首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Plant DNA methyltransferases   总被引:46,自引:0,他引:46  
DNA methylation is an important modification of DNA that plays a role in genome management and in regulating gene expression during development. Methylation is carried out by DNA methyltransferases which catalyse the transfer of a methyl group to bases within the DNA helix. Plants have at least three classes of cytosine methyltransferase which differ in protein structure and function. The METI family, homologues of the mouse Dnmt1 methyltransferase, most likely function as maintenance methyltransferases, but may also play a role in de novo methylation. The chromomethylases, which are unique to plants, may preferentially methylate DNA in heterochromatin; the remaining class, with similarity to Dnmt3 methyltransferases of mammals, are putative de novo methyltransferases. The various classes of methyltransferase may show differential activity on cytosines in different sequence contexts. Chromomethylases may preferentially methylate cytosines in CpNpG sequences while the Arabidopsis METI methyltransferase shows a preference for cytosines in CpG sequences. Additional proteins, for example DDM1, a member of the SNF2/SWI2 family of chromatin remodelling proteins, are also required for methylation of plant DNA.  相似文献   

2.
3.
4.
The prokaryotic DNA(cytosine-5)methyltransferase M.SssI shares the specificity of eukaryotic DNA methyltransferases (CG) and is an important model and experimental tool in the study of eukaryotic DNA methylation. Previously, M.SssI was shown to be able to catalyze deamination of the target cytosine to uracil if the methyl donor S-adenosyl-methionine (SAM) was missing from the reaction. To test whether this side-activity of the enzyme can be used to distinguish between unmethylated and C5-methylated cytosines in CG dinucleotides, we re-investigated, using a sensitive genetic reversion assay, the cytosine deaminase activity of M.SssI. Confirming previous results we showed that M.SssI can deaminate cytosine to uracil in a slow reaction in the absence of SAM and that the rate of this reaction can be increased by the SAM analogue 5’-amino-5’-deoxyadenosine. We could not detect M.SssI-catalyzed deamination of C5-methylcytosine (m5C). We found conditions where the rate of M.SssI mediated C-to-U deamination was at least 100-fold higher than the rate of m5C-to-T conversion. Although this difference in reactivities suggests that the enzyme could be used to identify C5-methylated cytosines in the epigenetically important CG dinucleotides, the rate of M.SssI mediated cytosine deamination is too low to become an enzymatic alternative to the bisulfite reaction. Amino acid replacements in the presumed SAM binding pocket of M.SssI (F17S and G19D) resulted in greatly reduced methyltransferase activity. The G19D variant showed cytosine deaminase activity in E. coli, at physiological SAM concentrations. Interestingly, the C-to-U deaminase activity was also detectable in an E. coli ung + host proficient in uracil excision repair.  相似文献   

5.
6.
Predictive motifs derived from cytosine methyltransferases.   总被引:87,自引:51,他引:36       下载免费PDF全文
Thirteen bacterial DNA methyltransferases that catalyze the formation of 5-methylcytosine within specific DNA sequences possess related structures. Similar building blocks (motifs), containing invariant positions, can be found in the same order in all thirteen sequences. Five of these blocks are highly conserved while a further five contain weaker similarities. One block, which has the most invariant residues, contains the proline-cysteine dipeptide of the proposed catalytic site. A region in the second half of each sequence is unusually variable both in length and sequence composition. Those methyltransferases that exhibit significant homology in this region share common specificity in DNA recognition. The five highly conserved motifs can be used to discriminate the known 5-methylcytosine forming methyltransferases from all other methyltransferases of known sequence, and from all other identified proteins in the PIR, GenBank and EMBL databases. These five motifs occur in a mammalian methyltransferase responsible for the formation of 5-methylcytosine within CG dinucleotides. By searching the unidentified open reading frames present in the GenBank and EMBL databases, two potential 5-methylcytosine forming methyltransferases have been found.  相似文献   

7.
《Epigenetics》2013,8(3):151-154
Expression of the bacterial CG methyltransferase M?HhaI in mammalian cells appears to generate significant biological effects, while biological effects of the expression of the non-CG methyltransferase M?EcoRII in human cells have not been detected. The association of cytosine methylation with the CG site in mammals is also associated with clustering of CG sites near 5´ control regions (CG-islands) of human genes. Moreover spontaneous deamination of 5-methylcytosine at these sites is thought to lead to the well known deficiency of CG sites in genomes where endogenous CG methyltransferases are expressed. Since these associations are generally taken to imply a biological function for the CG dinucleotide that is associated with its selective methylation by endogenous DNA methylation systems, we have asked whether or not CWG or CCWGG sites are clustered in regions flanking human genes and whether or not an overall deficiency of CWG or CCWGG occurs in the human genome. Using build 36.1, of the human genome, we inspected the regions flanking the 28,501 well known gene loci in the human genome. Our analysis confirmed the expected clustering of CG sites near the 5´ region of known genes and open reading frames. In contrast to the CG site, neither the CWG site nor the CCWGG site recognized by the bacterial methyltransferase M?EcoRII were clustered in any particular region near known genes and open reading frames. Moreover, neither the CCWGG nor the CWG site was depleted in the human genome, again in sharp contrast to the known genomic deficiency of CpG sites. Our findings suggest that in contrast to CG site recognition, human cytosine methyltransferases recognize CWG and CCWGG only at very low frequency if at all.  相似文献   

8.
9.
When human DNA(cytosine-5)methyltransferase was used to methylate a series of snapback oligodeoxy-nucleotides of differing stem lengths, each containing a centrally located CG dinucleotide recognition site, the enzyme required a minimum of 22 base pairs in the stem for maximum activity. Extrahelical cytosines in slipped duplexes that were 30 base pairs in length acted as effective methyl acceptors and were more rapidly methylated than cytosines that were Watson-Crick paired. Duplexes containing hairpins of CCG repeats in cruciform structures in which the enzyme recognition sequence was disrupted by a C.C mispair were also more rapidly methylated than control Watson-Crick-paired duplexes. Since enzymes have higher affinities for their transition states than for their substrates, the results with extrahelical and mispaired cytosines suggest that these structures can be viewed as analogs of the transition state intermediates produced during catalysis by methyltransferases.  相似文献   

10.
A cytosine DNA methyltransferase containing a chromodomain, Zea methyltransferase2 (Zmet2), was cloned from maize. The sequence of ZMET2 is similar to that of the Arabidopsis chromomethylases CMT1 and CMT3, with C-terminal motifs characteristic of eukaryotic and prokaryotic DNA methyltransferases. We used a reverse genetics approach to determine the function of the Zmet2 gene. Plants homozygous for a Mutator transposable element insertion into motif IX had a 13% reduction in methylated cytosines. DNA gel blot analysis of these plants with methylation-sensitive restriction enzymes and bisulfite sequencing of a 180-bp knob sequence showed reduced methylation only at CpNpG sites. No reductions in methylation were observed at CpG or asymmetric sites in heterozygous or homozygous mutant plants. Our research shows that chromomethylase Zmet2 is required for in vivo methylation of CpNpG sequences.  相似文献   

11.
DNMT2 is a subgroup of the eukaryotic cytosine-5 DNA methyltransferase gene family. Unlike the other family members, proteins encoded by DNMT2 genes were not known before to possess DNA methyltransferase activities. Most recently, we have shown that the genome of Drosophila S2 cells stably expressing an exogenous Drosophila dDNMT2 cDNA became anomalously methylated at the 5'-positions of cytosines (Reddy, M. N., Tang, L. Y., Lee, T. L., and Shen, C.-K. J. (2003) Oncogene, in press). We present evidence here that the genomes of transgenic flies overexpressing the dDnmt2 protein also became hypermethylated at specific regions. Furthermore, transient transfection studies in combination with sodium bisulfite sequencing demonstrated that dDnmt2 as well as its mouse ortholog, mDnmt2, are capable of methylating a cotransfected plasmid DNA. These data provide solid evidence that the fly and mouse DNMT2 gene products are genuine cytosine-5 DNA methyltransferases.  相似文献   

12.
The human Dnmt2 has residual DNA-(cytosine-C5) methyltransferase activity   总被引:11,自引:0,他引:11  
The human Dnmt2 protein is one member of a protein family conserved from Schizosaccharomyces pombe and Drosophila melanogaster to Mus musculus and Homo sapiens. It contains all of the amino acid motifs characteristic for DNA-(Cytosine-C5) methyltransferases, and its structure is very similar to prokaryotic DNA methyltransferases. Nevertheless, so far all attempts to detect catalytic activity of this protein have failed. We show here by two independent assay systems that the purified Dnmt2 protein has weak DNA methyltransferase activity. Methylation was observed at CG sites in a loose ttnCGga(g/a) consensus sequence, suggesting that Dnmt2 has a more specialized role than other mammalian DNA methyltransferases.  相似文献   

13.
New DNA sequence polymorphisms were identified at four bovine autosomal loci: growth hormone, low density lipoprotein receptor, alpha-subunit of glycoprotein hormones and thyroglobulin. Assuming independent assortment between these polymorphisms, the probabilities to be heterozygous at these four loci are 0.48, 0.36, 0.10 and 0.77 respectively, within the Belgian Blue Cattle breed (BBCB). Nucleotide diversity was estimated, showing that animals from the BBCB are heterozygous for 1/1450 nucleotides, a value significantly lower than the 1/500 value found in man. Moreover, we have estimated that the mutation rate at the cytosines of CG dinucleotides is about 10 times higher than that for other nucleotides.  相似文献   

14.
《Gene》1998,206(1):63-67
Mouse ES cells with a null mutation of the known DNA methyltransferase retain some residual DNA methylation and can methylate foreign sequences de novo. We have used bisulfite genomic sequencing to examine the sequence specificity and distributions of methylation of a hypermethylated CG island sequence, mouse A-repeats. There were 13 CG dinucleotides in the region examined, 12 of which were methylated to variable extents in all DNAs. We found that: (1) there is considerable residual DNA methylation in ES cells lacking the known DNA methyltransferase (29% of normal methylation in the complete knockout ES DNA); (2) this other activity methylates at exactly the same CG sites as the major methyltransferase; and (3) differences in the distribution of methylated sites between A-repeats in these DNAs are consistent with this other activity methylating in a random de novo fashion. Also, the lack of any methylation in non-CG sites argues that, in other studies where non-CG methylation sites have been found by bisulfite sequencing, detection of such sites of non-CG methylation is not an inherent artifact in this methodology.  相似文献   

15.
16.
Pollen grains of angiosperm plants represent a good model system for studies of chromatin structure and remodelling factors, but very little is known about the DNA methylation status of particular genes in pollen. In this study, we present an analysis of the DNA methylation patterns of the MROS1 gene, which is expressed in the late phases of pollen development in Silene latifolia (syn. Meladrium album). The genomic sequencing technique revealed similar DNA methylation patterns in leaves, binucleate pollen, and trinucleate pollen. Extremely high DNA methylation levels occurred in the CG dinucleotides of the upstream region (99%), whereas only a low level of CG methylation was observed in the transcribed sequence (7%). Low levels of methylation were also observed in asymmetric sequences (in both regions; 2% methylated). The results obtained in the MROS1 gene are discussed in consequence with the immunohistochemical data showing a hypermethylation of DNA in the vegetative nucleus.  相似文献   

17.
Maintaining and acquiring the pluripotent cell state in plants is critical to tissue regeneration and vegetative multiplication. Histone-based epigenetic mechanisms are important for regulating this undifferentiated state. Here we report the use of genetic and pharmacological experimental approaches to show that Arabidopsis cell suspensions and calluses specifically repress some genes as a result of promoter DNA hypermethylation. We found that promoters of the MAPK12, GSTU10 and BXL1 genes become hypermethylated in callus cells and that hypermethylation also affects the TTG1, GSTF5, SUVH8, fimbrin and CCD7 genes in cell suspensions. Promoter hypermethylation in undifferentiated cells was associated with histone hypoacetylation and primarily occurred at CpG sites. Accordingly, we found that the process specifically depends on MET1 and DRM2 methyltransferases, as demonstrated with DNA methyltransferase mutants. Our results suggest that promoter DNA methylation may be another important epigenetic mechanism for the establishment and/or maintenance of the undifferentiated state in plant cells.  相似文献   

18.
Distinct CG and CNG DNA methyltransferases in Pisum sativum   总被引:5,自引:0,他引:5  
DNA methyltransferase activity, present in low salt extracts of nuclei from young pea shoot apices, has been fractionated into two different species by assaying with model substrates. The CG methyltransferase (an unstable enzyme believed to be of 140 kDa) methylates cytosine only in oligonucleotides with CG and CI dinucleotide targets while an enzyme of 110 kDa (the CNG methyltransferase) methylates the cytosines in 5′-CAG-3′ and 5′-CTG-3′ target sequences, especially when hemimethylated, but not in 5′-CCG-3′ nor in 5′-CGG-3′ target sequences present in oligonucleotides.  相似文献   

19.
A plant cytosine methyltransferase cDNA was isolated using degenerate oligonucleotides, based on homology between prokaryote and mouse methyltransferases, and PCR to amplify a short fragment of a methyltransferase gene. A fragment of the predicted size was amplified from genomic DNA from Arabidopsis thaliana. Overlapping cDNA clones, some with homology to the PCR amplified fragment, were identified and sequenced. The assembled nucleic acid sequence is 4720 bp and encodes a protein of 1534 amino acids which has significant homology to prokaryote and mammalian cytosine methyltransferases. Like mammalian methylases, this enzyme has a C terminal methyltransferase domain linked to a second larger domain. The Arabidopsis methylase has eight of the ten conserved sequence motifs found in prokaryote cytosine-5 methyltransferases and shows 50% homology to the murine enzyme in the methyltransferase domain. The amino terminal domain is only 24% homologous to the murine enzyme and lacks the zinc binding region that has been found in methyltransferases from both mouse and man. In contrast to mouse where a single methyltransferase gene has been identified, a small multigene family with homology to the region amplified in PCR has been identified in Arabidopsis thaliana.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号