首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 362 毫秒
1.
 Polymerase chain reaction was used to isolate cDNA clones encoding putative T-cell receptor (TCR) α chains in an amphibian, the Mexican axolotl (Ambystoma mexicanum). Five TCRα-V chain-encoding segments were identified, each belonging to a separate family. The best identity scores for these axolotl TCRα-V segments were all provided by sequences belonging to the human TCRα-V1 family and the mouse TCRα-V3 and TCRα-V8 families. A total of 14 different TCRA-J segments were identified from 44 TCRA-V/TCRA-J regions sequenced, suggesting that a large repertoire of TCRA-J segments is a characteristic of most vertebrates. The structure of the axolotl CDR3 α chain loop is in good agreement with that of mammals, including a majority of small hydrophobic residues at position 92 and of charged, hydrophilic, or polar residues at positions 93 and 94, which are highly variable and correspond to the TCRA-V/J junction. This suggests that some positions of the axolotl CDR3 α chain loop are positively selected during T-cell differentiation, particularly around residue 93 that could be selected for its ability to makes contacts with major histocompatibility complex-associated antigenic peptides, as in mammals. The axolotl Cα domain had the typical structure of mammalian and avian Cα domains, including the charged residues in the TM segment that are thought to interact with other proteins in the membrane, as well as most of the residues forming the conserved antigen receptor transmembrane motif. Received: 12 June 1996 / Revised: 11 September 1996  相似文献   

2.
 The New World primate, the cotton-top tamarin (Saguinus oedipus), expresses major histocompatibility complex (MHC) class I molecules with limited diversity. The uniqueness of the cotton-top tamarin MHC class I loci may contribute to this species’ unusual susceptibility to viral infections and high incidence of ulcerative colitis. As a prelude to examining the effect of this limited MHC class I diversity on the tamarin CD8+ T-cell receptor (TCR) repertoire, we identified expressed tamarin TCR β chain (TCRB) cDNAs by anchored and inverse polymerase chain reaction. Sequence alignments and phylogenetic comparisons with human and rhesus macaque sequences identified homologues of 21 human variable (V) gene families. Only single variable region genes were identified in each of these tamarin VB families, with the exception of the VB 5, 9, and 13 families which were comprised of two or three distinct members. The multiple genes within these three VB families do not appear to have separate human homologues, but rather aligned equally well to a single human gene from their respective VB families. These genes appear to have arisen, therefore, by duplication of certain VB genes in the tamarin ancestors following their divergence from the lineage leading to Old World primates and hominoids. Homologues of 12 of the 13 human joining (J) region genes were also identified in the tamarin. Comparison of the proportion of nonsynonymous (pN) and synonymous (pS) substitutions occurring per site within tamarin variable region genes demonstrated a reduction in pN in the framework regions compared with pN in the presumed MHC contact regions (CDR1 and CDR2). Taken together, these findings illustrate that the TCR β chain-encoding genes of the cotton-top tamarin are similar in structure and degree of complexity compared with their Old World primate and human counterparts. Received: 19 July 1996 / Revised: 12 August 1996  相似文献   

3.
 The sheep immunoglobulin heavy chain Igh-J locus has been characterized in order to determine the genomic organization of JH segments and their contribution to heavy chain diversity. The locus contains six segments, of which two are functional and four are apparently pseudogenes. These segments span a 1.8 kilobase (kb) region. The distance between JH-ps4 (the 3′-most segment) and the first domain of the μ-chain encoding constant gene is about 5 kb. The two functional JH segments have a standard upstream recombination signal sequence, including heptamer and nonamer sequences separated by a 22–23 nucleotide spacer, and end with a RNA donor splice site. These two segments possess all the characteristic JH invariant residues and are found in expressed μ heavy chain variable regions. The 5′ functional JH1 segment is used in more than 90% of the cDNAs sequenced to date. The contribution of JH segment germline multiplicity to variable regions diversity appears therefore to be minimal. Comparison with other mammalian JH segments shows that all loci are very closely related and probably have evolved from a common ancestral locus. Received: 19 November 1996 / Revised: 17 March 1997  相似文献   

4.
Genes encoding the horse (Equus caballus) T-cell receptor beta chain (TCRB) were cloned and characterized. Of 33 cDNA clones isolated from the mesenteric lymph node, 30 had functionally rearranged gene segments, and three contained germline sequences. Sixteen unique variable segments (TCRBV), 14 joining genes (TCRBJ), and two constant region genes (TCRBC) were identified. Horse TCRBV were grouped into nine families based on similarity to human sequences. TCRBV2 and TCRBV12 were the most commonly represented horse families. Analysis of predicted protein structure revealed the presence of conserved regions similar to those seen in TCRB of other species. A decanucleotide promoter sequence homologous to those found in humans and mice was located in the 5 untranslated region of one horse gene. Germline sequences included the 5 region of the TCRBD2 gene with flanking heptamer/nonamer recombination signals and portions of the TCRBJ-C2 intron. Southern blot hybridizations demonstrated restriction fragment length polymorphisms at the TCRBC locus among different horse breeds.  相似文献   

5.
6.
 The immune capacity of young and adult axolotls (Ambystoma mexicanum) was evaluated by examining the combinatorial and junctional diversity of the VH chain. A large number of VDJ rearrangements isolated from 2.5-, 3.5-, 10-, and 24-month-old animals were sequenced. Six JH segments were identified with the canonical structure of all known vertebrate JHs, including the conserved Trp103-Gly104-X-Gly106 motif. Four core DH-like sequences were used by most (80%) of the VDJ junctions. These G-rich sequences had structures reminiscent of the TCRB DB sequences, and were equally used in their three reading frames. About 25% of the Igh, VDJ junctions from 3.5-month-old axolotls were out of frame, but most rearrangements were in frame at 10 and 24 months, suggesting that there is active selection of the productively rearranged Igh chains in the developing animals. There was no significant difference between the size of CDR3 in young (3.5 months) and subadult (10 months) axolotls (mean: 8.5 amino acids). However, the CDR3 loop was 1 amino acid longer in 2-year-old adult animals (mean: 9.5 residues). Several pairs of identical VDJ/CDR3 sequences were shared between 3.5-month-old individually analyzed axolotls, or between groups of axolotl of different ages. These identical rearrangements might be provided by the selection of some B-cell clones important for species survival, although the probability that different 3.5-month-old axolotl larvae would produce identical junctions seems very low, considering their limited number of B cells (less than 105). The high frequency of tyrosine residues and the paucity of charged residues in the axolotl CDR3 loops may explain the polyreactivity of natural antibodies, and also clarify why it is so difficult to raise specific antibodies against soluble antigens. Received: 11 March 1997 / Revised: 1 May 1997  相似文献   

7.
 To investigate the gene organization of the IGH locus, and the VH diversity of the Siberian sturgeon, a cDNA library was constructed and screened with VH-specific probes from two holostean fish. Isolated clones were analyzed and domain-specific probes used in rescreening of the library, Southern blot analysis, and northern blots. It was concluded that the Siberian sturgeon has one IGH locus with a translocon type of organization. Two allelic variants of the mu gene were found, with identities ranging from 80 to 100% for the different domains (highest for CH4 and lowest for CH2). Sturgeon CH sequences are most closely related to those of holostean fish. There are three distinct VH families, VHI grouping with mammalian clan III, VHII grouping with the teleost clan, and VHIII grouping with the archaic clan. The variability of the CDR 3 region is substantial, and we identified a number of conserved motifs in the D segment. Further, we deduced that there are at least nine different JH segments in the locus, contributing to the antibody repertoire of the sturgeon. The variable segments of the three families can be associated with any of the D or JH segments in the rearrangement. Sturgeon, in addition to the random rearrangement of VH, D, and JH segments, have exonuclease activity, and an introduction of N and probably P nucleotides at the site of rearrangement. Received: 2 March 1998 / Revised: 20 May 1998  相似文献   

8.
 Southern analysis of Eco RI-digested BALB/c liver DNA reveals four T-cell receptor Tcra-V3-hybridizing DNA fragments, which are of sizes 18.0, 12.0, 8.0, and 2.1 kilobases, respectively. These four Tcra-V3-hybridizing genomic DNA were isolated from a BALB/c genomic library. Restriction and Southern analysis of the genomic DNA clones showed that each of the Tcra-V3-hybridizing Eco RI DNA fragments harbors only a single Tcra-V3 gene. The DNA sequences of coding regions of the four Tcra-V3 family members were determined. These sequences show very limited divergence from one another. Comparisons of BALB/c Tcra-V3 sequences with published Tcra-V3 sequences expressed in different strains of mice reveal substantial allelic polymorphism. Sequence similarity searches retrieved homologous rat, cattle, and human genes. The scarcity of coding sequence divergence among members of the Tcra-V3 family and the more substantial allelic polymorphism may be general features of the T-cell receptor V-alpha chain-encoding gene families. Received: 11 April 1996 / Revised: 26 May 1996  相似文献   

9.
  Single-strand conformational polymorphism (SSCP) gel electrophoresis and DNA sequencing were used to characterize the second exon of the horse DRB homologue as well as to identify eight new DRB alleles. The SSCP gels presented a complex pattern, with phenotypes exhibiting between 4 and 13 bands. The DRB SSCP patterns were studied for two families (6 to 13 bands per pattern). For both families, the patterns showed simple Mendelian inheritance. The polymerase chain reaction products from two individuals possessing homozygous major histocompatibility complex (MHC) alleles by descent were cloned and retested on SSCP gels. All bands derived from the genomic DNA amplification could be accounted for with bands derived from the cloned DNA amplification products. The results were consistent with three DRB loci, though this number may be variable within the domestic horse population. Gene sequences were variable among the different products, and we were unable to assign locus designations for particular sequences. Amplification of cDNA library material derived from one of the individuals who is MHC homozygous by descent showed an SSCP profile suggesting that all three DRB loci are transcribed into mRNA. Received: 10 April 1996 / Revised: 2 July 1996  相似文献   

10.
 The T-cell receptor (TCR) is a highly variable molecule composed of two polypeptide chains that recognize antigenic peptides in the context of major histocompatibility complex (MHC) molecules. In this study, we describe a sequence-based search for germline polymorphisms in the variable (V) gene segments of the human TCRA/D locus. Thirty different V gene segments were amplified from six to eight unrelated individuals and sequenced from low melting point agarose. Twenty-seven polymorphisms were identified in 15 V gene segments. These polymorphisms are mainly single nucleotide substitutions, but an insertion/deletion polymorphism and a single dinucleotide repeat with variable length were also seen. Of the 15 sequence variations found in the coding regions, six are silent and nine encode amino acid changes. All of the amino acid changes are found at non-conserved residues, frequently in the hypervariable regions, where they may influence MHC and/or peptide recognition. Therefore, it is possible that germline variations in TCR genes could influence an individual’s immune response, and may also contribute to susceptibility to diseases such as autoimmunity. Received: 9 January 1996 / Revised: 22 February 1996  相似文献   

11.
 The internal transcribed spacer (ITS) regions 1 and 2 of the ribosomal DNA from Stylosanthes guianensis CIAT 1283 and cv ‘Schofield’ were amplified by polymerase chain reaction using conserved ITS primers from the 18S, 5.8S and 26S ribosomal genes flanking those regions. The entire region of 683 bp long was cloned, and seven clones were sequenced. Comparison of the ITS spacer regions with published DNA sequences of other plant species revealed limited homology only; this was in contrast to their comparison with the 5.8S rDNA sequences. The ITS1 region of 45 S. guianensis accessions was amplified by PCR and sequenced on both strands using the conserved primers ITS2-ITS5. These sequences, ranging from 201 to 204 bp, were aligned to each other to assess intra-specific polymorphism. Within the S. guianensis (Aubl.) Sw. species complex, 11 DNA sequence types could be distinguished based on an insertion/deletion (indel) event and 15 single base-pair substitutions. In 1 of the S. guianensis types, two kinds of ITS1 sequence were observed in each individual, reminiscent of an incomplete homogenization of the repeat structure in this type. Polymorphisms in the sequence of the ITS1 region were used to define molecular markers for S. guianensis on the basis of PCR-restriction fragment length polymorphism and selective PCR. Received: 24 June 1997 / Accepted: 31 October 1997  相似文献   

12.
Rapid cloning of any rearranged mouse immunoglobulin variable genes   总被引:2,自引:0,他引:2  
Immunoglobulins (Ig) have been the focus of extensive study for several decades and have become an important research area for immunologists and molecular biologist. The use of polymerase chain reaction (PCR) technology has accelerated the cloning, sequencing, and characterization of genes of the immune system. However, cloning and sequencing the Ig variable (V) genes using the PCR technology has been a challenging task, primarily due to the very diverse nature of Ig V region genes. We have developed a simple, rapid, and reproducible PCR-based technique to clone any rearranged mouse Ig heavy or light chain genes. A close examination of all Ig heavy and light chain V gene families has resulted in the design of 5 and 3 universal primers from regions that are highly conserved across all heavy or light chain V gene families, and the joining or constant regions, respectively. We present our strategy for designing universal primers for Ig V gene families. These primers were able to rapidly amplify the rearranged Ig V genes, belonging to diverse Ig V gene families from very different cell lines, i.e., J558, MOPC-21, 36–60, and a chicken ovalbumin specific B-cell hybridoma. In addition, the present study provides the complete alignment of nucleotide sequences of all heavy and light chain variable gene families. This powerful method of cloning Ig V genes, therefore, allows rapid and precise analysis of B-cell hybridomas, B-cell repertoire, and B-cell ontogeny.The nucloetide sequence data reported in this paper have been submitted to the EMBL/GenBank nucleotide sequence database and have been assigned the accession number U32111  相似文献   

13.
 Class I major histocompatibility complex (Mhc) cDNA clones were isolated from axolotl mRNA by polymerase chain reaction (PCR) and by screening a cDNA phage library. The nucleotide and predicted amino acid sequences show definite similarities to the Mhc class Iα molecules of higher vertebrates. Most of the amino acids in the peptide binding region that dock peptides at their N and C termini in mammals are conserved. Several amino acids considered to be important for the interaction of β2-microglobulin with the Mhc α chain are also conserved in the axolotl sequence. The fact that axolotl class I A cDNAs are ubiquitously expressed and highly polymorphic in the α1 and α2 domains suggests the classical nature of axolotl class I A genes. Received: 3 June 1996 / Revised: 14 October 1996  相似文献   

14.
 We analyzed the polymorphic nature of eleven alleles expressed by the major class I locus (B-FIV) in chickens. Similar to mammalian class I loci, the nucleotide substitutions with high variability occur in exons 2 and 3 encoding the α1 and α2 domains. However, the nonsynonymous to synonymous ratio of nucleotide substitutions in exon 3 encoding the α helix and β sheets is reversed compared with HLA. The region of exon 3 encoding the α2 helix demonstrates a much lower nonsynonymous to synonymous ratio, suggesting evolutionary selection of a more conserved α2 helix in B-FIV compared with HLA. Amino acid residues with high Wu-Kabat variability are typically located in positions predicted to impact antigen presentation. B-FIV amino acid residues predicted to interact with the CDR1α region of the T-cell receptor (Tcr) demonstrate less variability than in mouse and human class I alleles. The combination of a reduced nonsynonymous to synonymous ratio in exon 3 encoding the α2 helix and the limited variability in CDR1α contact residues is discussed with regard to concerted evolution between a minimal major histocompatibility complex and compaction of Tcr variable gene segments in the chicken. Received: 18 Juli 1997 /  Revised: 21 November 1997  相似文献   

15.
The noncoding region between tRNAPro and the large conserved sequence block is the most variable region in the mammalian mitochondrial DNA D-loop region. This variable region (ca. 270 bp) of four species of Equus, including Mongolian and Japanese native domestic horses as well as Przewalskii's (or Mongolian) wild horse, were sequenced. These data were compared with our recently published Thoroughbred horse mitochondrial DNA sequences. The evolutionary rate of this region among the four species of Equus was estimated to be 2–4 × 10–8 per site per year. Phylogenetic trees of Equus species demonstrate that Przewalskii's wild horse is within the genetic variation among the domestic horse. This suggests that the chromosome number change (probably increase) of the Przewalskii's wild horse occurred rather recently.Correspondence to: N. Ishida  相似文献   

16.
Das S  Nozawa M  Klein J  Nei M 《Immunogenetics》2008,60(1):47-55
Immunoglobulin heavy chains are polypeptides encoded by four genes: variable (IGHV), joining (IGHJ), diversity (IGHD), and constant (IGHC) region genes. The number of IGHV genes varies from species to species. To understand the evolution of the IGHV multigene family, we identified and analyzed the IGHV sequences from 16 vertebrate species. The results show that the numbers of functional and nonfunctional IGHV genes among different species are positively correlated. The number of IGHV genes is relatively stable in teleosts, but the intragenomic sequence variation is generally higher in teleosts than in tetrapods. The IGHV genes in tetrapods can be classified into three phylogenetic clans (I, II, and III). The clan III and/or II genes are relatively abundant, whereas clan I genes exist in small numbers or are absent in most species. The genomic organization of clan I, II, and III IGHV genes varies considerably among species, but the entire IGHV locus seems to be conserved in the subtelomeric or near-centromeric region of chromosome. The presence or absence of specific IGHV clan members and the lineage-specific expansion and contraction of IGHV genes indicate that the IGHV locus continues to evolve in a species-specific manner. Our results suggest that the evolution of IGHV multigene family is more complex than previously thought and that several factors may act synergistically for the development of antibody repertoire. Electronic supplementary materials The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

17.
Evolution of a Vκ gene family   总被引:2,自引:0,他引:2  
To examine the evolution of multigene families we have selected as an example an immunoglobulin light chain variable region subgroup (V24) which has been extensively characterized in inbred mice (Mus musculus domesticus). Homologous genes have been isolated and sequenced from Mus pahari, a genetically and geographically isolated species believed to be the oldest living representative of the genus. Southern blot analysis using probes corresponding to individual genes in this subgroup reveals changes in the overall size of the family occurring at the level of individual genes but not at the level of the entire family. Nucleotide sequence analysis indicates an absence of regulatory sequences such as the CAT and TATA boxes 5 to the coding region, but a decanucleotide sequence involved in light chain expression is highly conserved. Within coding regions highly complex patterns of variation are seen which appear to reflect quite different selective pressures on various subregions of the coding sequence. Complementarity determining regions (CDR) are conserved to different extents, with the first CDR region in all family members being among the most conserved segments of the molecule. Conservation is similarly variable among framework segments, indicating complex and variable evolutionary pressures not only at the level of individual genes or their products but also at subregions within homologous molecules.  相似文献   

18.
Summary The amino acid sequences of the protonmotive cytochromeb from seven representative and phylogenetically diverse species have been compared to identify protein regions or segments that are conserved during evolution. The sequences analyzed included both prokaryotic and eukaryotic examples as well as mitochondrial cytochromeb and chloroplastb 6 proteins. The principal conclusion from these analyses is that there are five protein regions-each comprising about 20 amino acid residues—that are consistently conserved during evolution. These domains are evident despite the low density of invariant residues. The two most highly conserved regions, spanning approximately consensus residues 130–150 and 270–290, are located in extramembrane loops and are hypothesized to constitute part of the Qo reaction center. The intramembrane, hydrophobic protein regions containing the heme-ligating histidines are also conserved during evolution. It was found, however, that the conservation of the protein segments extramembrane to the histidine residues ligating the low potential b566 heme group showed a higher degree of sequence conservation. The location of these conserved regions suggests that these extramembrane segments are also involved in forming the Qo reaction center. A protein segment putatively constituting a portion of the Qi reaction center, located approximately in the region spanned by consensus residues 20–40, is conserved in species as divergent as mouse andRhodobacter. This region of the protein shows substantially less sequence conservation in the chloroplast cytochromeb 6. The catalytic role of these conserved regions is strongly supported by locations of residues that are altered in mutants resistant to inhibitors of cytochromeb electron transport.  相似文献   

19.
 We analyzed nucleotide and deduced amino acid sequence heterogeneity of sheep T-cell receptor β-chain cDNAs isolated from an anchored-polymerase chain reaction library. Evaluation of 34 individual rearrangements has defined 18 new β-chain variable region sequences which have been clustered into 13 families. Presumptive allelic polymorphisms of four of these variable regions have been defined, as well as ten distinct β-chain joining region sequences. The present analysis indicates that sheep T-cell receptor β-chains are composed of characteristic leader, variable, joining, and constant region sequences, and that imprecise joining and N-region addition contribute significantly to diversity in the third hypervariable region. Thus, it appears that sheep, like all other mammals studied to date, employ somatic rearrangement of multiple germline genes to create β-chain heterogeneity. These findings have allowed us to estimate the diversity of the sheep T-cell receptor β-chain variable region repertoire, and they provide information that will permit the evaluation of the role that specific T-cell populations play in naturally occurring and experimental diseases of sheep. Received: 20 October 1997 / Revised: 20 April 1998  相似文献   

20.
 At least 32 mostly single-member subfamilies of T-cell receptor alpha variable (TCRAV) genes have been described in humans. The AV1 subfamily is the largest, estimated by hybridization to contain as many as five members. However, a search of nucleotide sequence databases reveals a much greater number of unique sequences corresponding to this subfamily. In order to resolve this discrepancy between hybridization and nucleotide sequencing data, and to better understand the nature of variability among variable genes within a large subfamily, a genomic characterization of the AV1 subfamily in humans was carried out. Total genomic DNA, as well as isolated genomic clones spanning the TCRA region were screened for members of the AV1 subfamily by polymerase chain reaction (PCR) and nucleotide sequencing as well as by hybridization. A total of eight AV1 genes were identified and their nucleotide sequences were determined. Three of the sequences represent new genes. Based on structural features and the results of PCR screening of cDNA, none of these new genes appear to be functional. Several additional previously reported AV1 sequences were determined to represent alleles of AV1 genes, and simple PCR restriction digest assays were established for their detection. Use of each of the identified AV1 genes as hybridization probes failed to reveal any additional hybridizing bands. Thus the AV1genes represent the largest TCRAV subfamily with a maximum of eight members, several of which have common allelic forms. Received: 7 November 1996 / Revised: 5 December 1996  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号