalcin (OC) secretion as markers for osteoblastic function and differentiation, we demonstrated that both markers were significantly reduced after multiple cell passages. Bone morphogenetic protein-2 (BMP-2) significantly enhanced ALP activity and OC secretion in early passage cells while TGF-beta1 exerted an opposite effect. Both BMP-2 and TGF-beta1 had minimal effects on late passage cells. We conclude that serial passage alters MC3T3-E1 cell morphology, and significantly diminishes GJIC, osteoblastic function, TGF-beta1-mediated cell proliferation, and responsiveness to TGF-beta1 and BMP-2. Cell passage numbers should be clearly defined in functional studies involving MC3T3-E1 cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号