首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Leptin has been shown to regulate feed intake and energy expenditure. Insulin stimulates leptin secretion in rodents, but its action on leptin secretion is still obscure in ruminants. If insulin stimulates leptin secretion in ruminants, circulating leptin concentrations may change during exposure to cold, because of fluctuating insulin secretion and action in the cold environment. The present experiment was designed to determine whether feeding or exogenous administration of insulin affects circulating leptin levels in sheep exposed to thermoneutral and cold environments. Suffolk rams that were shorn and fed a diet once daily were subjected to a thermoneutral (20 degrees C) or cold (0 degrees C) environment for at least 1 week. Overall mean concentrations of plasma leptin in the feeding experiment were lower (P<0.05) in the cold environment than in the thermoneutral environment. Plasma leptin levels remained relatively unchanged after feeding in both environments, though plasma insulin response to feeding in both environments increased (P<0.01). The euglycemic clamps (insulin infusion rate: 4 mUkgBW(-1)min(-1) for 2 h) increased (P<0.01) circulating leptin concentrations in the thermoneutral, but not in the cold environment. These results suggest that lower circulating leptin levels in ruminants exposed to the cold environment could be partly due to the depressed insulin action on leptin secretion.  相似文献   

2.
Leptin enhances insulin sensitivity in addition to reducing food intake and body weight. Recently, amylin, a pancreatic β-cell-derived hormone, was shown to restore a weight-reducing effect of leptin in leptin-resistant diet-induced obesity. However, whether amylin improves the effect of leptin on insulin sensitivity in diet-induced obesity is unclear. Diet-induced obese (DIO) mice were infused with either saline (S), leptin (L; 500 μg·kg?1·day?1), amylin (A; 100 μg·kg?1·day?1), or leptin plus amylin (L/A) for 14 days using osmotic minipumps. Food intake, body weight, metabolic parameters, tissue triglyceride content, and AMP-activated protein kinase (AMPK) activity were examined. Pair-feeding and weight-matched calorie restriction experiments were performed to assess the influence of food intake and body weight reduction. Continuous L/A coadministration significantly reduced food intake, increased energy expenditure, and reduced body weight, whereas administration of L or A alone had no effects. L/A coadministration did not affect blood glucose levels during ad libitum feeding but decreased plasma insulin levels significantly (by 48%), suggesting the enhancement of insulin sensitivity. Insulin tolerance test actually showed the increased effect of insulin in L/A-treated mice. In addition, L/A coadministration significantly decreased tissue triglyceride content and increased AMPKα2 activity in skeletal muscle (by 67%). L/A coadministration enhanced insulin sensitivity more than pair-feeding and weight-matched calorie restriction. In conclusion, this study demonstrates the beneficial effect of L/A coadministration on glucose and lipid metabolism in DIO mice, indicating the possible clinical usefulness of L/A coadministration as a new antidiabetic treatment in obesity-associated diabetes.  相似文献   

3.
Chen Y  Heiman ML 《Regulatory peptides》2000,92(1-3):113-119
Leptin is a hormone synthesized and secreted from adipose tissue. To study the physiologic effects of chronic leptin treatment, normal adult female Sprague-Dawley rats were injected subcutaneously for 35 days. Twice daily injections (250 microgram/day, b.i.d.) resulted in a significant (P<0.05) decrease in food intake that was maintained for 10 days before gradually returning to control level by day 21. Leptin decreased body weight by a maximum of 12% of the initial body weight on day 22 and remained reduced for the duration of the treatment. After 35 days of treatment, visible peritoneal adipose tissue was not detected. Body composition analysis showed that chronic injection of leptin resulted in a dramatic decrease in fat content (28+/-2 to 4+/-2 g, P<0.05; mean+/-SEM) while the lean content remained unchanged. Rats pair-fed to the leptin-treated group but treated with vehicle had the same body composition (23+/-3 g fat mass) as that measured for the ad libitum fed controls. Using indirect calorimetry we observed that leptin decreased respiratory quotient and thus increased fat oxidation. Leptin also prevented energy expenditure reduction typically associated with food restriction. Leptin treatment for 35 days decreased plasma triglyceride (0.75+/-0.07 to 0.30+/-0.03 mM, P<0.05), free fatty acid (0.56+/-0.06 to 0.32+/-0.04 mM) and insulin (3.2+/-0.5 to 1. 4+/-0.4 ng/ml, P<0.05) concentrations despite the fact that food intake was normalized by day 35. Withdrawal of leptin triggered hyperphagia indicating that leptin biology remained throughout the duration of the chronic treatment. These data suggest that leptin reduces fat mass by initially decreasing appetite and by maintaining enhanced fat utilization even when food intake has returned to that of vehicle-treated control.  相似文献   

4.
A combination of in vivo and in vitro experiments were performed to determine the extent to which exogenous leptin regulates serum growth hormone (GH) and insulin-like growth factor I (IGF-1) concentrations, and the abundance of IGF-1 mRNA in major peripheral tissues. Initially (Experiment 1), a recombinant human leptin analog was administered i.m. to young growing pigs (approximately 27 kg body weight) for 15 days at 0 (control), 0.003, 0.01 and 0.03 mg. kg(-1). day(-1). Although there was no sustained effect of leptin on serum GH, there was a reduction (P < 0.02) in serum IGF-1 at the intermediate dose that paralleled a decrease (P < 0.09) in hepatic IGF-1 expression. Leptin, at these doses, did not reduce feed intake (P > 0.57), nor was there an effect of leptin on dietary nitrogen retention (P > 0.97). In a second experiment, pigs were injected with vehicle or a higher dose of leptin (0.05 mg. kg(-1). day(-1)) for 14 days. A third treatment group was injected with vehicle and pair-fed to the intake of the group treated with leptin. In this study, exogenous leptin resulted in a sustained increase in serum leptin (P < 0.0001) and reduction in feed intake of approximately 30% (P < 0.0001). Serum IGF-1 was depressed in both the leptin-treated and pair-fed groups, relative to the group allowed ad-libitum intake (P < 0.01). Furthermore, there was no difference among treatments in the relative abundance of IGF-1 mRNA in skeletal muscle (P > 0.42) or adipose tissue (P > 0.26), and liver mRNA abundance was actually increased (P < 0.01) by leptin, despite the lower feed intake. Finally, to determine whether leptin altered the secretion of IGF-1 by isolated pig hepatocytes, primary cultures were incubated with leptin for 24 to 48 hr (Experiment 3). Leptin (100 nM) caused a sharp reduction (P < 0.0001) in dexamethasone-induced IGF-1 secretion at 24 hr (47% reduction) and at 48 hr (40% reduction). Collectively, these data indicate that leptin may regulate hepatic IGF-1 production in the pig, independent of GH, but that hepatocyte sensitivity to leptin may be depend on dose and in vitro vs. in vivo conditions.  相似文献   

5.
6.
Leptin-deficient obese mice (ob/ob) have decreased circulating growth hormone (GH) and pituitary GH and ghrelin receptor (GHS-R) mRNA levels, whereas hypothalamic GH-releasing hormone (GHRH) and somatostatin (SST) expression do not differ from lean controls. Given the fact that GH is suppressed in diet-induced obesity (a state of hyperleptinemia), it remains to be determined whether the absence of leptin contributes to changes in the GH axis of ob/ob mice. Therefore, to study the impact of leptin replacement on the hypothalamic-pituitary GH axis of ob/ob mice, leptin was infused for 7 days (sc), resulting in circulating leptin levels that were similar to wild-type controls (approximately 1 ng/ml). Leptin treatment reduced food intake, body weight, and circulating insulin while elevating circulating n-octanoyl ghrelin concentrations. Leptin treatment did not alter hypothalamic GHRH, SST, or GHS-R mRNA levels compared with vehicle-treated controls. However, leptin significantly increased pituitary GH and GHRH-R expression and tended to enhance circulating GH levels, but this latter effect did not reach statistical significance. In vitro, leptin (1 ng/ml, 24 h) did not affect pituitary GH, GHRH-R, or GHS-R mRNA but did enhance GH release. The in vivo effects of leptin on circulating hormone and pituitary mRNA levels were not replicated by pair feeding ob/ob mice to match the food intake of leptin-treated mice. However, leptin did prevent the fall in hypothalamic GHRH mRNA and circulating IGF-I levels observed in pair-fed mice. These results demonstrate that leptin replacement has positive effects on multiple levels of GH axis function in ob/ob mice.  相似文献   

7.
Leptin levels in lean adults vary in response to short‐term alterations in energy balance. We tested whether leptin responded to short‐term changes in energy balance in obese males in a similar manner to lean individuals. We enrolled eight obese, healthy males in a 12‐day study composed of four consecutive dietary treatment periods of 3 days each: baseline eucaloric feeding followed by randomized crossover periods of overfeeding (130% of total energy expenditure (TEE)) or underfeeding (70% of TEE), separated by a eucaloric (100% of TEE) washout period. We measured TEE with doubly labeled water prior to baseline. Leptin levels were measured throughout the third day of each treatment and 24‐h weighted averaged were calculated. Subjects' ad libitum intake during a breakfast buffet following each treatment period was recorded. During underfeeding, leptin levels decreased by 21 ± 6% (P < 0.01) from the previous eucaloric period. During overfeeding, leptin levels increased by 25 ± 11% (P < 0.01) when subjects were underfed first, but did not increase (5 ± 8%, nonsignificant (n.s.)) when subjects were overfed first. Changes in ad libitum intake from baseline were calculated for each subject after over‐, under‐, and eucaloric feeding and did not to correlate with the changes in mesor leptin levels from baseline (R2 = 0.006, n.s). Leptin levels in obese males were acutely responsive to negative energy balance, but not to positive energy balance unless subjects were previously underfed. Consequently, leptin levels in obese males do not respond to changes in energy intake in a manner that would protect against weight gain.  相似文献   

8.
Leptin, an adipokine, a major regulator of food intake, was recently suggested to play a role in immune response. We previously showed that weight reduction following IFNalpha therapy is due, at least in part, to direct induction of adipose tissue apoptosis. We now studied the effect of leptin on IFNalpha treated adipocytes in vitro and in vivo. Diet induced obese C57/B6 mice were treated continually with recombinant (r) IFNalphaA/D + leptin (100 U/g body weight + 10 microg/day, respectably) or leptin (10 microg/day) alone for 8 days. Co-administration of IFNalphaA/D + leptin significantly reduced plasma cholesterol (P<0.001), glucose (P<0.007) and pro-apoptotic protein levels (P<0.05). Additionally, co-administration prevented loss of body weight due to adipocyte apoptosis. Thus, leptin co-administration with IFNalphaA/D decreases some of the side effects of IFNalpha administration such as weight loss, cholesterol and glucose levels.  相似文献   

9.
Leptin, a hormone produced in adipocytes, is a key signal in the regulation of food intake and energy expenditure. Several studies have suggested that leptin can be regulated by macronutrients intake. Arachidonic acid is a dietary fatty acid known to affect cell metabolism. Controversial effects of this fatty acid on leptin have been reported. The aim of this experimental trial was to evaluate the effect of the arachidonic acid on basal and insulin-stimulated leptin secretion and expression in isolated rat adipocytes. Because insulin-stimulated glucose metabolism is an important regulator of leptin expression and secretion by the adipocytes, the effects of the arachidonic acid on indices of adipocyte metabolism were also examined. Isolated adipocytes were incubated with arachidonic acid (1-200 microM) in the absence and presence of insulin (1.6 nM). Leptin secretion and expression, glucose utilization and lactate production were determined at 96 h. The arachidonic acid (200 microM) inhibited both the basal and insulin stimulated leptin secretion and expression. Glucose utilization was not affected by the acid. Basal lactate production was increased by the fatty acid at the highest concentration used (200 microM), however lactate production in presence of insulin was not modified. Finally, the percentage of glucose carbon released as lactate was significantly increased (200 microM). These results suggest that the inhibitory effect of the arachidonic acid on leptin secretion and expression may be due, al least in part, to the increase in the anaerobic utilization of glucose.  相似文献   

10.
Leptin is well acknowledged as an anorexigenic hormone that plays an important role in feeding control. Hypothalamic GABA system plays a significant role in leptin regulation on feeding and metabolism control. However, the pharmacological relationship of leptin and GABA receptor is still obscure. Therefore, we investigated the effect of leptin or combined with baclofen on the food intake in fasted mice. We detected the changes in hypothalamic c‐Fos expression, hypothalamic TH, POMC and GAD67 expression, plasma insulin, POMC and GABA levels to demonstrate the mechanisms. We found that leptin inhibit fasting‐induced increased food intake and activated hypothalamic neurons. The inhibitory effect on food intake induced by leptin in fasted mice can be reversed by pretreatment with baclofen. Baclofen reversed leptin's inhibition on c‐Fos expression of PAMM in fasted mice. Therefore, these results indicate that leptin might inhibit fasting‐triggered activation of PVN neurons via presynaptic GABA synaptic functions which might be partially blocked by pharmacological activating GABA‐B. Our findings identify the role of leptin in the regulation of food intake.  相似文献   

11.
Leptin, a hormone produced by adipocytes, has been shown to affect a number of central functions, such as regulation of the hypothalamo-pituitary-adrenal axis, feeding, and body weight regulation. Because hypothalamic monoamines are intricately involved in the regulation of these functions, we hypothesized that leptin may produce its effects by altering the activity of these neurotransmitters. To test this hypothesis, male rats received peripheral (0, 100, or 500 microg ip), or central (0 or 5 microg icv) injections of leptin. The animals were killed 5 h later, and their brains were removed, frozen, and sectioned. Serum was collected to measure leptin and corticosterone by RIA. The paraventricular nucleus (PVN), arcuate nucleus (AN), ventromedial hypothalamus (VMH), dorsomedial dorsal nucleus (DMD), median eminence (ME), and medial preoptic area (MPA) were obtained using Palkovits' microdissection technique, and monoamine concentrations in these areas were determined using HPLC-EC. Intraperitoneal administration of leptin increased serum leptin concentrations in a dose-dependent manner (P < 0.05). Both intraperitoneal and intracerebroventricular administration of leptin decreased serum corticosterone significantly (P < 0.05). Norepinephrine (NE) concentration decreased significantly in the PVN, AN, and VMH after both intraperitoneal and intracerebroventricular administration of leptin (P < 0.05). NE concentrations decreased significantly in the DMN after intracerebroventricular administration of leptin (P < 0.05). Leptin treatment (both ip and icv) decreased dopamine concentrations significantly in the PVN. Serotonin (5-HT) concentration decreased significantly in the PVN after both intraperitoneal and intracerebroventricular injections of leptin and decreased in the VMH only with intracerebroventricular treatment of leptin. Leptin did not affect any of the monoamines in the ME and MPA. These results indicate that both central and systemic administration of leptin can affect hypothalamic monoamines in a region-specific manner, which, in turn, could mediate many of leptin's central and neuroendocrine effects.  相似文献   

12.
The relationship of leptin to thyroid and sex hormones, insulin, energy intake, exercise energy expenditure, and reproductive function was assessed in 39 female athletes. They comprised elite athletes who were either amenorrheic (EAA; n = 5) or cyclic (ECA; n = 8) and recreationally active women who were either cyclic (RCA; n = 13) or taking oral contraceptives (ROC; n = 13). Leptin was significantly lower in EAA (1.7 +/- 0.2 ng/ml) than in ECA (2.9 +/- 0.3 ng/ml), RCA (5.8 +/- 0.9 ng/ml), and ROC (7.4 +/- 1.3 ng/ml). Hypoleptinemia in EAA was paralleled by reductions (P < 0.05) in caloric intake, insulin, estradiol, and thyroid hormones. Leptin increased by 40-46% (P < 0.05) in the luteal phase of the menstrual cycle in RCA and ECA. Plasma leptin was similar in the placebo and active pill phases in ROC despite a significant increase in ethinylestradiol. Leptin correlated (P < 0.05) with triiodothyronine and insulin but not with estrogen, energy intake, or exercise energy expenditure. These data suggest that in female athletes 1) leptin may be a metabolic signal that provides a link between adipose tissue, energy availability, and the reproductive axis and 2) sex hormones do not directly regulate leptin secretion.  相似文献   

13.
目的:探讨下丘脑室旁核注射GLP-1R拮抗剂Exendin(9-39)对Nesfatin-1所致大鼠摄食和胃肠动力改变的影响及作用机制。方法:选择40只雄性Wistar大鼠,随机分成正常对照组(NC组)、Nesfatin-1组(NS组)、Exendin(9-39)组(ES组)、Nesfatin-1联合Exendin(9-39)组(NE组)。采用下丘脑室旁核(PVN)埋置套管并分别给予以上药物干预,干预前和干预后的12小时、24小时记录和比较各组大鼠的摄食、饮水及体重变化。2天后,采用甲基纤维素-酚红溶液灌胃法测各组大鼠胃排空率,实时荧光定量法(RT-PCR)检测下丘脑及胃组织GLP-1Rm RNA的表达。结果:与基础摄食量比较,NS组大鼠给药后12 h、24 h的摄食量减少(P0.05),NE组大鼠给药后12 h、24 h的摄食量减少(P0.05),但较NS组增加(P0.05);与基础饮水量比较,NS组、NE组给药后12 h饮水量减少(P0.05);与基础体重比较,NS组大鼠给药后12 h、24 h的体重降低(P0.05),NE组大鼠给药后12 h的体重降低(P0.05),但较NS组增加(P0.05);NS组大鼠给药后胃排空率较NC、NE组大鼠显著下降(P0.05),NS组大鼠下丘脑GLP-1Rm RNA的表达量较NC组增加(P0.05)。结论:中枢给予GLP-1R拮抗剂能减弱Nesfatin-1引起的摄食抑制、胃排空延迟及体重下降效应,Nesfatin-1可能通过与GLP-1的协同作用参与摄食及胃肠动力的调节。  相似文献   

14.
Leptin is thought to be a lipostatic signal that contributes to body weight regulation. Zinc might play an important role in appetite regulation and its administration stimulates leptin production. However, there are few reports in the literature on its role on leptin levels in the obese population. The present work assesses the effect of zinc supplementation on serum leptin levels in insulin resistance (IR). A prospective double-blind, randomized, clinical, placebo-controlled study was conducted. Fifty-six normal glucose-tolerant obese women (age: 25-45 yr, body mass index [BMI] = 36.2 +/- 2.3 kg/m2) were randomized for treatment with 30 mg zinc daily for 4 wk. Baseline values of both groups were similar for age, BMI, caloric intake, insulin concentration, insulin resistance, and zinc concentration in diet, plasma, urine, and erythrocytes. Insulin and leptin were measured by radioimmunoassay and IR was estimated by the homeostasis model assessment (HOMA). The determinations of zinc in plasma, erythrocytes, and 24- h urine were performed by using atomic absorption spectrophotometry. After 4 wk, BMI, fasting glucose, and zinc concentration in plasma and erythrocyte did not change in either group, although zinc concentration in the urine increased from 385.9 +/- 259.3 to 470.2 +/- 241.2 +/- microg/24 h in the group with zinc supplementation (p < 0.05). Insulin did not change in the placebo group, whereas there was a significant decrease of this hormone in the supplemented group. HOMA also decreased from 5.8 +/- 2.6 to 4.3 +/- 1.7 (p < 0.05) in the zinc-supplemented group but did not change in the placebo group. Leptin did not change in the placebo group. In the zinc group, leptin was 23.6 +/- 12.3 microg/L and did not change. More human data from a unique population of obese individuals with documented insulin resistance would be useful in guiding future studies on zinc supplementation (with higher doses or longer intervals) or different measures.  相似文献   

15.
The positive correlation between leptin and body fat mass has caused some investigators to speculate that leptin resistance contributes to obesity. Loss of ovarian function in human and rat is associated with increased fat mass gain and increased circulating leptin levels. To study whether ovariectomy produces leptin resistance, Sprague-Dawley female rats were ovariectomized or sham operated and injected with leptin for 35 days. Ovariectomy (OVX) produced hyperphagia and increased gain in both lean and fat mass. Daily leptin injections initially decreased food intake significantly, but feeding gradually increased to a stable level by day 16 and remained at that level for the duration of study. Body composition analysis indicated that chronic injection of leptin to OVX rats dramatically decreased (P < 0.05) fat mass [30 +/- 2 (SE) g, vehicle, to 3 +/- 1 g, leptin]. Using indirect calorimetry, we observed that OVX did not change energy expenditure or total level of fuel utilization. Leptin administration increased fat utilization and prevented reduction in calorie expenditure that is typically associated with food restriction. Leptin treatment to OVX rats decreased plasma triglyceride, free fatty acid, and insulin concentrations, whereas glucose concentration was normal. Withdrawal of leptin triggered hyperphagia, indicating that leptin biology remained throughout the duration of the chronic treatment. The same dose of leptin produced qualitatively similar data in sham-operated rats. Thus we concluded that the loss of ovarian function in rats is not associated with a change in leptin sensitivity.  相似文献   

16.
Insulin has been shown to stimulate leptin mRNA expression acutely in rat adipose tissue, but its short-term effects on circulating leptin levels, and subsequent feeding behavior, have not been well described. We used 11-mo-old female selectively bred obesity-resistant (OR) and obesity-prone (OP) Sprague-Dawley rats maintained on laboratory chow to investigate this question. At testing, body weights and basal leptin levels of the OP rats were significantly elevated compared with the OR rats. In the 3-h fasted state, injection of 2.0 U insulin/kg ip resulted in significant elevations of plasma leptin at 4 h postinjection in both OP and OR groups (hour 4, +2.50 and +5.98 ng/ml, respectively). In separate feeding tests with the same groups, intake of laboratory chow pellets was significantly inhibited during hours 2-4 after 2.0 U/kg of insulin in the OR (-80.1%, P < 0.05), but not in the OP group, compared with intake after saline injections. In feeding tests with palatable moderately high-fat pellets after 2.0 and 3.0 U insulin/kg ip, significant decreases between hours 2 and 4 in intake were seen in the OR group only (-41.0 and -68.3%, respectively). Thus feeding inhibition coincides with insulin-induced elevations of plasma leptin in lean but not obese Sprague-Dawley rats. Our data suggest that elevations of leptin within the physiological range may contribute to short-term inhibition of food intake in rats and that this process may be stimulated by feeding-related insulin release.  相似文献   

17.
18.
Objective : Leptin, an adipocyte-secreted hormone, has been shown to signal the status of energy stores to the brain, regulate energy homeostasis, and mediate the neuroendocrine response to food deprivation. Obesity is associated with increased leptin levels, and several hormones, including insulin and glucocorticoids, have been associated with leptin levels and expression in rodents. Although obesity has been strongly associated with increased leptin in humans, a significant percentage of leptin's variability remains unexplained. The role of endogenous hormones, demographic factors, or certain life-style factors in explaining the residual variability of leptin levels has not yet been clarified. We performed this cross-sectional study to document the relative importance of obesity, lifestyle factor, and endogenous hormones in determining serum leptin levels. Research Methods and Procedures : We measured serum concentrations of insulin, Cortisol, testosterone, growth hormone, and dehydroepiandrosterone sulfate; ascertained anthropometric, demographic, and lifestyle characteristics; and studied these variables in relationship to serum leptin concentrations in a sample of young healthy men. Results : Obesity and alcohol intake were independently and positively associated with circulating leptin concentrations. Additionally, cigarette smoking was negatively and independently associated with leptin concentrations. Finally, serum insulin concentration was an independent hormonal determinant of circulating leptin concentrations, whereas serum testosterone was negatively associated with leptin only by bivariate analysis. Discussion : We conclude that, in addition to obesity, cigarette smoking, alcohol intake, and serum insulin levels are associated with leptin levels in a population of healthy young men.  相似文献   

19.
20.
Leptin inhibits feeding, stimulates thermogenesis and decreases body weight. Serotonin reduces food intake when injected into the hypothalamus and may interact with other neurotransmitters in the control of appetite. We therefore investigated the effects of the serotonergic drug fluoxetine, which inhibits serotonin reuptake, on food intake and plasma leptin levels in lean and obese Zucker rats. Fluoxetine significantly reduced food intake in lean and obese rats, both acutely after a single injection (10 mg/kg) and during continuous subcutaneous infusion (10 mg/kg/day for 7 days). Plasma leptin levels were reduced after both 4 hours and 7 days of fluoxetine administration in lean and after 7 days in fatty rats (all p<0.01). We have previously suggested that serotonin may decrease food intake by inhibiting neuropeptide Y neurones, and we further suggest that it also inhibits leptin, possibly by an effect on white adipose tissue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号