首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 148 毫秒
1.
Microelectrodes were used to investigate the effect of 0.5 mM mucosal lanthanum (La3+) on the intracellular potential and the resistance of outer and inner isolated frog skin (Rana esculenta) cell membranes. Under short-circuit conditions, the transapical membrane potential Vsco (mean value = -65.4 +/- 3.2 mV, inside negative) hyperpolarized to -108.7 +/- 2.3 mV in control skins, after addition of the sodium blocker amiloride. Current-voltage curves for the outer and inner membranes were constructed from the amiloride-inhibitable current versus the outer membrane potential Vo or the inner membrane potential Vi. The outer, and to a lesser degree the inner, membrane showed a characteristic nonlinearity with two slope resistances. Addition of La3+ to the outer medium increased the short-circuit current to 190% of the control value. Vsco concomitantly changed to -28 +/- 3.5 mV and outer and inner membrane resistances fell, considerably attenuating the nonlinearity seen in control skins. La3+ is suggested to raise the conductance by its effect on the surface potential. A secondary long-term inhibitory effect of La3+ on short-circuit current has been observed. It is ascribed to the penetration of La3+ into the sodium channels.  相似文献   

2.
Localization of Na+-pump sites in frog skin   总被引:12,自引:6,他引:6       下载免费PDF全文
The localization of Na+-pump sites (Na+-K+-ATPase) in the frog skin epithelium was determined by a freeze-dry radioautographic method for identifying [3H]ouabain-binding sites. Ventral pelvic skins of Rana catesbeiana were mounted in Ussing chambers and exposed to 10(-6) M [3H]ouabain for 120 min, washed in ouabain-free Ringer's solution for 60 min, and then processed for radioautography. Ouabain-binding sites were localized on the inward facing (serosal) membranes of all the living cells. Quantitative analysis of grain distribution showed that the overwhelming majority of Na+-pump sites were localized deep to the outer living cell layer, i.e., in the stratum spinosum and stratum germinativum. Binding of ouabain was correlated with inhibition of Na+ transport. Specificity of ouabain binding to Na+-K+-ATPase was verified by demonstrating its sensitivity to the concentration of ligands (K+, ATP) that affect binding of ouabain to the enzyme. Additional studies supported the conclusion that the distribution of bound ouabain reflects the distribution of those pumps involved in the active transepithelial transport of Na+. After a 30-min exposure to [3H]ouabain, Na+ transport declined to a level that was significantly less than that in untreated paired controls, and analysis of grain distribution showed that over 90% of the ouabain-binding sites were localized to the inner cell layers. Furthermore, in skins where Na+ transport had been completely inhibited by exposure to 10(-5) M ouabain, the grain distribution was identical to that in skins exposed to 10(-6) M. The results support a model which depicts all the living cell layers functioning as a syncytium with regard to the active transepithelial transport of Na+.  相似文献   

3.
To evaluate possible mechanisms of transport at apical and basolateral barriers of Na transporting cells of epithelia, it is necessary to know the difference of electrochemical potentials at each barrier. A reevaluation in light of new data of intracellular voltages of frog skin leads to fundamental questions concerning the origin of the voltages at both inner and outer barriers of this tissue. Whereas the inner barrier is highly selective for K, confirming the observations of Koefoed-Johnsen and Ussing, the voltage across the inner barrier, Vi, especially in the absence of transepithelial Na transport, may be greater than the Nernst equilibrium potential for K estimated from the maximum values of intracellular [K] reported in the literature. Consequently, it is proposed that the Na:K pumps may, under some conditions, behave not only as a Na:K exchange pump but also as a cation extrusion pump for K especially when intracellular [Na] falls to low levels. In order to explain the relationship between Na entry and the voltage at the outer barrier, it is proposed that the conductance of the outer barrier is voltage dependent, in line with previous observations of the nonlinear electrical behavior of the apical barrier of Na transporting cells. Thus, the outer barrier may behave as a simple voltage independent resistor with a Thévenin electromotive force of zero at negative intracellular voltages despite the existence of a chemical potential for Na at this barrier.  相似文献   

4.
When the outer surface of short-circuited frog skin was penetrated with microelectrodes, stable negative potentials that averaged near -100 mV were recorded consistently, confirming the results of Nagel (W. Nagel. 1975. Abstracts of the 5th International Biophysics Congress, Copenhagen. P-147.). The appearance of these stable potentials, V(O), concurrent with the observations that (a) a high resistance outer barrier R(O) accounting for approximately 75 percent or more of the transcellular resistance of control skins had been penetrated and that (b) 10(-5) M amiloride and reduced [Na] outside caused the values of V(O) to increase towards means value near -130 mV while the values of percent R(O) increased to more than 90 percent. It was of relationships were the same as the values of E(1) observed in studies of the current-voltage relationships were the same as the values of E’(1) defined as the values of voltage at the inner barrier when the V(O) of the outer barrier was reduced to zero by voltage clamping of the skins. Accordingly, these data are interpreted to mean that the values of E(1), approximately 130 mV, represent the E(Na) of the sodium pump at the inner barrier. 2,4-DNP was observed to decrease the values of transepithelial voltage less than E(1) the V(O) was negative. These data can be interpreted with a simple electrical equivalent circuit of the active sodium transport pathway of the frog skin that includes the idea that the outer membrane behaves as an electrical rectifier for ion transport.  相似文献   

5.
Cation movements in the high sodium erythrocyte of the cat   总被引:7,自引:5,他引:2  
The uptake of 42K and 24Na by cat erythrocytes was investigated. Under steady-state conditions, the nontransient component of 42K influx was found to be 0.18 ± 0.01 meq/liter RBC/hr and insensitive to ouabain (100 µM); the corresponding value for 24Na was 17 ± meq/liter RBC/hr. A study was made of the effects of anions upon cation movements in these and other mammalian red cells. Iodide was found to inhibit markedly (>50%) Na inward movements in cat and dog but not in the other erythrocytes. An increase (15–30%) in K uptake in the presence of iodide was noted in all the mammalian cells studied.  相似文献   

6.
Summary Experiments were carried out in the isolated short-circuited skin of the toadBufo marinus ictericus.42K influx and efflux experiments were carried out with skins bathed on both sides by NaCl-Ringer's solution. Those fluxes showed very similar kinetics of equilibration with time and the results could be fitted by equations of a model of two intraepithelial compartments and the bathing solutions. In the steady state K influx is 3.99 ±0.36 nmol cm–2 hr–1 (n=7) and efflux 3.62±0.38 nmol cm hr–1 (n=7) and are not statistically different, indicating that no net K flux is present across the epithelium. Different kinds of perturbations affecting the rates of42K discharge into the bathing solutions were studied. Immediately after addition of amiloride (10–4 m) to the outer solution, a sharp decline is observed in the rate of42K discharge into the bathing solution,J 21 K , which falls from 3.62±0.38 nmol cm–2 hr–1 to 2.02±0.04 nmol cm–2 hr–1 (n=7) 2 min after addition of the drug, followed by a partial recuperation with time. A complete Na by K substitution in the outer bathing solution induces a prompt and marked decline inJ 21 K which is similar to that induced by amiloride. Increase in the outer bathing solution Na concentration from zero Na concentration induces a nonlinear increase inJ 21 K and a linear relationship was observed betweenJ 21 K and short-circuit current in the range of 0 to 115mm external Na concentration. The decline inJ 21 K induced by amiloride or by lowering external Na concentration was interpreted as being caused by electrical hyperpolarization of the external barrier of the epithelium induced by these procedures. Depolarization of the epithelial barriers by inner Na by K substitution in the short-circuited state (when the potential barriers are equal) drastically interfere with the rate of42K discharge from the epithelium into the bathing solutions. Thus, transient increases are observed both in the rate of42K discharge to the outer and to the inner bathing solutions upon depolarization of the barriers. These results indicate that at least the most important component of transepithelial K unidirectional fluxes goes through a transcellular route with a negligible paracellular component. Addition of ouabain (10–3 m) to the inner bathing solution induces a transient rise in the rate of42K discharge to the outer bathing solution with a peak on the order of 200% of the stationary value previous to the action of the inhibitor, followed by a return to new stationary values not statistically different from those observed previously to the effect of ouabain. The behavior ofJ 21 K upon the effect of ouabain, as suggested by comparison with predictions from computer simulation, strongly supports the notion of a rheogenic Na pump in the inner barrier of the epithelium against the notion of a nonrheogenic 11 Na–K pump.  相似文献   

7.
Detection of motion and position by the vestibular labyrinth depends on the accumulation of potassium within a central compartment of the inner ear as a source of energy to drive the transduction process. Much circumstantial evidence points to the vestibular dark cell (VDC) epithelium as being responsible for concentrating K+ within the lumen. We have used the vibrating probe technique to directly observe voltage and ion gradients produced by this tissue to put this assumption on a solid experimental footing. Relative current density (Isc,probe) over the apical membrane of VDC epithelium was measured with the vibrating voltage-sensitive probe, and this technique was validated by performing maneuvers known to either stimulate or inhibit the transepithelial equivalent short circuit current. Basolateral bumetanide (5 x 10(-5) M) and ouabain (1 x 10(-3) M) caused a decrease in Isc,probe by 55 +/- 6% and 39 +/- 3%, respectively while raising the basolateral K+ concentration from 4 to 25 mM caused an increase by 35 +/- 8%. A K+ gradient directed toward the apical membrane was detected with the vibrating K(+)-selective electrode, demonstrating that, indeed, the VDC epithelium secretes K+ under control conditions. This secretion was inhibited by bumetanide (by 94 +/- 7%) and ouabain (by 52 +/- 8%). The results substantiate the supposition that dark cells produce a K+ flux and qualitatively support the correlation between this flux and the transepithelial current.  相似文献   

8.
Summary In goldfish intestine chloride was substituted by large inorganic anions (gluconate or glucuronate) either mucosally, serosally or bilaterally. Changes in intracellular activities of chloride (a i Cl), sodium (a i Na+) and potassium (a i K+), pHi, relative volume, membrane and transepithelial potentials, transepithelial resistance and voltage divider ratio were measured. Control values were:a i Cl=35 meq/liter, a i Na+=11 meq/liter and a i K+=95 meq/liter. During bilateral substitution the latter two did not change while a i Cl dropped to virtually zero.Mucosal membrane potentials (ms) were: control,-53 mV; serosal substitution,-51 mV; bilateral substitution,-66 mV; while during mucosal substitution a transient depolarization occurred and the final steady state ms was-66 mV.During control and bilateral substitution the transepithelial potentials (ms) did not differ from zero. During unilateral substitutions ms was small, in the order of magnitude of the errors in the liquid junction potentials near the measuring salt bridges.During bilateral substitution pH i increased 0.4 pH units. Cellular volume decreased during mucosal substitution to 88% in 40 min; after serosal substitution it transiently increased, but the new steady-state value was not significantly above its control value.Three minutes after mucosal substitution ana i Cl of approx. 10 meq/liter was measured.Chemical concentrations of Na, K and Cl were determined under control conditions and bilateral substitution. Cl concentrations were also measured as a function of time after unilateral substitutions.The data indicate an electrically silent chloride influx mechanism in the brush border membrane and an electrodiffusional chloride efflux in the basolateral membrane. A substantial bicarbonate permeability is present in the basolateral membrane. The results are in agreement with the observed changes in membrane resistances, volume changes and pH changes.  相似文献   

9.
We determined the current-voltage (I-V) relations of the apical and basolateral barriers of frog skins by impaling the cells with an intracellular microelectrode and assuming that the current across the cellular pathway was equal to the amiloride-inhibitable current. We found that: (a) The responses in transepithelial current and intracellular potential to square pulses of transepithelial potential (VT) varied markedly with time. (b) As a consequence of these transient responses, the basolateral I-V relation was markedly dependent on the time of sampling after the beginning of each pulse. The apical I-V plot was much less sensitive to the time of sampling within the pulse. (c) The I-V data for the apical barrier approximated the I-V relations calculated from the Goldman constant field equation over a relatively wide range of membrane potentials (+/- 100 mV). (d) A sudden reduction in apical bath [Na+] resulted in an increase in apical permeability and a shift in the apical barrier zero-current potential (Ea) toward less positive values. The shift in Ea was equivalent to a change of 45 mV for a 10-fold change in apical [Na+]. (e) The transient responses of the skin to square VT pulses were described by the sum of two exponentials with time constants of 114 and 1,563 ms, which are compatible with the time constants that would be produced by an RC circuit with capacitances of 65 and 1,718 microF. The larger capacitance is too large to identify it comfortably with a true dielectric membrane capacitance.  相似文献   

10.
Summary Intracellular ion concentrations were determined in split skins of Rana pipiens using the technique of electron microprobe analysis. Under control conditions, principal cells and mitochondria-rich cells (MR cells) had a similar intracellular ion composition, only the Cl concentration in MR cells was significantly lower. Inhibition of transepithelial Na transport by low concentrations of ouabain (2 × 10–6 m, innerbath) resulted in a Na concentration increase of principal cells from 10.9 to 54.3 mmol/kg wet wt. The increase was completely abolished by simultaneous application of amiloride (10–4 m, outer bath). Amiloride alone resulted in a significant decrease of the Na concentration to 6.1 mmol/kg. w. w. Among MR cells, two different groups of cells could be distinguished; cells that showed a Na increase after ouabain which was even larger than that in principal cells and cells that did not respond to ouabain. In about half of all ouabain-sensitive MR cells the Na increase could be prevented by amiloride. According to these results, a subpopulation of MR cells displays the transport characteristics expected for a transepithelial Na transport compartment, an apical amiloride-sensitive Na influx and abasal ouabain-inhibitable Na efflux. Given the small number of cells, however, it is unlikely that this subtype of MR cells contributes significantly to the overall rate of transepithelial Na transport.I wish to thank Cathy Langford, Cindy Partain, and Ray Whitfield for their excellent technical assistance. Financial support was provided by NIH grants DK35717 and 1S10-RR0-234501.  相似文献   

11.
Summary The intracellular electrolyte concentrations of the frog skin epithelium have been determined in thin freeze-dried cryosections using the technique of electron microprobe analysis. Stimulation of the transepithelial Na transport by arginine vasopressin (AVP) resulted in a marked increase in the Na concentration and a reciprocal drop in the K concentration in all epithelial cell layers. The effects of AVP were cancelled by addition of amiloride. It is concluded from these results that the primary mechanism by which AVP stimulates transepithelial Na transport is an increase in the Na permeability of the apical membrane. However, also some evidence has been obtained for an additional stimulatory effect of AVP on the Na pump. In mitochondria-rich cells and in gland cells no significant concentration changes were detected, supporting the view that these cells do not share in transepithelial Na transport. Furthermore, the dependence of the intracellular electrolyte concentrations upon the Na concentration in the outer and inner bathing solution was evaluated. Both in control and AVP-stimulated skins the intracellular Na concentration showed saturation already at low external Na concentrations, indicating that the self-inhibition of transepithelial Na transport is due to a reduction of the permeability of the apical membrane. After lowering the Na concentration in the internal bath frequently a Na increase in the outermost and a drop in the deeper epithelial layers was observed. It is concluded that partial uncoupling of the transport syncytium occurs, which may explain the inhibition of the transepithelial Na transport and blunting of the AVP response under this condition.  相似文献   

12.
Experimental modulation of the apical membrane Na+ conductance or basolateral membrane Na+-K+ pump activity has been shown to result in parallel changes in the basolateral K+ conductance in a number of epithelia. To determine whether modulation of the basolateral K+ conductance would result in parallel changes in apical Na+ conductance and basolateral pump activity, Necturus urinary bladders stripped of serosal muscle and connective tissue were impaled through their basolateral membranes with microelectrodes in experiments that allowed rapid serosal solution changes. Exposure of the basolateral membrane to the K+ channel blockers Ba2+ (0.5 mM/liter), Cs+ (10 mM/liter), or Rb+ (10 mM/liter) increased the basolateral resistance (Rb) by greater than 75% in each case. The increases in Rb were accompanied simultaneously by significant increases in apical resistance (Ra) of greater than 20% and decreases in transepithelial Na+ transport. The increases in Ra, measured as slope resistances, cannot be attributed to nonlinearity of the I-V relationship of the apical membrane, since the measured cell membrane potentials with the K+ channel blockers present were not significantly different from those resulting from increasing serosal K+, a maneuver that did not affect Ra. Thus, blocking the K+ conductance causes a reduction in net Na+ transport by reducing K+ exit from the cell and simultaneously reducing Na+ entry into the cell. Close correlations between the calculated short-circuit current and the apical and basolateral conductances were preserved after the basolateral K+ conductance pathways had been blocked. Thus, the interaction between the basolateral and apical conductances revealed by blocking the basolateral K+ channels is part of a network of feedback relationships that normally serves to maintain cellular homeostasis during changes in the rate of transepithelial Na+ transport.  相似文献   

13.
Cerebrospinal fluid (CSF) Na, K, and acid-base changes were studied in 13 new-born lambs anesthetized with α-chloralose (60 mg/kg) or diethylether during 90 min of normothermic (37 °C) or hypothermic (20 °C) circulatory arrest. CSF K concentration increased linearly from 3.1 to 23.2 meq/liter during 90 min of normothermic circulatory arrest. During hypothermic circulatory arrest, animals anesthetized with α-chloralose exhibited an exponential increase in CSF K concentration from 3.1 to 13.6 meq/liter and animals anesthetized with diethylether had an exponential increase in CSF K concentration from 3.3 to 12.7 meq/liter. The rate of increase in CSF K concentration in hypothermic and normothermic animals between 60 and 90 min of circulatory arrest was the same. CSF Na concentration decreased slightly in both hypothermic and normothermic animals, with a greater decrease in the normothermic group.Although CSF pH and bicarbonate were significantly decreased during normothermia as well as hypothermia, both CSF pH and bicarbonate showed greater decreases during normothermia. Mean pH values after 90 min of circulatory arrest were 6.34, 6.87, and 6.77, respectively, in the normothermic, α-chloralose-hypothermic, and diethylether-hypothermic groups; corresponding values for bicarbonate were 7.7, 13.8, and 12.2 meq/liter.CSF pCO2 increased linearly from 40.2 to 190.0 Torr during 90 min of normothermic circulatory arrest, from 28.6 to 92 Torr in the ether-hypothermic group, and from 28 to 81 Torr in the α-chloralose-hypothermic group.  相似文献   

14.
Changes of 42K efflux (J23K) caused by ouabain and/or furosemide were measured in isolated epithelia of frog skin. From the kinetics of 42K influx (J32K) studied first over 8-9 h, K+ appeared to be distributed into readily and poorly exchangeable cellular pools of K+. The readily exchangeable pool of K+ was increased by amiloride and decreased by ouabain and/or K+-free extracellular Ringer solution. 42K efflux studies were carried out with tissues shortcircuited in chambers. Ouabain caused an immediate (less than 1 min) increase of the 42K efflux to approximately 174% of control in tissues incubated either in SO4-Ringer solution or in Cl-Ringer solution containing furosemide. Whereas furosemide had no effect on J23K in control tissues bathed in Cl-rich or Cl-free solutions, ouabain induced a furosemide-inhibitable and time-dependent increase of a neutral Cl-dependent component of the J23K. Electroconductive K+ transport occurred via a single-filing K+ channel with an n' of 2.9 K+ efflux before ouabain, normalized to post-ouabain (+/- furosemide) values of short-circuit current, averaged 8-10 microA/cm2. In agreement with the conclusions of the preceding article, the macroscopic stoichiometry of ouabain-inhibitable Na+/K+ exchange by the pump was variable, ranging between 1.7 and 7.2. With increasing rates of transepithelial Na+ transport, pump-mediated K+ influx saturated, whereas Na+ efflux continued to increase with increases of pump current. In the usual range of transepithelial Na+ transport, regulation of Na+ transport occurs via changes of pump-mediated Na+ efflux, with no obligatory coupling to pump-mediated K+ influx.  相似文献   

15.
Growth retardation, measured as internode shortening, was observedin bean and tomato plants when grown in culture solutions towhich Rb had been added. The Rb effect was more pronounced inthe presence of low (0.5 meq/liter) K than high (8 meq/liter)K. Gibberellic acid, added to the solutions, ameliorated thegrowth retardation due to Rb. Epinastic symptoms similar tothose observed with auxin treatment also appeared on the tomatoplants treated with Rb. (Received October 2, 1968; )  相似文献   

16.
Summary Microelectrodes were used to investigate the effect of 0.5mm mucosal lanthanum (La3+) on the intracellular potential and the resistance of outer and inner isolated frog skin (Rana esculenta) cell membranes. Under short-circuit conditions, the transapical membrane potentialV o sc (mean value=–65.4±3.2 mV, inside negative) hyperpolarized to –108.7±2.3 mV in control skins, after addition of the sodium blocker amiloride. Current-voltage curves for the outer and inner membranes were constructed from the amiloride-inhibitable current versus the outer membrane potentialV o or the inner membrane potentialV t . The outer, and to a lesser degree the inner, membrane showed a characteristic nonlinearity with two slope resistances. Addition of La3+ to the outer medium increased the short-circuit current to 190% of the control value.V o sc concomitantly changed to –28±3.5 mV and outer and inner membrane resistances fell, considerably attenuating the nonlinearity seen in control skins. La3+ is suggested to raise the conductance by its effect on the surface potential. A secondary long-term inhibitory effect of La3+ on short-circuit current has been observed. It is ascribed to the penetration of La3+ into the sodium channels.  相似文献   

17.
[3H]ouabain autoradiography of frog retina   总被引:2,自引:0,他引:2       下载免费PDF全文
The kinetics and distribution of ouabain binding in retinas of Rana pipiens were examined quantitatively by scintillation counting and freeze-dry autoradiography. The time-course of binding at several concentrations was consistent with a bimolecular reaction. Estimated equilibrium binding levels gave a Michaelis-Menton relationship with a Km = 8.3 x 10(-8) M and a maximum binding level (Bmax) = 4.4 x 10(-8) mol/g protein. The distribution of binding sites measured autoradiographically varied considerably between layers. The photoreceptor, inner plexiform, and optic nerve fiber layers exhibited the heaviest binding. Within the photoreceptor layer, binding was nonuniform. Binding in the outer segment decreased distally, averaging approximately 4% of that in the proximal receptor layers (Bmax = 4.6 x 10(-6) M). The origin of the outer segment activity is uncertain at light microscope resolution, as it may be a result of inner segment calyceal processes. Binding within the proximal receptor layers was also nonuniform. Several peaks were observed, with those at the inner segment and synaptic layers being especially noticeable. Assuming an absence of glial cell binding in the proximal receptor layers, we calculated there to be 13 x 10(6) ouabain or Na+,K+ pump sites per rod receptor. Limited measurements suggest a Bmax of approximately 8 x 10(-6) M for the inner plexiform layer.  相似文献   

18.
The binding of [3H]ouabain to the serosal side was studied in a chambered preparation of frog skin, free of connective tissue, while the short circuit (Isc) was concurrently monitored. Both ouabain binding and Isc inhibition proceeded as hyperbolic functions of time. A plot of the number of ouabain molecules bound vs. the corresponding values of Isc inhibition (percent) yielded a straight line, yet showed that one-third of the binding occurred before any inhibition of Isc. Upon separation of the skins into two groups based upon initial Isc(Isci)--high, greater than 20 microamperemeter/cm2 and low, less than 10 microamperemeter/cm2, we observed two distinct populations. The high Isci skins bound very little ouabain before inhibition of Isc whereas low Isci skins bound one-half of the total number of sites before exhibiting any inhibition of Isc. These observations strongly suggest that (a) the Na,K-ATPase is directly involved in the generation of Isc, and (b) at low Isc, inhibition of some pumps by ouabain causes a "recruitment" of other pumps to increase their turnover rate and maintain Isc relatively unaffected. In addition, the binding of ouabain also displayed various characteristics that were consistent with known properties of the Na,K-ATPase: (a) increased intracellular K/Na concentrations, whether achieved through the addition of amiloride or removal of Na from the outside medium, led to a significant decrease in ouabain binding rate relative to paired controls; and (b) ouabain binding, either with normal or decreased intracellular Na, was significantly reduced in the presence of elevated K in the serosal bathing medium. Finally, the number of ouabain molecules bound to the frog skins was not correlated with their initial Isc values, indicating that the spontaneous skin-to-skin variation in Isc was not related to the number of functional pump sites but, rather, to their turnover rate.  相似文献   

19.
The development of a culture of the normal mammalian jejunum motivated this work. Isolated crypt cells of the dog jejunum were induced to form primary cultures on Snapwell filters. Up to seven subcultures were studied under the electron microscope and in Ussing chambers. Epithelial markers were identified by RT-PCR, Western blot, and immunofluorescent staining. Confluent monolayers exhibit a dense apical brush border, basolateral membrane infoldings, desmosomes, and tight junctions expressing zonula occludens-1, occludin-1, and claudin-3 and -4. In OptiMEM medium fortified with epidermal growth factor, hydrocortisone, and insulin, monolayer transepithelial voltage was -6.8 mV (apical side), transepithelial resistance was 1,050 Omega.cm(2), and short-circuit current (I(sc)) was 8.1 microA/cm(2). Transcellular and paracellular resistances were estimated as 14.8 and 1.1 kOmega.cm(2), respectively. Serosal ouabain reduced voltage and current toward zero, as did apical amiloride. The presence of mRNA of alpha-epithelial Na(+) channel (ENaC) was confirmed. Na-d-glucose cotransport was identified with an antibody to Na(+)-glucose cotransporter (SGLT) 1. The unidirectional mucosa-to-serosa Na(+) flux (19 nmol.min(-1).cm(-2)) was two times as large as the reverse flux, and net transepithelial Na(+) flux was nearly double the amiloride-sensitive I(sc). In plain Ringer solution, the amiloride-sensitive I(sc) went toward zero. Under these conditions plus mucosal amiloride, serosal dibutyryl-cAMP elicited a Cl(-)-dependent I(sc) consistent with the stimulation of transepithelial Cl(-) secretion. In conclusion, primary cultures and subcultures of the normal mammalian jejunum form polarized epithelial monolayers with 1) the properties of a leaky epithelium, 2) claudins specific to the jejunal tight junction, 3) transepithelial Na(+) absorption mediated in part by SGLT1 and ENaC, and 4) electrogenic Cl(-) secretion activated by cAMP.  相似文献   

20.
Ion transport in the intestine of Gobius niger, a euryhaline teleost, was studied in both isotonic and hypotonic conditions. Isolated tissues, mounted in Ussing chambers and bilaterally perfused with isotonic Ringer solution, developed a serosa negative transepithelial voltage and a short circuit current indicating a net negative current in absorptive direction. Bilateral removal of Cl- and Na+ from the bathing solutions as well as the luminal removal of K+in the presence of Ba2+(10(-3) M) almost abolished both Vt and Isc. Similar results were obtained by adding bumetanide (10(-5)M) to the luminal bath while other inhibitors of Cl- transport mechanisms were ineffective. These observations suggest that salt absorption begins with a coupled entry of Na+, Cl-, and K+ across the apical membrane; a Ba2+inhibitable K+ conductance, demonstrated also by micropuncture experiments, recycles the ion into the lumen. Salt entry into the cell is driven by the operation of the basolateral Na+/K(+)-ATPase since serosal ouabain (10(-4)M) completely abolished both Vt and Isc; this pump also completes the Na(+) absorption. The inhibitory effect of both serosal bumetanide (10(-4)M) and SITS (5 x 10(-4)M) suggests that Cl- would leave the cell via the KCl cotransport, the Cl/HCO3- antiport and/or conductive pathways. Bilateral exposure of tissues to hypotonic media produced a reduction of both the transepithelial voltage and the short circuit current probably due to the activation of homeostatic ionic fluxes involved in cell volume regulation. The results of experiments with both isolated enterocytes and intestine exposed to hypotonic solution suggested that the recovery of cell volume, after the initial cell swelling, involves a parallel opening of K+ and Cl- channels to facilitate net solute and water effluxes from the cell. J. Exp. Zool. 301A:49-62, 2004.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号