首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
Kim HC  Kim GM  Yang JM  Ki JW 《Molecules and cells》2001,11(2):198-203
The RNA lariat debranching enzyme of mouse (mDBR1) was cloned by screening a NIH/3T3 cDNA library. The sequence of full-length mDBR1 cDNA contained a single 515 amino acid open reading frame of 58 kDa protein. Comparison of the amino acid sequence of mDBR1 to other DBR proteins showed 40%, 44%, 43%, 42%, and 80% identity to Saccharomyces cerevisiae, Schizosaccharomyces pombe, Caenorhabditis elegans, Drosophila melanogaster, and human debranching enzymes, respectively. The mDBR1 cDNA was shown to be functional in an interspecies specific complementation experiment, and an in vitro debranching enzyme assay. Mouse DBR1 could complement the intron accumulation phenotype of a S. cerevisiae dbrl null mutant strain. However, the level of complementation depended on the copy number of the mDBR1 cDNA. The integration of the mDBR1 cDNA in the chromosome of S. pombe also complemented both intron accumulation and slow growth phenotypes of the S. pombe dbr1 knock-out mutant strain.  相似文献   

2.
Isolation and characterization of the gene encoding yeast debranching enzyme.   总被引:26,自引:0,他引:26  
K B Chapman  J D Boeke 《Cell》1991,65(3):483-492
Using a genetic screen aimed at identifying cellular factors involved in Ty1 transposition, we have identified a mutation in a host gene that reduces Ty1 transposition frequency. The mutant, dbr1, is also defective in the process of intron turnover. In dbr1 cells, excised introns derived from a variety of pre-mRNAs are remarkably stable and accumulate to levels exceeding that of the corresponding mRNA. The stable excised introns accumulate in the form of a lariat that is missing the linear sequences 3' of the branchpoint. The DBR1 gene has been isolated by complementation of the transposition phenotype. DBR1 is shown to encode debranching enzyme, an RNA processing activity that hydrolyzes the 2'-5' phosphodiester linkage at the branchpoint of excised intron lariats. In Saccharomyces cerevisiae, debranching enzyme plays a requisite role in the rapid turnover of excised introns, yet its function is not essential for viability.  相似文献   

3.
Kim JW  Kim HC  Kim GM  Yang JM  Boeke JD  Nam K 《Nucleic acids research》2000,28(18):3666-3673
The cDNA encoding the human RNA lariat debranching enzyme (hDBR1) was identified and cloned by searching the Expressed Sequence Tag (EST) database and screening a HeLa cDNA library, based on predicted amino acid sequence homologies with the Saccharomyces cerevisiae, Schizosaccharomyces pombe and Caenorhabditis elegans debranching enzymes. The hDBR1 cDNA expressed in Escherichia coli showed debranching activity in vitro and was also shown to be functional in an interspecies specific complementation experiment. hDBR1 cDNA in a S.cerevisiae expression vector complemented the intron accumulation phenotype of a S.cerevisiae dbr1 null mutant. Integration of the cDNA for hDBR1 into the ura4 locus of S.pombe also complemented both the intron accumulation and slow growth phenotypes of a S.pombe dbr1 null mutant strain. Comparison of the amino acid sequence of hDBR1 with the other DBR protein sequences showed several conserved regions, with 40, 44 and 43% identity to the S.cerevisiae, S.pombe and C.elegans debranching enzymes, respectively.  相似文献   

4.
H Trinkl  K Wolf 《Gene》1986,45(3):289-297
The gene encoding subunit 1 of cytochrome oxidase (cox1) in the fission yeast Schizosaccharomyces pombe is polymorphic. In strain 50 it contains two group I introns with open reading frames (ORFs) in phase with the upstream exons (Lang, 1984). In strain EF1 two additional very short group I introns which do not possess ORFs were detected by DNA sequencing. These two introns (AI2a and AI3) share distinct characteristics concerning their nucleotide sequence and secondary structure and are located at identical positions as the introns AI4 and AI5 beta, respectively, in the cox1 gene of Saccharomyces cerevisiae. The sequence homology of the cob and cox1 genes around the splice points of introns AI2a, AI4, and BI4 (cob intron 4) might reflect horizontal gene transfer between the distantly related species S. pombe and S. cerevisiae.  相似文献   

5.
Screening for genes homologous to ras in Schizosaccharomyces pombe resulted in the isolation of a homolog of Saccharomyces cerevisiae YPT1. This S. pombe gene, named ypt3, has a coding capacity of 214 amino acids interrupted by two introns, and is essential for cell growth. Two more YPT1 homologs were isolated from S. pombe using a part of the ypt3 gene as the probe. One of them, named ypt1, is highly homologous to S. cerevisiae YPT1 and mouse ypt1 and is essential for cell growth. This gene has four introns and encodes 203 amino acids. Its cDNA placed downstream of the S. cerevisiae GAL7 promoter could complement S. cerevisiae ypt1-, indicating that Sp ypt1 and Sc YPT1 are functionally homologous. The other isolate, named ryh1, and a fourth homolog, ypt2, have been characterized by Gallwitz and co-workers. The ypt1, ypt2 and ypt3 genes, but not ryh1, constitute a family, their products having double cysteine as their C terminus and serine in place of a glycine residue highly conserved in ras proteins (mammalian Gly-12 or S. pombe Gly-17). The physiological roles of these genes appear to be distinct because each of them is indispensable for cell growth.  相似文献   

6.
We have isolated previously three synthetic lethal mutants in Schizosaccharomyces pombe, which genetically interact with mex67, in order to identify the genes involved in mRNA export. A novel nup97 gene was isolated by complementation of the growth defect in one of the synthetic lethal mutants, SLMex3. The nup97 gene contains one intron and encodes an 851 amino-acid protein that is similar to nucleoporins, Npp106p in S. pombe and Nic96p in Saccharomyces cerevisiae. The nup97 gene is essential for vegetative growth, and nup97 null mutant harboring pREP41X-Nup97 showed poly(A)+ RNA export defect when expression of nup97 is repressed in the presence of thiamine. These results suggest that nup97 is involved in mRNA export from the nucleus to cytoplasm.  相似文献   

7.
8.
9.
The Saccharomyces cerevisiae nuclear gene OXA1, which is conserved from prokaryotes to human, was shown to be essential for cytochrome c oxidase and F1F0-ATP synthase biogenesis. We have searched for an orthologue of OXA1 in Schizosaccharomyces pombe, another yeast that is highly diverged from S. cerevisiae and which could more closely model higher eukaryotes. In particular, S. pombe exhibits a limited growth under anaerobic conditions and is petite negative, that is it does not tolerate large deletions of its mitochondrial DNA. Surprisingly, two S. pombe cDNAs able to complement an S. cerevisiae oxa1 mutation were isolated. The corresponding genes have different chromosomal locations and intron contents. They encode distinct proteins, both sharing a weak sequence identity one with the other and with Oxa1p. A phenotypic analysis of both single inactivations demonstrates that only one gene is essential for respiration in S. pombe. However, the double inactivation is lethal. This work gives new insight into the dependence of S. pombe viability upon oxa1 function, providing evidence of a connection between petite negativity, a functional respiratory chain and F1F0-ATP synthase complex in S. pombe.  相似文献   

10.
The Saccharomyces cerevisiae DBR1 gene encodes a 2'-5' phosphodiesterase that debranches intron RNA lariats following splicing. Yeast dbr1 mutants accumulate intron lariats and are also defective for mobility of the retrotransposons Ty1 and Ty3. We used a mutagenic PCR method to generate a collection of dbr1 mutant alleles to explore the relationship between the roles of DBR1 in transposition and debranching. Eight mutants defective for Ty1 transposition contained single amino acid changes in Dbr1p. Two mutations, G84A and N85D, are in a conserved phosphoesterase motif that is believed to be part of the active site of the enzyme, supporting a connection between enzymatic activity and Ty1 transposition. Two other mutations, Y68F and Y68D, occur at a potential phosphorylation site, and we have shown that Dbr1p is phosphorylated on tyrosine. We have developed an RNase protection assay to quantitate intron RNA accumulation in cells. The assay uses RNA probes that hybridize to ACT1 intron RNA. Protection patterns confirm that sequences from the 5' end of the intron to the lariat branch point accumulate in dbr1 mutants in a branched (lariat) conformation. RNase protection assays indicate that all of the newly generated dbr1 mutant alleles are also deficient for debranching, further supporting a role for 2'-5' phosphodiesterase activity in Ty1 transposition. A Ty1 element lacking most of its internal sequences transposes independently of DBR1. The existence of Dbr1p-dependent Ty1 sequences raises the possibility that Dbr1p acts on Ty1 RNA.  相似文献   

11.
12.
B F Lang 《The EMBO journal》1984,3(9):2129-2136
The DNA sequence of the second intron in the mitochondrial gene for subunit 1 of cytochrome oxidase (cox1), and the 3'' part of the structural gene have been determined in Schizosaccharomyces pombe. Comparing the presumptive amino acid sequence of the 3'' regions of the cox1 genes in fungi reveals similarly large evolutionary distances between Aspergillus nidulans, Saccharomyces cerevisiae and S. pombe. The comparison of exon sequences also reveals a stretch of only low homology and of general size variation among the fungal and mammalian genes, close to the 3'' ends of the cox1 genes. The second intron in the cox1 gene of S. pombe contains an open reading frame, which is contiguous with the upstream exon and displays all characteristics common to class I introns. Three findings suggest a recent horizontal gene transfer of this intron from an Aspergillus type fungus to S. pombe. (i) The intron is inserted at exactly the same position of the cox1 gene, where an intron is also found in A. nidulans. (ii) Both introns contain the highest amino acid homology between the intronic unassigned reading frames of all fungi identified so far (70% identity over a stretch of 253 amino acids). However, in the most homologous region, a GC-rich sequence is inserted in the A. nidulans intron, flanked by two direct repeats of 5 bp. The 37-bp insert plus 5 bp of direct repeat amounts to an extra 42 bp in the A. nidulans intron. (iii) TGA codons are the preferred tryptophan codons compared with TGG in all mitochondrial protein coding sequences of fungi and mammalia.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
The U1 snRNP is known to play a critical role in spliceosome assembly, at least in part through base pairing of its RNA moiety to the substrate, but many details remain to be elucidated. To further dissect U1 snRNA function, we have analyzed 14 single point mutations in the six nucleotides complementary to the 5' splice site for their effects on growth and splicing in the fission yeast Schizosaccharomyces pombe. Three of the four alleles previously found to support growth of Saccharomyces cerevisiae are lethal in S. pombe, implying a more critical role for the 5' end of U1 in fission yeast. Furthermore, a comparison of phenotypes for individual nucleotide substitutions suggests that the two yeasts use different strategies to modulate the extent of pairing between U1 and the 5' splice site. The importance of U1 function in S. pombe is further underscored by the lethality of several single point mutants not examined previously in S. cerevisiae. In total, only three alleles complement the U1 gene disruption, and these strains are temperature-sensitive for growth. Each viable mutant was tested for impaired splicing of three different S. pombe introns. Among these, only the second intron of the cdc2 gene (cdc2-I2) showed dramatic accumulation of linear precursor. Notably, cdc2-I2 is spliced inefficiently even in cells containing wild-type U1, at least in part due to the presence of a stable hairpin encompassing its 5' splice site. Although point mutations at the 5' end of U1 have no discernible effect on splicing of pre-U6, significant accumulation of unspliced RNA is observed in a metabolic depletion experiment. Taken together, these observations indicate that the repertoire of U1 activities is used to varying extents for splicing of different pre-mRNAs in fission yeast.  相似文献   

14.
A series of 18 small overlapping restriction fragments has been cloned, covering the complete mitochondrial genome of Schizosaccharomyces pombe. By hybridizing mitochondrial gene probes from Saccharomyces cerevisiae and Neurospora crassa with restriction fragments of Schizosaccharomyces pombe mitochondrial DNA, the following homologous genes were localized on the mitochondrial genome of S. pombe: cob, cox1, cox2 and cox3, ATPase subunit 6 and 9 genes, the large rRNA gene and both types of open reading frames occurring in mitochondrial introns of various ascomycetes. The region of the genome, hybridizing with cob exon probes is separated by an intervening sequence of about 2500 bp, which is homologous with the first two introns of the cox1 gene in Saccharomyces cerevisiae (class II introns according to Michel et al. 1982). Similarly, in the cox1 homologous region, which covers about 4000 bp, two regions were detected hybridizing with class I intron probes, suggesting the existence of two cox1 introns in Schizosaccharomyces pombe. Hybridization with several specific exon probes with a determined order has revealed that cob, cox1, cox3 and the large rRNA gene are all transcribed from the same DNA strand. The low intensities of hybridization signals suggest a large evolutionary distance between Schizosaccharomyces pombe and Saccharomyces cerevisiae or Neurospora crassa mitochondrial genes. Considering the length of the mitochondrial DNA of Schizosaccharomyces pombe (about 19.4 kbp) and the expected length of the localized genes and intron sequences there is enough space left for encoding the expected set of tRNAs and the small rRNA gene. The existence of leader-, trailer-, ori- and spacer sequences or further unassigned reading frames is then restricted to a total length of about 3000 bp only.  相似文献   

15.
The PKC1 gene of Saccharomyces cerevisiae encodes a homolog of mammalian protein kinase C that is required for normal growth and division of yeast cells. We report here the isolation of the yeast MKK1 and MKK2 (for mitogen-activated protein [MAP] kinase-kinase) genes which, when overexpressed, suppress the cell lysis defect of a temperature-sensitive pkc1 mutant. The MKK genes encode protein kinases most similar to the STE7 product of S. cerevisiae, the byr1 product of Schizosaccharomyces pombe, and vertebrate MAP kinase-kinases. Deletion of either MKK gene alone did not cause any apparent phenotypic defects, but deletion of both MKK1 and MKK2 resulted in a temperature-sensitive cell lysis defect that was suppressed by osmotic stabilizers. This phenotypic defect is similar to that associated with deletion of the BCK1 gene, which is thought to function in the pathway mediated by PCK1. The BCK1 gene also encodes a predicted protein kinase. Overexpression of MKK1 suppressed the growth defect caused by deletion of BCK1, whereas an activated allele of BCK1 (BCK1-20) did not suppress the defect of the mkk1 mkk2 double disruption. Furthermore, overexpression of MPK1, which encodes a protein kinase closely related to vertebrate MAP kinases, suppressed the defect of the mkk1 mkk2 double mutant. These results suggest that MKK1 and MKK2 function in a signal transduction pathway involving the protein kinases encoded by PKC1, BCK1, and MPK1. Genetic epistasis experiments indicated that the site of action for MKK1 and MKK2 is between BCK1 and MPK1.  相似文献   

16.
We have screened numerous different yeast species for the presence of sequences homologous to the intron of the mitochondrial 21S rRNA gene of Saccharomyces cerevisiae (intron r1) and found them in all Kluyveromyces species, some of the Saccharomyces species and none of the other yeasts tested. We have determined the nucleotide sequence of the r1-intron in K. thermotolerans and compared it with that of S. cerevisiae. The two introns are inserted at the same position within the 21S rRNA gene. They contain homologous internal open reading frames (ORFs) initiated at the same AUG codon which can be aligned over their entire length. Several silent multi-substitutions indicate that these intronic ORFs represent selectively conserved functional genes. Other intron segments, on the contrary, reveal short blocks of extensive homology separated by non-homologous stretches and/or additions-deletions. Comparison of our two yeast r1-introns with equivalent introns of N. crassa and A. nidulans mitochondria reveals that introns with very similar RNA secondary structures can accommodate different types of ORFs.  相似文献   

17.
The fission yeast rad31-1 mutant is sensitive to both UV and ionising radiation and exhibits a growth defect at 35 degrees C. In addition, the mutant displays defects in cell morphology and nuclear division at 26 degrees C which are exaggerated at 35 degrees C. We have cloned the rad31 gene and have shown that it is not essential for viability, although cells containing a disrupted rad31 gene grow slowly. The null allele has similar cell and nuclear morphologies to the original allele and displays an extremely high frequency of loss of minichromosomes. rad31 is not required for either the S/M or G2/M checkpoint, however double mutant analysis indicates that rad31 acts in a process which is defective in the checkpoint rad mutants and which involves hus5 . Sequence analysis indicates that rad31 encodes a protein which is related to ubiquitin activating proteins and more particularly to an ORF in Saccharomyces cerevisiae and to the Arabidopsis thaliana AXR1 and human APP-BP1 genes. We have isolated the S.cerevisiae sequence, which we have named RHC31 ( ad31homologue in S. erevisiae), since we show that it can complement the slow growth phenotype and radiation sensitivity of S.pombe rad31.  相似文献   

18.
19.
20.
Cdc42p is a highly conserved low-molecular-weight GTPase that is involved in controlling cellular morphogenesis. We have isolated the Cdc42p homolog from the fission yeast Schizosaccharomyces pombe by its ability to complement the Saccharomyces cerevisiae cdc42-1ts mutation. S. pombe Cdc42p is 85% identical in predicted amino acid sequence to S. cerevisiae Cdc42p and 83% identical to the human Cdc42p homolog. The Cdc42p protein fractionates to both soluble and particulate fractions, suggesting that it exists in two cellular pools. We have disrupted the cdc42+ gene and shown that it is essential for growth. The cdc42 null phenotype is an arrest as small, round, dense cells. In addition, we have generated three site-specific mutations, G12V, Q61L, and D118A, in the Cdc42p GTP-binding domains that correspond to dominant-lethal mutations in S. cerevisiae CDC42. In contrast to the S. cerevisiae cdc42 mutations, the S. pombe cdc42 mutant alleles were not lethal when overexpressed. However, the cdc42 mutants did exhibit an abnormal morphological phenotype of large, misshapen cells, suggesting that S. pombe Cdc42p is involved in controlling polarized cell growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号