首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
The biogenic structures of stationary organisms can be effective recorders of environmental fluctuations. These proxy records of environmental change are preserved as geochemical signals in the carbonate skeletons of scleractinian corals and are useful for reconstructions of temporal and spatial fluctuations in the physical and chemical environments of coral reef ecosystems, including The Great Barrier Reef (GBR). We compared multi-year monitoring of water temperature and dissolved elements with analyses of chemical proxies recorded in Porites coral skeletons to identify the divergent mechanisms driving environmental variation at inshore versus offshore reefs. At inshore reefs, water Ba/Ca increased with the onset of monsoonal rains each year, indicating a dominant control of flooding on inshore ambient chemistry. Inshore multi-decadal records of coral Ba/Ca were also highly periodic in response to flood-driven pulses of terrigenous material. In contrast, an offshore reef at the edge of the continental shelf was subject to annual upwelling of waters that were presumed to be richer in Ba during summer months. Regular pulses of deep cold water were delivered to the reef as indicated by in situ temperature loggers and coral Ba/Ca. Our results indicate that although much of the GBR is subject to periodic environmental fluctuations, the mechanisms driving variation depend on proximity to the coast. Inshore reefs are primarily influenced by variable freshwater delivery and terrigenous erosion of catchments, while offshore reefs are dominated by seasonal and inter-annual variations in oceanographic conditions that influence the propensity for upwelling. The careful choice of sites can help distinguish between the various factors that promote Ba uptake in corals and therefore increase the utility of corals as monitors of spatial and temporal variation in environmental conditions.  相似文献   

2.
《Marine Micropaleontology》2010,74(3-4):178-189
Trace elements incorporated in planktonic foraminiferal test carbonate are commonly used as paleoproxies. For instance, Mg/Ca ratios are frequently used for reconstructing sea surface temperature and, together with the foraminiferal stable oxygen isotope ratios, are also used as paleosalinity proxy. Foraminiferal Sr/Ca ratios constitute another example of the application of trace elements in paleostudies since they may reflect the Sr/Ca values of seawater. However, over the past few decades it has been proven that the incorporation of trace elements in foraminiferal calcite is controlled by more than one environmental parameter. To quantify the effect of salinity on Mg and Sr incorporation planktonic foraminifera Globigerinoides sacculifer (sensu stricto) were grown in the laboratory under different environmental conditions. Laboratory experiments allowed us to separate a direct salinity effect from a possible independent impact through differences in the calcite saturation state of the seawater (Ω). Although the temperature effect is more important than the salinity effect, a change of 4 salinity units is equivalent to a 1 °C bias on Mg/Ca-based temperatures. This effect of salinity on Mg incorporation is minor. However, when using Mg/Ca-based temperatures in combination with foraminiferal δ18O to calculate salinity, it cannot be neglected. The present study shows salinity as the overriding control on Mg incorporation within the range of Ω studied (Ω between 5.25 and 6.50; [CO32−] between 218 and 270 μmol/kg) at a constant temperature of 26 °C. In contrast, Ω appears to be the main control on foraminiferal Sr incorporation (0.10 mmol/mol per 100 µmol/kg rise in [CO32−]), whereas salinity has a non significant influence on Sr/Ca.  相似文献   

3.
Cores from colonies of the coral species Porites sp. were collected from inshore, mid-shelf, and outer reef localities (central Great Barrier Reef) to test the robustness of the major elemental sea surface temperature (SST) proxies (B/Ca, Mg/Ca, Sr/Ca, U/Ca) to the influence of inshore processes. Time series analyses of Sr/Ca, U/Ca, B/Ca, and Mg/Ca are compared to sea surface temperature (SST) in order to provide calibrations for these elements. This study shows that there are significant variations between the corals with respect to some of the proxies. In some cases, variations of ~6 °C are observed for a single U/Ca value. This magnitude of variation is also seen in the Mg/Ca proxy and, to a smaller extent, in the B/Ca–SST relationship. In two of the corals, both Mg/Ca and U/Ca do not follow a seasonal signal. The Mg/Ca and U/Ca ratios for two inshore corals are significantly different than the offshore corals (lower and higher, respectively). The other two proxies (B/Ca and Sr/Ca) do not display any inshore vs. offshore variations except for one inshore site that did not have a clear seasonal signal for either of these proxies. The Sr/Ca–SST relationship is the most robust, with a temperature variation of ~2 °C for a single Sr/Ca value, which is within error for this technique.  相似文献   

4.
Coral skeletal boron isotopes have been established as a proxy for seawater pH, yet it remains unclear if and how this proxy is affected by seawater temperature. Specifically, it has never been directly tested whether coral bleaching caused by high water temperatures influences coral boron isotopes. Here we report the results from a controlled bleaching experiment conducted on the Caribbean corals Porites divaricata, Porites astreoides, and Orbicella faveolata. Stable boron (δ11B), carbon (δ13C), oxygen (δ18O) isotopes, Sr/Ca, Mg/Ca, U/Ca, and Ba/Ca ratios, as well as chlorophyll a concentrations and calcification rates were measured on coral skeletal material corresponding to the period during and immediately after the elevated temperature treatment and again after 6 weeks of recovery on the reef. We show that under these conditions, coral bleaching did not affect the boron isotopic signature in any coral species tested, despite significant changes in coral physiology. This contradicts published findings from coral cores, where significant decreases in boron isotopes were interpreted as corresponding to times of known mass bleaching events. In contrast, δ13C and δ18O exhibited major enrichment corresponding to decreases in calcification rates associated with bleaching. Sr/Ca of bleached corals did not consistently record the 1.2°C difference in seawater temperature during the bleaching treatment, or alternatively show a consistent increase due to impaired photosynthesis and calcification. Mg/Ca, U/Ca, and Ba/Ca were affected by coral bleaching in some of the coral species, but the observed patterns could not be satisfactorily explained by temperature dependence or changes in coral physiology. This demonstrates that coral boron isotopes do not record short-term bleaching events, and therefore cannot be used as a proxy for past bleaching events. The robustness of coral boron isotopes to changes in coral physiology, however, suggests that reconstruction of seawater pH using boron isotopes should be uncompromised by short-term bleaching events.  相似文献   

5.
Massive coral bleaching events result in extensive coral loss throughout the world. These events are mainly caused by seawater warming, but are exacerbated by the subsequent decrease in nutrient availability in surface waters. It has therefore been shown that nitrogen, phosphorus or iron limitation contribute to the underlying conditions by which thermal stress induces coral bleaching. Generally, information on the trophic ecology of trace elements (micronutrients) in corals, and on how they modulate the coral response to thermal stress is lacking. Here, we demonstrate for the first time that heterotrophic feeding (i.e. the capture of zooplankton prey by the coral host) and thermal stress induce significant changes in micro element concentrations and isotopic signatures of the scleractinian coral Stylophora pistillata. The results obtained first reveal that coral symbionts are the major sink for the heterotrophically acquired micronutrients and accumulate manganese, magnesium and iron from the food. These metals are involved in photosynthesis and antioxidant protection. In addition, we show that fed corals can maintain high micronutrient concentrations in the host tissue during thermal stress and do not bleach, whereas unfed corals experience a significant decrease in copper, zinc, boron, calcium and magnesium in the host tissue and bleach. In addition, the significant increase in δ65Cu and δ66Zn signature of symbionts and host tissue at high temperature suggests that these isotopic compositions are good proxy for stress in corals. Overall, present findings highlight a new way in which coral heterotrophy and micronutrient availability contribute to coral resistance to global warming and bleaching.  相似文献   

6.
Hydrogen isotope ratios (2H/1H, δ2H) of leaf waxes covary with those in precipitation and are therefore a useful paleohydrologic proxy. Mangroves are an exception to this relationship because their δ2H values are also influenced by salinity. The mechanisms underlying this response were investigated by measuring leaf lipid δ2H and leaf and xylem water δ2H and δ18O values from three mangrove species over 9.5 months in a subtropical Australian estuary. Net 2H/1H fractionation between surface water and leaf lipids decreased by 0.5–1.0‰ ppt?1 for n‐alkanes and 0.4–0.8‰ ppt?1 for isoprenoids. Xylem water was 2H depleted relative to surface water, reflecting 2H discrimination of 4–10‰ during water uptake at all salinities and opportunistic uptake of freshwater at high salinity. However, leaf water 2H enrichment relative to estuary water was insensitive to salinity and identical for all species. Therefore, variations in leaf and xylem water δ2H values cannot explain the salinity‐dependent 2H depletion in leaf lipids, nor the 30‰ range in leaf lipid δ2H values among species. Biochemical changes in direct response to salt stress, such as increased compatible solute production or preferential use of stored carbohydrates, and/or the timing of lipid production and subsequent turnover rates, are more likely causes.  相似文献   

7.
A sectioned and polished specimen of the coral Archohelia vicksburgensis from the early Oligocene Byram Formation (~30 Ma) near Vicksburg, Mississippi, reveals 12 prominent annual growth bands. Stable oxygen isotopic compositions of 77 growth‐band‐parallel microsamples of original aragonite exhibit well‐constrained fluctuations that range between ?2.0 and ?4.8. Variation in δ18O of coral carbonate reflects seasonal variation in temperature ranging from 12 to 24 °C about a mean of 18 °C. These values are consistent with those derived from a bivalve and a fish otolith from the same unit, each using independently derived palaeotemperature equations. Mg/Ca and Sr/Ca ratios were determined for 40 additional samples spanning five of the 12 annual bands. Palaeotemperatures calculated using elemental‐ratio thermometers calibrated on modern corals are consistently lower; mean temperature from Mg/Ca ratios are 12.5 ± 1 °C while those from Sr/Ca are 5.8 ± 2.2 °C. Assuming that δ18O‐derived temperatures are correct, relationships between temperature and elemental ratio for corals growing in today's ocean can be used to estimate Oligocene palaeoseawater Mg/Ca and Sr/Ca ratios. Calculations indicate that early Oligocene seawater Mg/Ca was ~81% (4.2 mol mol?1) and Sr/Ca ~109% (9.9 mmol mol?1) of modern values. Oligocene seawater with this degree of Mg depletion and Sr enrichment is in good agreement with that expected during the Palaeogene transition from ‘calcite’ to ‘aragonite’ seas. Lower Oligocene Mg/Ca probably reflects a decrease toward the present day in sea‐floor hydrothermal activity and concomitant decrease in scavenging of magnesium from seawater. Elevated Sr/Ca ratio may record lesser amounts of Oligocene aragonite precipitation and a correspondingly lower flux of strontium into the sedimentary carbonate reservoir than today.  相似文献   

8.
Stable isotopes in mollusc shells, together with variable growth rates and other geochemical properties, can register different environmental clues, including seawater temperature, salinity and primary productivity. However, the strict biological control over the construction of biominerals exerted by many calcifying organisms can constrain the use of these organisms for paleoenvironmental reconstructions. Biologically controlled calcification is responsible for the so called vital effects that cause a departure from isotopic equilibrium during shell formation, resulting in lower shell oxygen and carbon compared to the equilibrium value. We investigated shell oxygen and carbon isotopic composition of the bivalve Chamelea gallina in six sites along with a latitudinal gradient on the Adriatic Sea (NE Mediterranean Sea). Seawater δ18O and δ13CDIC varied from North to South, reflecting variations in seawater temperature, salinity, and chlorophyll concentration among sites. Shell δ18O and δ13C differed among sites and exhibited a wide range of values along with the ~400 km latitudinal gradient, away from isotopic equilibrium for both isotopes. These results hampered the utilization of this bivalve as a proxy for environmental reconstructions, in spite of C. gallina showing promise as a warm temperature proxy. Rigorous calibration studies with a precise insight of environment and shell growth are crucial prior to considering this bivalve as a reliable paleoclimatic archive.  相似文献   

9.
Assays of elemental and stable‐isotope ratios across growth increments of scales have the potential to provide a non‐lethal alternative to otolith chemistry for identifying migration and ontogenetic trophic shifts. A central assumption when employing scales as otolith analogues is that any scale from an individual will provide equivalent information about the chemical history of that fish. This assumption was investigated with multiple scales from wild and captive euryhaline Atlantic tarpon Megalops atlanticus from the north‐west Gulf of Mexico. Elemental (Sr:Ca) and isotope‐ratio (δ13C and δ15N) life‐history profiles were compared among multiple scales from each fish. All three chemical proxies showed highly consistent patterns among non‐regenerated scales, while patterns in regenerated scales diverged, indicating rapid regrowth of interior scale material at the onset of regeneration. Patterns of Sr:Ca and δ13C covaried, supporting their use as salinity proxies, while δ15N patterns were consistent with ontogenetic diet shifts. Water samples taken from aquaria holding captive fish were used to calculate partition coefficients for a suite of elements in M. atlanticus scales for future quantification of migratory movements in the region. Together, these results support the assumption that non‐regenerated scales from individual M. atlanticus provide equivalent chemical histories, further validating their use as a viable non‐lethal alternative to otoliths.  相似文献   

10.
The biology and the behaviour of fish populations in hypersaline environments are poorly known. The habitat occupation strategy of the tilapia Sarotherodon melanotheron has been studied along a salinity gradient in the Saloum hypersaline estuary in Senegal (salinity between 32 and 100). The individual migratory behaviour has been analysed from otolith strontium-to-calcium concentration ratios from fish sampled in five locations during the 2003 wet season and the 2004 dry season. In the upper part of the estuary (salinities > 50), the Sr:Ca ratio in the otolith showed high variations, from 2.51 to 33.30 × 10−3. These maximum observed values have never been reported in the literature. The individual mean of Sr:Ca ratios increased according to the salinity gradient in the estuary, with significantly higher values in the upper part (Sr:Ca mean = 16 × 10−3) than in the lower part (salinity < 50, Sr:Ca mean = 12 × 10−3). No significant difference in the Sr:Ca mean was observed between locations with comparable salinities. Sr concentration in the water at the different locations was positively correlated with ambient salinity. The mean of Sr:Ca in the otoliths was then in relationship with the level of Sr in the water. Thus, the Sr:Ca ratios in the otolith of S. melanotheron allowed to discriminate the populations of this species and to hypothesize that they did not undertake large scale movements within the estuary.  相似文献   

11.
A set of published, unpublished, and new clay mineral data from 60 European and Mediterranean localities allows us to test the reliability of clay minerals as palaeoclimatic proxies for the Pliensbachian–Toarcian period (Early Jurassic) by reconstructing spatial and temporal variations of detrital fluxes at the ammonite biochronozone resolution. In order to discuss their palaeoclimatic meaning, a compilation of low-latitude belemnite δ18O, δ13C, Mg/Ca, and 87Sr/86Sr values is presented for the first time for the whole Pliensbachian–Toarcian period. Once diagenetic and authigenic biases have been identified and ruled out, kaolinite content variation is considered as a reliable palaeoclimatic proxy for the Early Jurassic. Major kaolinite enrichments occur during times of low δ18O, high Mg/Ca, and increasing 87Sr/86Sr, implying warm climates and efficient runoffs during the Davoei, Falciferum and Bifrons Zones. Conversely, cooler and drier times such as the Late Pliensbachian or the Late Toarcian are characterized by low hydrolysis of landmasses, and correspond to kaolinite depleted intervals. Secondary factors as modifications of sources or hydrothermalism may sporadically disturb the palaeoclimatic signal (e.g., in the Bakony area during the Late Pliensbachian). In addition, a spatial comparison of clay assemblages displays significant kaolinite enrichments towards northern parts of the Peritethyan Realm, probably related to the latitudinal zonation of hydrolyzing conditions. This implies enhanced runoffs on northern continental landmasses that reworked kaolinite-rich sediments from subtropical soils and/or Palaeozoic substrata.  相似文献   

12.
Seasonal variations in the oxygen isotopic composition of Rhine River water were analyzed in detail and compared with the oxygen isotopic record from recent and historical specimens of freshwater bivalves (Unionidae). The purpose of this study was to investigate the potential use of these aragonitic bivalves as proxy recorders for varying amounts and sources of discharge, and thereby infer climate change. Seasonal variations in the river water δ18O are on the order of 1-2‰. During summer, Alpine melt-water contributes significantly to the total discharge, resulting in average values of −10 to −10.5‰, whereas the non-Alpine contribution is higher during winter, as indicated by mean δ18O values of −8.5 to −9‰. The basic pattern of the modern seasonal variation of δ18O of river water can be described by a numerical mass balance approximation of the various contributions from the Alpine and non-Alpine catchments with their average δ18O composition. The δ18O of growth increments in the prismatic shell layer of Anodonta corresponds perfectly to what is predicted by known fractionation of 18O between water and aragonite. Shell growth is restricted to water temperatures above 8-10°C, so variations in δ18O and the river water temperature are faithfully recorded by relatively large growth increments during summer. The distinctive isotopic signatures of individual flood events during summer and autumn are also recorded in the shells.  相似文献   

13.
Traditional bulk stable isotope (δ18O and δ13C) and clumped isotope (Δ47) records from bivalve shells provide invaluable histories of Earth's local and global climate change. However, biologically driven isotopic fractionations (BioDIFs) can overprint primary environmental signals in the shell. Here, we explore how conventional measurements of δ18O, δ13C, and Δ47 in bivalve shells can be re-interpreted to investigate these physiological processes deliberately. Using intrashell Δ47 and δ18O alignment as a proxy for equilibrium state, we separately examine fractionations and/or disequilibrium occurring in the two major stages of the biomineralisation process: the secretion of the extrapallial fluid (EPF) and the precipitation of shell material from the EPF. We measured δ18O, δ13C, and Δ47 in fossil shells representing five genera (Lahillia, Dozyia, Eselaevitrigonia, Nordenskjoldia, and Cucullaea) from the Maastrichtian age [66–69 million years ago (Ma)] López de Bertodano Formation on Seymour Island, Antarctica. Material was sampled from both the outer and inner shell layers (OSL and ISL, respectively), which precipitate from separate EPF reservoirs. We find consistent δ18O values across the five taxa, indicating that the composition of the OSL can be a reliable palaeoclimate proxy. However, relative to the OSL baseline, ISLs of all taxa show BioDIFs in one or more isotopic parameters. We discuss/hypothesise potential origins of these BioDIFs by synthesising isotope systematics with the physiological processes underlying shell biomineralisation. We propose a generalised analytical and interpretive framework that maximises the amount of palaeoenvironmental and palaeobiological information that can be derived from the isotopic composition of fossil shell material, even in the presence of previously confounding ‘vital effects’. Applying this framework in deep time can expand the utility of δ18O, δ13C, and Δ47 measurements from proxies of past environments to proxies for certain biomineralisation strategies across space, time, and phylogeny among Bivalvia and other calcifying organisms.  相似文献   

14.
In this study, the Strontium/Calcium (Sr/Ca) ratio, and the carbon and oxygen isotopic compositions of coccoliths are investigated in three different grain-size fractions (<20 μm, 15-5 μm, <5 μm) of 17 surface sediment samples from the Equatorial and South Atlantic. The results are compared to environmental parameters in order to assess the factors controlling the observed coccolith geochemical patterns. Isotopic and geochemical composition of coccolith species in surface sediment samples from the South Atlantic greatly varies according to the different grain-size fractions. However, even if the absolute values show a great offset, the general trends are comparable. The δ18O values show a decreasing trend with increasing temperature. The δ13C and Sr/Ca ratio are mainly influenced by productivity of coccolithophores, which is in turn controlled by different factors, such as temperature, nutrient supply and productivity of other phytoplankton groups. Dilution and dissolution are negligible factors in these open marine samples. Therefore, coccolith abundance in bulk sediment is the best approximation for productivity of coccolithophores. The various coccolith species fractionate Sr differently, as is best shown by the 5-15 μm fraction where three species (Calcidiscus leptoporus, Helicosphaera carteri and Coccolithus pelagicus) predominantly occur.  相似文献   

15.
The stable carbon isotopic composition (δ13C) measured in tree rings is a standard proxy for paleoclimate reconstructions and is increasingly being used as a paleophysiological proxy. To fully exploit the potential of tree ring δ13C proxy, atmospheric CO2 concentration and δ13C (δ13CO2) data are required to correct tree ring δ13C from the declining trend of δ13CO2 due to fossil fuel burning since 1850 CE, and to derive physiological parameters using biochemical models that link photosynthesis to δ13C. These atmospheric data are available from direct measurements or can be inferred from indirect proxies such as ice cores covering the Common Era (CE) at variable temporal resolutions. For almost two decades, tree-ring researchers have relied on a dataset derived from fitted linear regressions of ice core measurements available through the seminal McCarroll and Loader (2004) article for the 1850−2003 CE period. However, new calibrations and compilations of ice core data and direct measurements are now available as part of Earth System Modelling efforts which remain overlooked by the tree ring research community.Here, we present an overview of the new and freely available datasets and provide recommendations for their use in ecophysiology and paleoclimate research, that we expect will stimulate cross-disciplinary collaborations.  相似文献   

16.
We examined the isotopic parameters in two C3 species (Artemisia diffusa H. Krasch and Tamarix hispida Willd.) and a C4 species [Haloxylon aphyllum (Minkw.) Iljin.] growing or planted in soils with different levels of salinity in a Central Asian desert. The oxygen isotope ratios of stem water (δ18Ostem) in T. hispida and H. aphyllum distributed in high-salinity zones were similar to the δ18O of artesian water (δ18Oartesian) and different from that in A. diffusa distributed in lower-salinity zones. This indicates that T. hispida and H. aphyllum depend on water with low salinity in the deeper soil layer, whereas A. diffusa depends on water in the shallower soil layer that would be affected by salt accumulation. The carbon isotope composition of leaf organic matter (δ13Com) and oxygen isotope enrichment in leaf organic matter above stem water (Δ18Oom) were lower in A. diffusa than in the other species. The responses of δ13Com and Δ18Oom to soil salinity observed for T. hispida suggest that the species decreased its transpiration rate and increased its intrinsic water-use efficiency in response to increasing soil salinity. The δ13Com and Δ18Oom of H. aphyllum were higher than those of the C3 species, and were not correlated with soil salinity, suggesting that H. aphyllum reduced its salt uptake by decreasing transpiration—even though it was able to access less saline water in the deeper soil layer. These results indicate that the water-use strategy of desert plants in high-salinity environments can be assessed based on their carbon and oxygen isotope ratios.  相似文献   

17.
Well-preserved fossils of the Late Cretaceous Western Interior Seaway (WIS) of North America have been analyzed for Sr concentration and Sr and O isotopes in order to decipher paleosalinities and paleotemperatures. The samples are from four biofacies within the Seaway (late Maastrichtian): offshore Interior (Pierre Shale), nearshore Interior (Fox Hills Formation), brackish (reduced salinity; Fox Hills Formation) and freshwater (Hell Creek Formation). Samples were also obtained from the Severn Formation of Maryland (considered to be representative of the open ocean). All biofacies (except the freshwater) are demonstrably within the Jeletzkytes nebrascensis ammonite zone (<1 Ma duration). The 87Sr/86Sr ratios show significant and systematic decreases from marine (mean±1 S.D.=0.707839±0.000024) to brackish facies (mean±1 S.D.=0.707677±0.000036), consistent with dilution by freshwater with a lower 87Sr/86Sr ratio than seawater. Such variation disallows using the 87Sr/86Sr ratios of fossil shell material to assign ages to fossils from the Late Cretaceous WIS without knowledge of the salinity in which the organism grew. The Sr isotope ratios for scaphitid ammonites within a single biofacies are similar to each other and different from those for scaphites in other biofacies, implying that these organisms are restricted in their distribution during life. The 87Sr/86Sr values of freshwater unionid mussels range widely and are not compatible with the freshwater endmember 87Sr/86Sr ratio required by the trend in 87Sr/86Sr vs. biofacies established from the other samples. Paleosalinities for the biofacies are estimated to range from 35‰ in the open marine to a minimum of 20‰ in the brackish, based on the presence of cephalopods in all four facies and the known salinity tolerance of modern cephalopods. Producing reasonable 87Sr/86Sr values for the freshwater endmember of a 87Sr/86Sr vs. 1/[Sr] plot requires a Sr concentration 0.2-0.5 that of seawater for the dominant freshwater input to the WIS. Such high Sr concentrations (relative to seawater) are not observed in modern rivers, and we suggest that the brackish environment in the WIS arose through the mixing of freshwater and seawater in a nearshore aquifer system. Reactions of the solution with aquifer solids in this ‘subterranean estuary’ [Moore, Mar. Chem. 65 (1999) 111-125] produced brackish water with the Sr concentration and isotopic composition recorded in the brackish biofacies. δ18O values of the fossils show decreases from the marine to brackish biofacies consistent with increasing temperatures (from ∼13 to 23°C) or, if temperatures were relatively constant, to a decrease in the δ18O of the water in which the shell formed. The latter interpretation is consistent with less-than-fully marine salinities in the nearshore biofacies, but both changes in temperature and the isotopic composition of the water may have occurred in this environment.  相似文献   

18.
Measurements of the Ca, Sr, and Mg contents of individual calcitic shells of non-marine ostracods and their host waters, both in lakes and controlled aquaria, permit the calculation of the distribution coefficients of Sr/Ca and Mg/Ca partitioning in ostracod shells. We report new KD[Sr] for seven genera of non-marine ostracods and KD[Mg] for Cyprideis at 25°C.Strontium partitioning is virtually temperature-independent, and is related to the Sr/Ca of the host water, and in Ca2+-saturated waters, to the salinity of the water. Magnesium partitioning is dependent on both temperature and Mg/Ca of the host water.For simple closed-basin lakes (crater lakes are ideal), the Sr content of ostracods is a sensitive indicator of salinity and thus evaporation/precipitation changes, which in turn, indicate variations in continental climate. A 10000-year continuous palaeosalinity record established by Sr and Mg contents of fossil ostracods for Lake Keilambete, southeastern Australia, is in close agreement with an independent palaeosalinity estimate based on sediment textures.We suggest rules that allow Sr and Mg analyses of suites of individual fossil ostracod shells from lacustrine sediments to be interpreted in terms of palaeosalinity and palaeotemperature variations.  相似文献   

19.
Powdered and pelletized wollastonite (CaSiO3) was applied to an 11.8 ha forested watershed at the Hubbard Brook Experimental Forest (HBEF) in northern New Hampshire, U.S.A. during October of 1999. The dissolution of wollastonite was studied using watershed solute mass balances, and a 87Sr/86Sr isotopic tracer. The wollastonite (87Sr/86Sr = 0.70554) that was deposited directly into the stream channel began to dissolve immediately, resulting in marked increases in stream water Ca concentrations and decreases in the 87Sr/86Sr ratios from pre-application values of 0.872 mg/L and 0.72032 to values of 2.6 mg/L and 0.71818 respectively. After one calendar year, 401 kg of the initial 631 kg of wollastonite applied to the stream channel was exported as stream dissolved load, and 230 kg remained within the stream channel as residual CaSiO3 and/or adsorbed on streambed exchange sites. Using previously established values for streambed Ca exchange capacity at the HBEF, the dissolution rate for wollastonite was found to be consistent with dissolution rates measured in laboratory experiments. Initially, Ca was released from the mineral lattice faster than Si, resulting in the development of a Ca-depleted leached layer on mineral grains. The degree of preferential Ca release decreased with time and reached stoichiometric proportions after 6 months. Using Sr as a proxy for Ca, the Ca from wollastonite dissolution can be accurately tracked as it is transported through the aquatic and terrestrial ecosystems of this watershed.  相似文献   

20.
Several previous studies have investigated the use of the stable hydrogen and oxygen isotope compositions in plant materials as indicators of palaeoclimate. However, accurate interpretation relies on a detailed understanding of both physiological and environmental drivers of the variations in isotopic enrichments that occur in leaf water and associated organic compounds. To progress this aim we measured δ18O and δ2H values in eucalypt leaf and stem water and δ18O values in leaf cellulose, along with the isotopic compositions of water vapour, across a north-eastern Australian aridity gradient. Here we compare observed leaf water enrichment, along with previously published enrichment data from a similar north Australian transect, to Craig–Gordon-modelled predictions of leaf water isotopic enrichment. Our investigation of model parameters shows that observed 18O enrichment across the aridity gradients is dominated by the relationship between atmospheric and internal leaf water vapour pressure while 2H enrichment is driven mainly by variation in the water vapour—source water isotopic disequilibrium. During exceptionally dry and hot conditions (RH < 21%, T > 37 °C) we observed strong deviations from Craig–Gordon predicted isotope enrichments caused by partial stomatal closure. The atmospheric–leaf vapour pressure relationship is also a strong predictor of the observed leaf cellulose δ18O values across one aridity gradient. Our finding supports a wider applicability of leaf cellulose δ18O composition as a climate proxy for atmospheric humidity conditions during the leaf growing season than previously documented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号