首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Feng H  Lu LM  Huang Y  Zhu YC  Yao T 《生理学报》2005,57(5):537-544
高浓度的皮质酮可引起海马形态与功能的损伤,其中脑源性神经营养因子(brain-derived neurotrophic factor,BDNF) 表达的改变在海马形态与功能损伤中扮演重要角色。本实验的目的是观察单次皮下注射皮质酮后海马内BDNF-mRNA、前 体蛋白及成熟型蛋白表达的改变,并观察N-甲基-D-天冬氨酸(N-methyl-D-aspartate NMDA)受体阻滞剂MK801对皮质酮 作用的影响。实验结果显示,单次皮下注射皮质酮2 mg/kg,3 h后海马内BDNF mRNA、前体蛋白及成熟型蛋白的表达 均降低;MK801(0.1 mg/kg)对皮质酮的这一作用有增强效果。单独给予皮质酮或注射MK801 30 min后再给予皮质酮, 均能明显降低海马中cAMP反应元件结合蛋白(cAMP response element binding protein,CREB)的磷酸化水平,MK801与 皮质酮联用时CREB的磷酸化水平降低更为显著(与单独给予皮质酮相比,P<0.05)。实验结果提示,CREB磷酸化水平降 低可能是皮质酮引起海马BDNF表达减少的重要中间环节,阻断NMDA受体可加强皮质酮降低BDNF表达的效应。  相似文献   

2.
3.
Kim SW  Ha NY  Kim KI  Park JK  Lee YH 《BMB reports》2008,41(3):242-247
MSS, a comprising mixture of maesil (Prunus mume Sieb. et Zucc) concentrate, disodium succinate and Span80 (3.6:4.6 :1 ratio) showed a significant improvement of memory when daily administered (460 mg/kg day, p.o.) into the normal rats for 3 weeks. During the spatial learning of 4 days in Morris water maze test, both working memory and short-term working memory index were significantly increased when compared to untreated controls. We investigated a molecular signal transduction mechanism of MSS on the behaviors of spatial learning and memory. MSS treatment increased hippocampal mRNA levels of NR2B and TrkB without changes of NR1, NR2A, ERK1, ERK2 and CREB. However, the protein levels of pERK/ERK and pCREB/CREB were all significantly increased to 1.5+/-0.17 times. These results suggest that the improving effect of spatial memory for MSS is linked to MAPK/ERK signaling pathway that ends up in the phosphorylation of CREB through TrkB and/or NR2B of NMDA receptor.  相似文献   

4.
5.
目的通过锂一匹罗卡品癫痫模型(ithium—pilocarpine seizures rats model of epilepsy,LPS),研究NMDA受体亚基NR2A、BDNF mRNA的表达,探讨NR2A、BDNF在LPS中的作用。方法建立氯化锂-匹罗卡品大鼠模型,运用原位杂交技术检测致痫后各组不同时间点海马CAI、CA3及DG区NR2A与BDNF mRNA的表达。结果LPS海马NR2A、BDNF mRNA在各观察时间点及部位模型组与正常对照组比较均有明显上调,且有显著统计学差异(P〈0.05)。模型组NR2A mRNA的表达上调7d达峰值(P〈0.05);而BDNF mRNA表达上调14d达峰值。VPA干预组NR2A mRNA在大鼠海马不同时间及部位(除1d的CA3区)的表达较模型组明显下调(P〈0.05);BDNF mRNA在大鼠海马不同时间及部位(除28d的DG区)的表达较模型组明显下调(P〈0.05)。结论锂-匹罗卡品腹腔注射可诱导大鼠海马NR2A和BDNF mRNA的表达明显上调;NR2A mRNA表达的增强可能是诱导调控BDNF mRNA表达增强的重要机制之一,说明NMDA受体亚基NR2A可能成为抑制癫痫发作的新靶点。  相似文献   

6.
7.
为了探讨SSRI联合抗精神病药物对脑源性神经营养因子(brain derived neurotrophic factor, BDNF)-cAMP反应元件结合蛋白(cAMP response element binding, CREB)信号通路的影响,本研究将SD大鼠随机分成5组,每组10只,各组大鼠分别腹腔注射阿立哌唑(5 mg·kg-1·d-1,阿立哌唑组)、舍曲林(5 mg·kg-1·d-1,舍曲林组)、阿立哌唑+舍曲林(5 mg·kg-1·d-1+5 mg·kg-1·d-1,联合组),奥氮平(5 mg·kg-1·d-1,奥氮平组)和不含药物的溶液(对照组),连续注射3周。研究显示,联合组显著增加大鼠的海马区BDNF平均荧光强度和蛋白水平,但在其他组未观察到对BDNF水平的影响。另外,不同组处理对额皮质中的BDNF水平没有影响。联合组显著增加了海马和额皮质的CREB磷酸化,而单独药物处理对CREB磷酸化无影响。联合组显著增加大鼠的海马和额皮质中CREB和TrkB (BDNF受体)的mRNA表达水平,以及AKT的磷酸化。综上所述,舍曲林联合抗精神病药(阿立哌唑)可显著上调大鼠脑部的CREB和BDNF水平,并且参与调节BDNF-CREB-AKT信号通路及相关分子。  相似文献   

8.
The mechanistic target of rapamycin (mTOR) has been demonstrated to mediate pain-related aversion induced by formalin in the rostral anterior cingulate cortex (rACC). However, it remains unclear the signaling pathways and regulatory proteins involved. In the rACC, brain-derived neurotrophic factor (BDNF), an activity-dependent neuromodulator, has been shown to play a role in the development and persistence of chronic pain. In this study, we used a rat formalin-induced inflammatory pain model to demonstrate BDNF up-regulation in the rACC. Stimulation with exogenous BDNF up-regulated mTOR, whilst cyclotraxin B (CTX-B), a tropomyosin receptor kinase B (TrkB) antagonist, down-regulated mTOR. Our results suggest BDNF could activate an mTOR signaling pathway. Subsequently, we used formalin-induced conditioned place avoidance (F-CPA) training in rat models to investigate if mTOR activation was required for pain-related aversion. We demonstrated that BDNF/mTOR signaling could activate the NMDA receptor subunit episilon-2 (NR2B), which is required for F-CPA. Our results reveal that BDNF activates mTOR to up-regulate NR2B expression, which is required for inflammatory pain-related aversion in the rACC of rats.  相似文献   

9.

Background

Chronic intermittent hypoxia-hypercapnia (CIHH) exposure leads to learnning and memory deficits in rats. Overactivation of N-methyl-D-aspartate receptors(NMDARs) can lead to the death of neurons through a process termed excitotoxicity, which is involved in CIHH-induced cognitive deficits. Excessively activated NR2B (GluN2B)-containing NMDARs was reported as the main cause of excitotoxicity. The ERK1/2 (extracellular signal-regulated kinase 1/2) signaling cascade acts as a key component in NMDARs-dependent neuronal plasticity and survival. Ca2+/calmodulin-dependent protein kinase II (CaMKII), synapse-associated protein 102 (SAP102) and Ras GTPase-activating protein (SynGAP) have been shown to be involved in the regulation of NMDAR-ERK signalling cascade. Recent studies revealed statins (the HMG-CoA reductase inhibitor) have effect on the expression of NMDARs. The present study intends to explore the potential effect of lovastatin on CIHH-induced cognitive deficits and the NR2B-ERK signaling pathway.

Methods and Findings

Eighty male Sprague Dawley rats were randomly divided into five groups. Except for those in the control group, the rats were exposed to chronic intermittent hypoxia-hypercapnia (CIHH) (9∼11%O2, 5.5∼6.5%CO2) for 4 weeks. After lovastatin administration, the rats performed better in the Morris water maze test. Electron microscopy showed alleviated hippocampal neuronal synaptic damage. Further observation suggested that either lovastatin or ifenprodil (a selective NR2B antagonist) administration similarly downregulated NR2B subunit expression leading to a suppression of CaMKII/SAP102/SynGAP signaling cascade, which in turn enhanced the phosphorylation of ERK1/2. The phosphorylated ERK1/2 induced signaling cascade involving cAMP-response element-binding protein (CREB) phosphorylation and brain-derived neurotrophic factor (BDNF) activation, which is responsible for neuroprotection.

Conclusions

These findings suggest that the ameliorative cognitive deficits caused by lovastatin are due to the downregulation of excessive NR2B expression accompanied by increased expression of ERK signaling cascade. The effect of NR2B in upregulating pERK1/2 maybe due, at least in part, to inactivation of CaMKII/SAP102/SynGAP signaling cascade.  相似文献   

10.
The aim of the study was to elucidate the therapeutic effects of Cytisine (CYT) on cerebral ischemia–reperfusion injury in mice. Male ICR mice were pretreated with reagents (drug), and then subjected to 2 h focal cerebral ischemia and 24 h reperfusion. Morphologically, the histopathological impairment were estimated by the TTC, HE and TUNEL staining. The expression of GluN2B-containing NMDA receptor, phosphorylation of extracellular regulated protein kinases, total ERK, phosphorylation of cAMP-response element binding protein and total CREB were determined by immunofluorescence and Western blot assay, respectively. The mRNA expression of NR2B, ERK and CREB were quantified by the real-time RT-PCR. CYT significantly diminished the infarct size and neuronal apoptosis. Additionally, it ameliorated histopathological lesion dramatically. CYT promoted the phosphorylation of ERK, CREB and their mRNA expression. In contrast, the expression of NR2B was suppressed in concomitant with the down-regulation of genes. The overall results thus far suggest that CYT confers the neuroprotection against cerebral I/R injury by regulating the NR2B-ERK/CREB signal pathway.  相似文献   

11.
Neurotrophins, including the brain-derived neurotrophic factor (BDNF), are essential for regulating neuronal differentiation in developing brains. BDNF and its receptor tyrosine kinase receptor B (TrkB) are involved in neuronal signaling, survival and plasticity. Cyclosporine A (CsA) is a potent immunosuppressive agent which prevents allograft rejection in organ transplantation and various immunological diseases. We investigated whether chronic administration of CsA decreases BDNF gene expression in rats, and the influence of CsA on mRNA levels of TrkB receptors was also examined. For 30 days of CsA (10 mg/kg/day) administration, the expression of BDNF and TrkB mRNA was significantly decreased in the hippocampus and midbrain, but there was no significant difference in the cortex. CsA (0, 1, 5 10, 15 ug/ml) down-regulated BDNF and TrkB gene expression through cultured SH-SY5Y cells, as did all-trans retinoic acid (ATRA), and there was no effect on cell viability. These experimental results indicate that suppression of the BDNF and TrkB mRNA, protein level of BDNF expression in the hippocampus and midbrain may be related to altered behavior observed following chronic administration of CsA. A common mechanism of adverse effects of CsA induced depressive symptoms may involve neurotoxicity mediated by down-regulation of brain BDNF and TrkB.  相似文献   

12.
13.
The N-methyl-D-aspartate (NMDA) type of glutamate receptor (NMDAR) plays central roles in normal and pathological neuronal functioning. We have examined the regulation of the NR1 subunit of the NMDAR in response to excessive activation of this receptor in in vitro and in vivo models of excitotoxicity. NR1 protein expression in cultured cortical neurons was specifically reduced by stimulation with 100 microM NMDA or glutamate. NMDA decreased NR1 protein amounts by 71% after 8 h. Low NMDA concentrations (< or = 10 microM) had no effect. NR1 down-regulation was inhibited by the general NMDAR antagonist DL-AP5 and also by ifenprodil, which specifically antagonizes NMDARs containing NR2B subunits. Arrest of NMDAR signaling with DL-AP5 after brief exposure to NMDA did not prevent subsequent NR1 decrease. Down-regulation of NR1 did not involve calpain cleavage but resulted from a decrease in de novo synthesis consequence of reduced mRNA amounts. In contrast, NMDA did not alter the expression of NR2A mRNA or newly synthesized protein. In neurons transiently transfected with an NR1 promoter/luciferase reporter construct, promoter activity was reduced by 68% after 2 h of stimulation with NMDA, and its inhibition required extracellular calcium. A similar mechanism of autoregulation of the receptor probably operates during cerebral ischemia, because NR1 mRNA and protein were strongly decreased at early stages of blood reperfusion in the infarcted brains of rats subjected to occlusion of the middle cerebral artery. Because NR1 is the obligatory subunit of NMDARs, this regulatory mechanism will be fundamental to NMDAR functioning.  相似文献   

14.
NMDA receptors play dual and opposing roles in neuronal survival by mediating the activity-dependent neurotrophic signaling and excitotoxic cell death via synaptic and extrasynaptic receptors, respectively. In this study, we demonstrate that the aryl hydrocarbon receptor (AhR), also known as the dioxin receptor, is involved in the expression and the opposing activities of NMDA receptors. In primary cultured cortical neurons, we found that NMDA excitotoxicity is significantly enhanced by an AhR agonist 2,3,7,8-tetrachlorodibenzo- p -dioxin, and AhR knockdown with small interfering RNA significantly reduces NMDA excitotoxicity. AhR knockdown also significantly reduces NMDA-increases intracellular calcium concentration, NMDA receptor expression and surface presentation, and moderately decreases the NMDA receptor-mediated spontaneous as well as miniature excitatory post-synaptic currents. However, AhR knockdown significantly enhances the bath NMDA application– but not synaptic NMDA receptor-induced brain-derived neurotrophic factor (BDNF) gene expression, and activating AhR reduces the bath NMDA-induced BDNF expression. Furthermore, AhR knockdown reveals the calcium dependency of NMDA-induced BDNF expression and the binding activity of cAMP-responsive element binding protein (CREB) and its calcium-dependent coactivator CREB binding protein (CBP) to the BDNF promoter upon NMDA treatment. Together, our results suggest that AhR opposingly regulates NMDA receptor-mediated excitotoxicity and neurotrophism possibly by differentially regulating the expression of synaptic and extrasynaptic NMDA receptors.  相似文献   

15.
To investigate the effect of stress before pregnancy on memory function and serum corticosterone (COR) levels, as well as the expression of brain-derived neurotrophic factor (BDNF), N-methyl-D-aspartate (NMDA) 2A (NR2A) and 2B (NR2B) receptors in the hippocampus of the offspring rats when they were 2 months postnatally. Adult female Sprague-Dawley (SD) rats were divided randomly into two groups: control group (n = 8) and chronic unpredictable stress (CUS) group (n = 12). All rats were tested in the open field test and sucrose intake test before and after CUS. The memory function of their offspring were tested in the Morris water maze. Serum COR levels were determined by using a standard radioimmunoassay kit. The expression of BDNF, NR2A and NR2B in the hippocampus of the offspring rats were studied by immunoreactivity quantitative analysis and real-time RT-PCR. (1) Following CUS, reduced open field test activity and decreased sucrose consumption were observed relative to controls. (2) The Morris water maze task demonstrated increased escape latency in the offspring rats of CUS group relative to controls (P < 0.01). No-platform probe testing showed reduced crossings for offspring of CUS relative to controls (P < 0.05). (3) CUS induced a significant increase in serum COR levels of the offspring rats (P < 0.01), but no difference was observed in the body or brain weight between the offspring of the two groups. (4) Immunoreactivity quantitative analysis shows that BDNF and NR2B in the offspring of CUS group was decreased in the CA3 and DG regions of the hippocampus compared to the control group offspring, but NR2A levels were not altered between the offspring of the two groups. (5) Real-time RT-PCR demonstrated that BDNF and NR2B mRNAs were significantly decreased in the offspring of the CUS group compared with the control group (P < 0.01). No significant difference in the levels of NR2A mRNA was detected between offspring of CUS and offspring of control groups. In our study, pregestational stress can increase serum corticosterone levels and reduce the expression of BDNF and NR2B in the hippocampus of offspring. These alterations are associated with impairment of memory in the adult offspring. These data suggest that, stress before pregnancy might have a profound influence on brain development of offspring, that may persist into and be manifested in adulthood.  相似文献   

16.
Ammonia is considered to be the main agent responsible for hepatic encephalopathy which progressively leads to altered mental status. N‐methyl‐D‐aspartate (NMDA) is an ionotropic glutamate receptor, which is involved in synaptogenesis, memory and neurotoxicity. The aim of this study was to investigate the effects of ammonia intoxication and allopurinol, a xanthine oxidase (XO) inhibitor, on NMDA receptor subunits, NR2A and NR2B, in the hippocampus of rats. Thirty‐six male rats were divided into three groups (n = 12/group) as follows: (1)control group (phosphate buffered saline (PBS) solution); (2)ammonia group (ammonium acetate, 2.5 mmol/kg), (3)ammonia + allopurinol group (ammonium acetate, 2.5 mmol/kg, allopurinol, 50 mg/kg). Each rat received intraperitoneal injection for 28 days. Western Blotting technique was used for detecting NR2A and NR2B expressions. Both NR2A and NR2B subunit expressions decreased 27 and 11%, respectively, in ammonia group with respect to the control group. Ammonium acetate decreased significantly in NR2A subunit expressions in the hippocampus (p < 0.01). Administration of ammonia + allopurinol caused statistically significant increases in NR2A subunit expressions compared to the ammonia group (p < 0.001). The down‐regulation of NMDA receptors caused by ammonium acetate suggest that these receptors may play role in the process of hepatic encephalopathy and using allopurinol may have some protective effects in ammonia toxicity. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
Manganese is one of the ubiquitous environmental pollutants that can induce an indirect excitotoxicity caused by altered glutamate (Glu) metabolism. The present study has been carried out to investigate the effect of Mn on the expression of N‐methyl‐d ‐aspartate receptor (NR) subunit mRNAs and proteins in rat striatum when rats were in manganism. The rats were divided randomly into four groups of six males and six females each: control group (group 1) and 8, 40, and 200 μmol/kg Mn‐treated groups (groups 2–4). The control group rats were subcutaneously (s.c.) injected with normal saline. Manganese‐treated rats were s.c. injected with respectively 8, 40, and 200 μmol/kg of MnCl2 · 6H2O in normal saline. The administration of MnCl2 · 6H2O for 4 weeks significantly increased Mn concentration in the striatum. With the increase in administered MnCl2 dosage, Glu concentration and cell apoptosis rate increased significantly. The relative intensity of NR2A mRNA decreased significantly in 8 μmol/kg Mn‐treated rats. However, relative intensities of NR1 and NR2B mRNAs decreased significantly in 40 μmol/kg Mn‐treated rats. Similarly, the relative intensity of NR2A protein showed a significant decrease in 40 μmol/kg Mn‐treated rats whereas those of NR1 and NR2B decreased significantly in 200 μmol/kg Mn‐treated rats. Therefore, the expression of NR2A mRNA and protein were much more sensitive to Mn than that of NR1 and NR2B. In conclusion, the results suggested that Mn induced nerve cell damage by increasing extracellular Glu level and altered expression of NR subunit mRNAs and proteins in rat striatum. © 2010 Wiley Periodicals, Inc. J Biochem Mol Toxicol 24:1–9, 2010; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/jbt.20306  相似文献   

18.
Expression of tyrosine receptor kinase B (TrkB), a receptor for brain‐derived neurotrophic factor (BDNF), is markedly elevated in the adrenal medulla during immobilization stress. Catecholamine release was confirmed in vitro by stimulating chromaffin cells with recombinant BDNF. We investigated the role of TrkB and the localization of BDNF in the adrenal gland during immobilization stress for 60 min. Blood catecholamine levels increased after stimulation with TrkB expressed in the adrenal medulla during 60‐min stress; however, blood catecholamine levels did not increase in adrenalectomized rats. Furthermore, expression of BDNF mRNA and protein was detected in the adrenal medulla during 60‐min stress. Similarly, in rats undergoing sympathetic nerve block with propranolol, BDNF mRNA and protein were detected in the adrenal medulla during 60‐min stress. These results suggest that signal transduction of TrkB in the adrenal medulla evokes catecholamine release. In addition, catecholamine release was evoked by both the hypothalamic–pituitary–adrenal axis and autocrine signaling by BDNF in the adrenal gland. BDNF–TrkB interaction may play a role in a positive feedback loop in the adrenal medulla during immobilization stress.  相似文献   

19.
20.
Cheng  Ruyue  Xu  Tong  Zhang  Yujie  Wang  Feng  Zhao  Linsen  Jiang  Yugang  He  Fang 《Probiotics and antimicrobial proteins》2020,12(2):589-599

This study examined whether Lactobacillus rhamnosus GG (LGG) and Bifidobacterium bifidum TMC3115 (TMC3115) could morphologically or physiologically influence hippocampal neuronal development in vitro. Hippocampal neurons cultured in vitro were exposed to live or heat-inactivated LGG or TMC3115 for either 6 or 24 h. Neuronal morphological changes and drebrin (DRB) and synaptophysin (SYP) protein levels were monitored using immunofluorescence. And the levels of DRB, SYP, and brain-derived neurotrophic factor (BDNF), and cAMP-response element binding protein (CREB) mRNA were detected using RT-PCR. The BDNF, CREB, and phosphorylated-CREB (P-CREB) protein levels were detected by extraction-enzyme-linked immunosorbent assay (ELISA) or Western blot assays. Heat-inactivated LGG and TMC3115 could enhance neuron viability, DRB and SYP protein levels, and BDNF mRNA level were significantly altered after exposure to the tested bacteria with 6 h or 24 h. There were no significant differences in neuronal morphology or DRB, SYP, or CREB mRNA levels among the groups following bacterial exposure. However, following exposure of live TMC3115 for 24 h, the neuronal BDNF and P-CREB protein levels were both significantly up-regulated as detected by western blot assays. These results demonstrated that LGG and TMC3115 could affect neuronal viability, along with hippocampal synaptic and functional development, in a strain-dependent manner, which may also be closely associated with the physiological and culture conditions of each strain. Up-regulated P-CREB may be one of the underlying mechanisms by which the bacteria, especially neurons following exposure of live TMC3115 for 24 h, are able to regulate neuronal BDNF protein production.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号