首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Seed dormancy induction and alleviation in the winter‐flowering, moist temperate woodland species Galanthus nivalis and Narcissus pseudonarcissus are complex and poorly understood. Temperature, light and desiccation were investigated to elucidate their role in the germination ecophysiology of these species. The effect of different seasonal temperatures, seasonal durations, temperature fluctuations, the presence of light during different seasons and intermittent drying (during the summer period) over several ‘years’ on seed germination was investigated with outdoor and laboratory experiments. Warm summer‐like temperatures (20 °C) were necessary for germination at subsequent cooler autumn‐like temperatures (greatest at 15 °C in G. nivalis and 10 °C in N. pseudonarcissus). As the warm temperature duration increased, so did germination at subsequent cooler temperatures; further germination occurred in subsequent ‘years’ at cooler temperatures following a second, and also third, warm period. Germination was significantly greater in darkness, particularly in G. nivalis. Dormancy increased with seed maturation period in G. nivalis, because seeds extracted from green capsules germinated more readily than those from yellow capsules. Desiccation increased dormancy in an increasing proportion of N. pseudonarcissus seeds the later they were dried in ‘summer’. Seed viability was only slightly reduced by desiccation in N. pseudonarcissus, but was poor and variable in G. nivalis. Shoot formation occurred both at the temperature at which germination was greatest and also if 5 °C cooler. In summary, continuous hydration of seeds of both species during warm summer‐like temperatures results in the gradual release of seed dormancy; thereafter, darkness and cooler temperatures promote germination. Cold temperatures, increased seed maturity (G. nivalis) and desiccation (N. pseudonarcissus) increase dormancy, and light inhibits germination. © 2014 The Linnean Society of London, Botanical Journal of the Linnean Society, 2015, 177 , 246–262.  相似文献   

2.
The gastric evacuation rates of burbot Lota lota , fed a single meal of vendace, Coregonus albula , were measured in the laboratory at five temperatures (1·3, 2·6, 4·8, 9·4 and 12·6° C). Gastric evacuation rate increased exponentially with increasing temperatrure, but the results suggest that gastric evacuation rates of burbot at low temperatures are lower than those of other freshwater fish species. Temperature and the ratio of meal weight to burbot weight were the most important factors affecting gastric evacuation rate. There was no significant difference in gastric evacuation rate between three different prey species: vendace, perch Perca fluviatilis , and smelt Osmerus eperlanus .  相似文献   

3.
1. In a combined field and laboratory study, seasonal relationships between water temperature and oxygen content, genetic structure (composition of MultiLocus Genotypes, MLGs) of a Daphnia assemblage (D. galeatahyalina hybrid species complex), and the physiological properties of clones of frequent MLGs were studied. In accordance with the oxygen‐limited thermal tolerance hypothesis, essential physiological variables of oxygen transport and supply were measured within the tolerable temperature range. 2. A few MLGs (types T1–T4) were frequent during early spring and late autumn at surface temperatures below 10 °C. Clones of T1–T4 showed a low tolerance towards higher temperatures (above 20 °C) and a high phenotypic plasticity under thermal acclimation in comparison to clones derived from frequent MLGs from later seasons, and stored high–medium quantities of carbohydrates at 12 and 18 °C. 3. Another MLG (T6) succeeded the MLGs T1–T4. T6 was frequent over most of the year at temperatures above 10 °C and below 20 °C. A clone derived from T6 exhibited a high tolerance towards warm temperatures and a more restricted phenotypic plasticity. It stored high–medium quantities of carbohydrates at 12, 18 and 24 °C and showed a high capacity for acclimatory adjustments based on haemoglobin expression. 4. During the summer period at temperatures ≥20 °C, the MLG T6 was found mainly near to the thermocline, where temperature and oxygen content were distinctly lower, and to a lesser extent in surface water. At the surface, another MLG (T19) was predominant during this period. A clone of this MLG showed a very high tolerance towards warm temperatures, minimal phenotypic plasticity, low carbohydrate stores and a high capacity for circulatory adjustments to improve oxygen transport at higher temperatures. 5. This study provides evidence for connections between the spatio‐temporal genetic heterogeneity of a Daphnia assemblage and the seasonal changes of water temperature and oxygen content. The data also suggest that not only the actual temperature but also the dynamics of temperature change may influence the genetic structure of Daphnia populations and assemblages.  相似文献   

4.
Sphagnum palustre L. is one of the few Sphagnum species distributed in the warm‐temperate zone. To elucidate the mechanisms that enable S. palustre to maintain its productivity under warm climatic conditions, we examined the temperature conditions and photosynthetic characteristics of this species in a lowland wetland in western Japan. Moss temperatures during the daytime were much lower than the air temperature, particularly during summer. The optimum temperature for the net photosynthetic rate was approximately 20°C, irrespective of the season, but summer and autumn samples maintained high rates at higher temperatures as well. The net photosynthetic rate at near light saturation was much higher during summer–autumn than during spring–winter. A model estimation in which net production was calculated from the photosynthetic characteristics and microclimatic data showed that both the low temperature of the moss colony and the seasonal shift in photosynthetic characteristics are among the mechanisms that enable this species to maintain its productivity under warm climatic conditions.  相似文献   

5.
The narwhal (Monodon monoceros) is a high‐Arctic species inhabiting areas that are experiencing increases in sea temperatures, which together with reduction in sea ice are expected to modify the niches of several Arctic marine apex predators. The Scoresby Sound fjord complex in East Greenland is the summer residence for an isolated population of narwhals. The movements of 12 whales instrumented with Fastloc‐GPS transmitters were studied during summer in Scoresby Sound and at their offshore winter ground in 2017–2019. An additional four narwhals provided detailed hydrographic profiles on both summer and winter grounds. Data on diving of the whales were obtained from 20 satellite‐linked time‐depth recorders and 16 Acousonde? recorders that also provided information on the temperature and depth of buzzes. In summer, the foraging whales targeted depths between 300 and 850 m where the preferred areas visited by the whales had temperatures ranging between 0.6 and 1.5°C (mean = 1.1°C, SD = 0.22). The highest probability of buzzing activity during summer was at a temperature of 0.7°C and at depths > 300 m. The whales targeted similar depths at their offshore winter ground where the temperature was slightly higher (range: 0.7–1.7°C, mean = 1.3°C, SD = 0.29). Both the probability of buzzing events and the spatial distribution of the whales in both seasons demonstrated a preferential selection of cold water. This was particularly pronounced in winter where cold coastal water was selected and warm Atlantic water farther offshore was avoided. It is unknown if the small temperature niche of whales while feeding is because prey is concentrated at these temperature gradients and is easier to capture at low temperatures, or because there are limitations in the thermoregulation of the whales. In any case, the small niche requirements together with their strong site fidelity emphasize the sensitivity of narwhals to changes in the thermal characteristics of their habitats.  相似文献   

6.
The juveniles of Senegal sole, Solea senegalensis, Kaup 1858, and common sole, Solea solea (Linnaeus 1758) concentrate in estuarine and coastal nurseries of widely differing temperatures and salinities. Yet, little is known about the effect of these physiologically important variables on the gastric evacuation rates of these species. Gastric evacuation experiments were performed on juveniles of S. senegalensis and S. solea. Three temperatures were tested, 26, 20 and 14°C at a salinity of 35‰. A low salinity experiment was also carried out at 15‰, at 26°C. Experimental conditions intended to reflect conditions in estuarine and coastal nurseries where juveniles of these species spend their first years of life. The relation between stomach contents and time was best described by exponential regression models for both species. An analysis of covariance (ancova ) was performed in order to test differences in evacuation rate due to temperature and salinity (slope of evacuation time against stomach contents) for each species. While increasing temperature increased evacuation rates in both species (although not at 26°C in S. solea), the effect of low salinity differed among species, leading to a decrease in gastric evacuation rate in that of S. senegalensis and an increase in S. solea. Differences in gastric evacuation rate between species were related to its metabolic optimums and to its distribution in the nursery area where fish were captured. Implications for the habitat use of estuarine and coastal nurseries are discussed.  相似文献   

7.
8.
The effect of water temperature on growth responses of three common seagrass fish species that co‐occur as juveniles in the estuaries in Sydney (34° S) but have differing latitudinal ranges was measured: Pelates sexlineatus (subtropical to warm temperate: 27–35° S), Centropogon australis (primarily subtropical to warm temperate: 24–37° S) and Acanthaluteres spilomelanurus (warm to cool temperate: below 32° S). Replicate individuals of each species were acclimated over a 7 day period in one of three temperature treatments (control: 22° C, low: 18° C and high: 26° C) and their somatic growth was assessed within treatments over 10 days. Growth of all three species was affected by water temperature, with the highest growth of both northern species (P. sexlineatus and C. australis) at 22 and 26° C, whereas growth of the southern ranging species (A. spilomelanurus) was reduced at temperatures higher than 18° C, suggesting that predicted increase in estuarine water temperatures through climate change may change relative performance of seagrass fish assemblages.  相似文献   

9.
Shallow marine calcifiers play an important role as marine ecosystem engineers and in the global carbon cycle. Understanding their response to warming is essential to evaluate the fate of marine ecosystems under global change scenarios. A rare opportunity to test the effect of warming acting on natural ecosystems is by investigation of heat‐polluted areas. Here, we study growth and calcification in benthic foraminifera that inhabit a thermally polluted coastal area in Israel, where they are exposed to elevated temperatures reaching up to ~42°C in summer. Live specimens of two known heat‐tolerant species Lachlanella sp. 1 and Pararotalia calcariformata were collected over a period of 1 year from two stations, representing thermally polluted and undisturbed (control) shallow hard bottom habitats. Single‐chamber element ratios of these specimens were obtained using laser ablation, and the Mg/Ca of the most recently grown final chambers were used to calculate their calcification temperatures. Our results provide the first direct field evidence that these foraminifera species not only persist at extreme warm temperatures but continue to calcify and grow. Species‐specific Mg/Ca thermometry indicates that P. calcariformata precipitate their shells at temperatures as high as 40°C and Lachlanella sp. 1 at least up to 36°C, but both species show a threshold for calcification at cold temperatures: calcification in P. calcariformata only occurred above 22°C and in Lachlanella sp. 1 above 15°C. Our observations from the heat‐polluted area indicate that under future warming scenarios, calcification in heat‐tolerant foraminifera species will not be inhibited during summer, but instead the temperature window for their calcification will be expanded throughout much of the year. The observed inhibition of calcification at low temperatures indicates that the role of heat‐tolerant foraminifera in carbonate production will most likely increase in future decades.  相似文献   

10.
Predicted elevated temperatures and a shift from a winter to summer rainfall pattern associated with global warming could result in the exposure of hydrated lichens during summer to more numerous temperature extremes that exceed their thermal thresholds. This hypothesis was tested by measuring lethal temperature thresholds under laboratory and natural conditions for four epilithic lichen species (Xanthoparmelia austro‐africana, X. hyporhytida, Xanthoparmelia sp., Xanthomaculina hottentotta) occurring on quartz gravel substrates at a hot arid inland site two epigeous lichen species (Teloschistes capensis, Ramalina sp.) occurring on gypsum‐rich topsoil at a warm humid coastal site. Extrapolated lethal temperatures for photosynthetic quantum yield under laboratory conditions were up to 4°C higher for lichens from a dry inland site than those from a humid coastal site. Lethal temperatures extrapolated for photosynthetic quantum yield at a saturating photosynthetic photon flux density of ≥11,000 μmol photons m?2 s?1 under natural conditions were up to 6°C higher for lichens from the dry inland site than the more humid coastal site. It is concluded that only under atypical conditions of lichen exposure in a hydrated state to temperature extremes at high midday solar irradiances during summer could lethal photosynthetic thresholds in sensitive lichen species be potentially exceeded, but whether the increased frequency of such conditions with climate warming would lead to increased likelihood of lichen mortality is debatable.  相似文献   

11.
Interactions between Lipophrys pholis and its amphipod prey Echinogammarus marinus were used to investigate the effect of changing water temperatures, comparing current and predicted mean summer temperatures. Contrary to expectations, predator attack rates significantly decreased with increasing temperature. Handling times were significantly longer at 19° C than at 17 and 15° C and the maximum feeding estimate was significantly lower at 19° C than at 17° C. Functional‐response type changed from a destabilizing type II to the more stabilizing type III with a temperature increase to 19° C. This suggests that a temperature increase can mediate refuge for prey at low densities. Predatory pressure by teleosts may be dampened by a large increase in temperature (here from 15 to 19° C), but a short‐term and smaller temperature increase (to 17° C) may increase destabilizing resource consumption due to high maximum feeding rates; this has implications for the stability of important intertidal ecosystems during warming events.  相似文献   

12.
The bug Andrallus spinidens (F.) (Heteroptera: Pentatomidae) is a polyphagous predator of insect larvae, which is distributed in tropical and warm temperate zones worldwide. Seasonal occurrence and diapause induction of this bug were studied in a population in Miyazaki, southern Kyushu, Japan. The field research showed that A. spinidens produces three or four generations a year and is most abundant from mid‐summer to autumn. Reproductive activity of field‐collected adults decreased from late summer to autumn, indicating that this bug enters adult diapause in autumn. Only adults were found in early spring and these were reproductive. Laboratory experiments showed that, irrespective of photoperiod, adult diapause is induced at lower temperatures (≤22.5°C), whereas it is avoided at higher temperatures (≥25°C). Ambient temperature falls across the critical range from late summer to autumn. Thus, the bug clearly overwinters in adult diapause induced by low temperatures and this diapause is terminated during the course of winter.  相似文献   

13.
The impact of abiotic factors on kelp sporophyte reproduction has rarely been investigated. Laminaria digitata (Hudson) J.V. Lamouroux is one of the few summer fertile Laminaria species worldwide and reproduction is subjected to relatively high water temperatures. We investigated the impact of prevailing summer temperatures (~18°C in August) on the induction of sporangia, meiospore release, and germination at the island of Helgoland (North Sea). At Helgoland, fertile sporophytes are found between April and December with a maximum in late summer. While released meiospore numbers were constant between June and October, germination rates decreased significantly in summer. Short‐term exposure of mature sori to 17°C–22°C induced a significantly higher meiospore release indicating enhancement of sporulation by elevated temperatures. Induction of sporangia on vegetative blade disks was not possible at 20°C, and fertility was only 20% at 18°C–19°C, but it was 100% in cool temperatures of 1°C–10°C. It was shown for the first time in a kelp species that “sporogenesis” is the life‐cycle process with the narrowest temperature window compared to growth or survival of the sporophyte or reproduction, growth, and survival of the gametophyte. We incorporated several parameters (induction time, fertile area, and relative fertility) into a “Reproductive efficiency index.” This indicates that sporogenesis of L. digitata is a cold‐adapted process with an optimum at (5)–10°C. The results show that the population at Helgoland is at its reproduction limit despite the existence of other geographically more southerly located populations.  相似文献   

14.
Knowledge of the energy saving night temperature (i.e. a relatively cool night temperature without affecting photosynthetic activity and physiology) and a better understanding of low night temperature effects on the photosynthetic physiology of Phalaenopsis would improve their production in terms of greenhouse temperature control and energy use. Therefore, Phalaenopsis‘Hercules’ was subjected to day temperatures of 27.5°C and night temperatures of 27.0°C, 24.2°C, 21.2°C, 18.3°C, 15.3°C or 12.3°C in a growth chamber. A new tool for the determination of the energy saving night temperature range was developed based on temperature response curves of leaf net CO2 exchange, chlorophyll fluorescence, organic acid content and carbohydrate concentrations. The newly developed method was validated during a complete vegetative cultivation in a greenhouse environment with eight Phalaenopsis hybrids (i.e. ‘Boston’, ‘Bristol’, ‘Chalk Dust', ‘Fire Fly’, ‘Lennestadt’, ‘Liverpool’, ‘Precious’, ‘Vivaldi’) and day/night temperature set points of 28/28°C, 29/23°C and 29/17°C. Temperature response curves revealed an overall energy saving night temperature range for nocturnal CO2 uptake, carbohydrate metabolism, organic acid accumulation and photosystem II (PSII) photochemistry of 17.1°C to 19.9°C for Phalaenopsis‘Hercules’. At the lower end of this energy saving night temperature range, a high malate‐to‐citrate ratio switched towards a low ratio and this transition seemed to alleviate effects of night chilling induced photoinhibition. At night temperatures of 24°C or higher, the degradation of starch, glucose and fructose indicated an increased respiratory CO2 production. During the greenhouse validation experiment, the differences between the eight Phalaenopsis hybrids with regard to their response to the warm day/cool night temperature regimes were remarkably large. In general, the day/night temperature of 29/17°C led to a significantly lower biomass accumulation and less leaves which were in addition shorter, narrower and smaller in size as compared to the day/night temperature regimes of 28/28°C and 29/23°C. During week 25 of the cultivation period, plants matured and flower initiation steeply increased for all hybrids and in each day/night temperature regime. Before week 25, early spiking was only sufficiently suppressed in the 29/23°C and 29/17°C temperature regimes for three hybrids (‘Boston’, ‘Bristol’ and ‘Lennestadt’) but not in the other five hybrids. Although a considerable biochemical flexibility was demonstrated for Phalaenopsis‘Hercules’, inhibition of flowering after exposure to a combination of warm days and cool nights appeared to be largely hybrid dependent.  相似文献   

15.
Aim Western mosquitofish (Gambusia affinis) have been linked with the decline of native fish and amphibians throughout the world. Separation along the temperature niche axis may promote the long‐term coexistence of introduced western mosquitofish, with native species in temperate regions. Recent research has shown that western mosquitofish can reduce the recruitment of native least chub (Iothichthys phlegethontis) endemic to the Bonneville Basin. We tested the hypotheses that cold temperatures (≤ 15 °C in the summer, freezing winters) would: (1) reduce the aggressive and predatory effects of western mosquitofish on least chub, and (2) eliminate the overwinter survival and recruitment of western mosquitofish while having little effect on least chub recruitment. Location Bonneville Basin of Utah, USA. Methods We used short‐term tests in the laboratory at the level of individuals and manipulated temperature (warm, cold and seasonal treatments) in long‐term experiments using mesocosms at the population level. Results Cold temperatures (≤ 15 °C) reduced the aggression and predation of western mosquitofish on least chub at the level of individuals. At the population level, however, cool summers (≤ 15 °C) eliminated recruitment in both species because they required warm summers (c. 20–30 °C) to survive freezing winters. Although least chub had an overwinter advantage in survival (75% least chub, 45% western mosquitofish), it was overwhelmed by the rapid reproduction of western mosquitofish as temperatures increased in the summer. Main conclusions Studies at the level of populations are necessary to understand the ultimate effects of introduced species on native taxa. Separation along the temperature niche axis was not sufficient to promote coexistence between these species in habitats with warm summers (c. 30 °C). Although coexistence may be possible in habitats with cool summers (≤ 20 °C) and freezing winters, the ability of niche separation to promote long‐term coexistence between native and introduced species may ultimately depend on their respective rates of evolution. Long‐term coexistence may not be possible if introduced species can adapt to new environmental conditions faster than native species can evolve mechanisms to reduce their harmful effects.  相似文献   

16.
17.
1. The response of major food‐web constituents to combinations of nutrient addition and zooplanktivorous fish abundance was tested during two subsequent years in the shallow charophyte‐dominated lake Naardermeer in the Netherlands, using in situ enclosures. 2. Treatment effects differed sharply between study years. In 1998, when the summer temperature was low (17–21 °C), high algal biomass only developed at high nutrient levels in the presence of fish, but with no major effect on Chara biomass. In 1999, when the summer temperature was relatively high (20–25 °C), algal blooms occurred at high nutrient levels regardless of fish abundance, and were associated with a drastic decline in Chara biomass. 3. Differences between years in temperature and initial zooplankton composition and biomass were likely to contribute to the varying relative importance of top‐down and bottom‐up effects in these enclosure experiments. 4. The results suggest that when nutrient loads are increased towards levels where the macrophyte‐dominated state is being destabilised, a ‘switch’ is more likely to occur in warm summers.  相似文献   

18.
Diapausing larvae of Eurytoma amygdali Enderlein (Hymenoptera, Eurytomidae) were collected in early August and late September. They were subjected to various photoperiod and temperature regimens for up to 20 weeks, then kept at L16:D8 and 19 °C for another 14 to 26 weeks for diapause to be terminated and pupation to take place. Photoperiod did not affect diapause completion. It was confirmed that the two morphologically distinct diapause stages have different temperature requirements for their completion. The first diapause stage was completed synchronously at temperatures between 16 and 19 °C. A higher temperature of 26 °C delayed diapause development. The second stage required lower temperatures between 4 and 10 °C. Spontaneous termination of diapause was observed at constant 19 °C. When applied to the first diapause stage for 20 weeks, low temperatures made the larvae refractory to subsequent intermediate temperatures. The first stage was thus maintained until a higher temperature of 26 °C made the larvae regain their ability to respond to the intermediate temperatures and complete this stage. Larvae grown in Retsou almonds had a higher diapause intensity than larvae grown in Truoito almonds. The results suggest that, in nature, the high temperatures of late summer and early autumn are likely to maintain the first diapause stage. Subsequently, the less warm temperatures of autumn allow the completion of the first stage by late autumn, and the low temperatures of late autumn and of winter allow the completion of the second diapause stage by mid winter.  相似文献   

19.
C4 plants are rare in the cool climates characteristic of high latitudes and altitudes, perhaps because of an enhanced susceptibility to photo‐inhibition at low temperatures relative to C3 species. In the present study we tested the hypothesis that low‐temperature photo‐inhibition is more detrimental to carbon gain in the C4 grass Muhlenbergia glomerata than the C3 species Calamogrostis Canadensis. These grasses occur together in boreal fens in northern Canada. Plants were grown under cool (14/10 °C day/night) and warm (26/22 °C) temperatures before measurement of the light responses of photosynthesis and chlorophyll fluorescence at different temperatures. Cool growth temperatures led to reduced rates of photosynthesis in M. glomerata at all measurement temperatures, but had a smaller effect on the C3 species. In both species the amount of xanthophyll cycle pigments increased when plants were grown at 14/10 °C, and in M. glomerata the xanthophyll epoxidation state was greatly reduced. The detrimental effect of low growth temperature on photosynthesis in M. glomerata was almost completely reversed by a 24‐h exposure to the warm‐temperature regime. These data indicate that reversible dynamic photo‐inhibition is a strategy by which C4 species may tolerate cool climates and overcome the Rubisco limitation that is prevalent at low temperatures in C4 plants.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号