首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 773 毫秒
1.

Background  

Due to the variation and mutation of the races of Pseudoperonospora cubensis, downy mildew has in recent years become the most devastating leaf disease of cucumber worldwide. Novel resistance to downy mildew has been identified in the wild Cucumis species, C. hystrix Chakr. After the successful hybridization between C. hystrix and cultivated cucumber (C. sativus L.), an introgression line (IL5211S) was identified as highly resistant to downy mildew. Nucleotide-binding site and leucine-rich repeat (NBS-LRR) genes are the largest class of disease resistance genes cloned from plant with highly conserved domains, which can be used to facilitate the isolation of candidate genes associated with downy mildew resistance in IL5211S.  相似文献   

2.
Downy mildew, caused by the Oomycete pathogen Pseudoperonospora cubensis, is one of the most destructive diseases of cucumber (Cucumis sativus L.) and muskmelon (C. melo L.). Although the process of pathogenesis is well understood, there are few disease control options available. The development and deployment of resistant cultivars is generally considered to be the best approach to control downy mildew. The recently completed sequencing of the cucumber genome provides a great opportunity for reliable and thorough study of the sequence and function of resistance genes in the Cucurbitaceae, which will help us to understand the resistance mechanisms and metabolic pathways activated by these genes. It can be anticipated that, in the near future, we will have more information about the genetic bases of resistance to downy mildew in Cucumis, which will facilitate efforts to breed for resistance to this pathogen.  相似文献   

3.
Pseudoperonospora cubensis, the causal agent of cucurbit downy mildew (CDM), is known to exhibit host specialization. The virulence of different isolates of the pathogen can be classified into pathotypes based on their compatibility with a differential set composed of specific cucurbit host types. However, the genetic basis of host specialization within P. cubensis is not yet known. Total genomic DNA extracted from nine isolates of P. cubensis collected from 2008 to 2013 from diverse cucurbit host types (Cucumis sativus, C. melo var. reticulatus, Cucurbita maxima, C. moschata, C. pepo, and Citrullus lanatus) in the United States were subjected to whole‐genome sequencing. Comparative analysis of these nine genomes confirmed the presence of two distinct evolutionary lineages (lineages I and II) of P. cubensis. Many fixed polymorphisms separated lineage I comprising isolates from Cucurbita pepo, C. moschata, and Citrullus lanatus from lineage II comprising isolates from Cucumis spp. and Cucurbita maxima. Phenotypic characterization showed that lineage II isolates were of the A1 mating type and belonged to pathotypes 1 and 3 that were not known to be present in the United States prior to the resurgence of CDM in 2004. The association of lineage II isolates with the new pathotypes and a lack of genetic diversity among these isolates suggest that lineage II of P. cubensis is associated with the resurgence of CDM on cucumber in the United States.  相似文献   

4.
Downy mildew (DM), caused by Pseudoperonospora cubensis (Berk. & M.A. Curtis) Rostovzev, is a worldwide major disease of cucumbers (Cucumis sativus L.). By screening 10 introgression lines (ILs) derived from interspecific hybridization between cucumber and the wild Cucumis, C. hystrix, through a whole plant assay, one introgression line (IL52) was identified with high DM‐resistance. IL52 was further used as a resistant parent to make an F2 population with ‘changchunmici’ (susceptible parent). The F2 population (300 plants) was investigated for DM‐yellowing, DM‐necrosis and DM‐resistance in the adult stage. A genetic map spanning 642.5 cM with 104 markers was constructed and used for QTL analysis from the population. Three QTL regions were identified on chromosome 5 and chromosome 6. By interval mapping analysis, two QTLs for DM‐resistance were determined on chromosome 5 (DM_5.1 and DM_5.2), which explained 17.9% and 14.2% of the variation, respectively. QTLs for DM‐yellowing were in the same regions as DM‐resistance. For DM‐necrosis, by interval mapping analysis, one QTL was determined on chromosome 5 (Necr_5.1) that explained 18.3% of the variation and one on chromosome 6 (Necr_6.1) that explained 13.9% of the variation. Our results indicated that the identification of molecular markers linked to the QTLs could be further applied for marker‐assisted selection (MAS) of downy mildew resistance in cucumber.  相似文献   

5.
Nowadays, artificial intelligence solutions such as digital image processing and artificial neural networks (ANN) have become important applicable techniques in phytomonitoring and plant health detection systems. In this research, an autonomous device was designed and developed for detecting two types of fungi (Pseudoperonospora cubensis, Sphaerotheca fuliginea) that infect the cucumber (Cucumis sativus L.) plant leaves. This device was able to recognise the fungal diseases of plants by detecting their symptoms on plant leaves (downy mildew and powdery mildew). For leaves of cucumber inoculated with different spores of the fungi, it was possible to estimate the amount of hour post inoculation (HPI) by extracting leaves’ image parameters. Device included a dark chamber, a CCD digital camera, a thermal camera, a light dependent resistor lightening module and a personal computer. The proposed programme for precise disease detection was based on an image processing algorithm and ANN. Three textural features and two thermal parameters from the obtained images were measured and normalised. Performance of ANN model was tested successfully for disease recognition and detecting HPI in images using back-propagation supervised learning method and inspection data. Such this machine vision system can be used in robotic intelligent systems to achieve a modern farmer’s assistant in agricultural crop fields.  相似文献   

6.
7.
The objective of the present paper was to investigate the reason of increased tolerance to the pathogenic fungus Pseudoperonospora cubensis found in transgenic cucumber (Cucumis sativus L.) lines 210 and 212 bearing 35S:cDNA preprothaumatin II gene construct. The tolerance investigation was accomplished by comparing the morphological and anatomical structure of plant leaves. The results obtained demonstrate that leaves of both lines exhibited some anatomical and morphological characteristics (e.g. wax load and composition, cuticle ultrastructure, ultrastructure of secondary wall, arrangement of mesophylll cells) which may be responsible for enhanced tolerance.  相似文献   

8.
在黄瓜生产中,由古巴假霜霉菌(Pseudoperonospora cubensis)引起的霜霉病危害严重,影响叶、茎和花序生长发育,导致黄瓜产量及品质降低。通过对黄瓜霜霉病的病原菌检测和防御途径、影响及调控因素、抗病原菌候选基因发掘、蛋白质组和基因组分析、黄瓜霜霉病QTL连锁标记开发及其抗病育种等多方面的最新进展进行综述,以期为今后进一步揭示黄瓜乃至农作物对霜霉病的抗性机制研究提供借鉴和参考。  相似文献   

9.
Oomycetes are one type of the most highly destructive of the diseases that cause damage to some important crop plants, such as potato late blight, cucumber downy mildew, and grape downy mildew. As main approach of the ongoing search for new botanical fungicide from plant, the secondary metabolites of Daspersa were investigated. Through efficient bioassay‐guided isolation, two new ( 1 and 2 ) and 12 known compounds ( 3  –  14 ) were isolated, and their structures were determined via extensive NMR, HR‐ESI‐MS, and IR. They were isolated from this genus for the first time except for compounds 11 and 12 . The biological properties of 1  –  14 were evaluated against Pseudoperonospora cubensis and Phytophthora infestans. Compounds 1  –  8 showed potent antifungal activity in vitro. Additionally, compound 3 has preferable control effect on cucumber downy mildew, showing dual effect of protection and treatment in vivo.  相似文献   

10.
11.
The effect of potassium phosphite (KPhi) on the photosynthetic parameters of cucumber plants inoculated with Pseudoperonospora cubensis was investigated in the present study. Cucumber plants were treated with KPhi before or after inoculation with P. cubensis and leaf samples were collected at different time courses for assessments. Results showed that in pathogen-inoculated plants Fv/Fm was decreased up to 3%. The rate of quantum photosynthetic was also decreased significantly in inoculated plants. Downy mildew led to a decrease in chlorophyll amount which in turn reduced the efficiency of photosystem II. In the KPhi-treated leaves, chlorophyll a and b decreased by 72% and 68%, respectively. Remarkable reduction in the efficiency of photosystem II as well as increased lipid membrane disruption, led to increased lipid peroxidation rate of the membranes up to 52%. The results of this study indicate the mitigating role of potassium phosphite in reducing the adverse effects of pathogen and maintaining the photosynthetic apparatus efficiency in cucumber plants.  相似文献   

12.
Cucurbits are tremendous economically important vegetable crops and extensively cultivated in tropical and subtropical part of the world during both rainy and winter seasons. Biotic stresses are of paramount importance in causing economic losses in cucurbits. Downy mildew, a foliar disease caused by an Oomycetes, Pseudoperonospora cubensis (Berk. & Curt.) Rostow, is one of the most destructive pathogens of cucurbits especially in wet and temperate regions, with worldwide distribution. Isolates of pointed gourd and ivy gourd showed no symptoms with most of the cucurbits hosts except pointed gourd and ivy gourd. P. cubensis isolate of pointed gourd differed from other isolates and may belong to different pathotype. The results of this investigation suggest that high variability of P. cubensis in terms of different pathotypes exists in the Gangetic Alluvial Region of West Bengal. Based on morphological characterisation, nine isolates of P. cubensis are grouped into four clusters by using hierarchical cluster analysis.  相似文献   

13.
Pseudoperonospora cubensis, an obligate biotrophic oomycete causing devastating foliar disease in species of the Cucurbitaceae family, was never reported in seeds or transmitted by seeds. We now show that P. cubensis occurs in fruits and seeds of downy mildew-infected plants but not in fruits or seeds of healthy plants. About 6.7% of the fruits collected during 2012–2014 have developed downy mildew when homogenized and inoculated onto detached leaves and 0.9% of the seeds collected developed downy mildew when grown to the seedling stage. This is the first report showing that P. cubensis has become seed-transmitted in cucurbits. Species-specific PCR assays showed that P. cubensis occurs in ovaries, fruit seed cavity and seed embryos of cucurbits. We propose that international trade of fruits or seeds of cucurbits might be associated with the recent global change in the population structure of P. cubensis.  相似文献   

14.
Potassium phosphite (KPhi) is widely used as a resistance inducer to protect plants against fungal pathogens. In the present study, the effect of KPhi on the activation of defence-related enzymes and biochemicals in Pseudoperonospora cubensis-challenged cucumber plants was investigated. Cucumber plants were treated with KPhi before or after inoculation with P. cubensis and leaf samples were collected at different time courses for physiological and biochemical assessments. Results revealed that the activity of reactive oxygen species (ROS)-scavenging enzymes like catalase, guaiacol peroxidase, superoxide dismutase and ascorbate peroxidase as well as proline and total carbohydrates contents were significantly increased by KPhi application, while hydrogen peroxide (H2O2) concentration, as a disease damage indicator was reduced. The maximum activity of ROS-scavenging system was achieved 3–4 days after KPhi application. These findings suggest that KPhi application prior to pathogen infection efficiently triggers plant defence responses which may reduce the disease severity.  相似文献   

15.
通过草酸及其与不同抑制剂亚甲基蓝、EGTA、氯丙嗪和Li+组合处理黄瓜叶片,研究了草酸与抑制剂不同处理组合方式对黄瓜叶片POD活性和叶片病情指数的影响,探讨NO、钙信使系统在草酸诱导叶片抗霜霉病中的作用.结果显示,10~70mmol/L草酸均能不同程度诱导黄瓜叶片POD活性的升高,提高叶片对黄瓜霜霉病的抗病性,降低叶片病情指数,并以30mmol/L效果最好.4种抑制剂分别与30mmol/L草酸同时或先于草酸处理,或草酸处理后一定时间再用抑制剂处理,均明显抑制黄瓜叶片POD活性的升高及病情指数的降低.研究表明,NO、Ca2+、钙调素(CaM)和磷酸肌醇均可能参与了草酸诱导黄瓜霜霉病抗性的信号转导过程.  相似文献   

16.
Development and characterization of microsatellite markers in Cucumis   总被引:21,自引:0,他引:21  
This study provides a set of useful SSR markers and describes their development, characterization and application for diversity studies.Sixty one Cucumis SSR markers were developed, most of them (46) from melon (Cucumis melo L.) genomic libraries. Forty of the markers (30 melon and 10 cucumber SSRs) were evaluated for length polymorphism in a sample of 13 melon genotypes and 11 cucumber (Cucumis sativus L.) genotypes. PCR-amplification revealed up to six size alleles among the melon genotypes and up to five alleles among the cucumber genotypes, with mean gene-diversity values of 0.52 and 0.28 for melon and cucumber, respectively. These differences are in accordance with the known narrower genetic background of the cucumber. SSR data were applied to phylogenetic analysis among the melon and cucumber genotypes. A clear distinction between the ’exotic’ groups and the sweet cultivated groups was demonstrated in melon. In cucumber, separation between the two sub-species, C.sativus var. sativus and C.sativus var. hardwickii,was obtained. Conservation of SSR loci between melon and cucumber was proven by sequence comparisons. Received: 17 April 2000 / Accepted: 16 May 2000  相似文献   

17.
In the period 1996–2001 the natural occurrence of Bremia lactucae (lettuce downy mildew) on Asteraceae plants was studied in the Czech Republic. Lactuca serriola (prickly lettuce) is the most common naturally growing host species of B. lactucae. Infection of plants was recorded during the whole vegetation season with the first occurrence in April and last in November. Bremia lactucae was found on host plants in all developmental stages. High percentages of naturally infected populations of L. serriola were recorded. Host plants exhibited broad variation in phenotypic expression of disease symptoms and degree of infection, however, the intensity of infection was rather low in the majority of populations. Geographic distribution of B. lactucae was studied in the two main parts of Czech Republic, central and southern Moravia, and eastern, northern and central Bohemia. Bremia lactucae was recorded in all these areas. Nevertheless, in the warmest parts of the Czech Republic (southern Moravia) only sporadic occurrence of the pathogen was recorded. Bremia lactucae infection on L. serriola and disease severity was judged also in relation to the type of habitat, and the size and density of host plant populations. However, no substantial differences among various habitats were found; only host plants growing in urban areas were frequently free of infection and the degree of infection was very low. Nevertheless, these plants were commonly infected with powdery mildew (Golovinomyces cichoracearum), which is most aggressive pathogen of this type of habitat.  相似文献   

18.
Cucurbit downy mildew, caused by Pseudoperonospora cubensis, is among the most devastating diseases of cucurbitaceous plants. In spite of improved cultural practices and breeding for resistant cultivars, chemical control is still a very important tool to manage the disease. During the last several decades, many fungicides from various chemical classes have been developed. The occurrence of strains of P. cubensis resistant/tolerant to some fungicides encouraged research of this phenomenon. The first part of this article summarises the many different methodological approaches such as field trials, in vitro testing on active plant tissues or molecular diagnoses developed for the detection of resistant/tolerant strains of P. cubensis, as well as methods to collect and maintain pathogen isolates. The second part outlines the commonly used fungicides to control P. cubensis and their features like systemicity, biological and biochemical mode of action and translocation behaviour within plants. The last part deals with geographical aspects such as first appearance of resistance problems, distribution of resistance, temporal development of resistance under selection pressure by a fungicide, fitness of resistant subpopulations in competition with sensitive ones in the absence of a fungicide, as well as genetic and molecular sources of resistance.  相似文献   

19.
During the growing seasons between the years 2001 and 2004, 98 isolates of Pseudoperonospora cubensis from nine regions of Czech Republic were collected and screened for tolerance/resistance to the three frequently used fungicides (propamocarb, fosetyl‐Al, metalaxyl). Fungicides were tested in five different concentrations, using a floating disc bioassay. Fungicide effectiveness varied considerably. Propamocarb appeared most effective and all the isolates collected in the years 2001–2003 were found sensitive to all tested concentrations [607–9712 μg active ingredient (a.i.)/ml]. In 2004, some strains with increased resistance to propamocarb were detected. These strains were characterized by tolerance at the lowest concentrations (607 μg a.i./ml, eventually on 1214 μg a.i./ml); however, they were controlled by 2428 μg a.i./ml. Fosetyl‐Al was effective at the recommended concentration of 1600 μg a.i./ml against all isolates. However, the occurrence of isolates (collected in 2001) which sporulated at low concentrations (400 and 800 μg a.i./ml) indicated that the selection for tolerance occurs in the pathogen population. Nevertheless, this phenomenon was not confirmed with the P. cubensis isolates collected between the years 2002 and 2004. Metalaxyl was found ineffective, because 97% of the isolates showed the resistance to the recommended concentration (200 μg a.i./ml), and the other 3% of isolates expressed tolerant response. The majority of the isolates showed profuse and/or limited sporulation at higher concentrations (400 and 800 μg a.i./ml). A substantial shift to highly metalaxyl resistant strains was evident in the Czech P. cubensis populations during 2001–2004.  相似文献   

20.
Three cucumber (Cucumis sativus L.) cultivars were exposed to a daily dose of 11.6 kJ m-2biologically effective ultraviolet-B (UV-BBe) radiation in an unshaded greenhouse before and/ or after infection by Colletotrichum lagenarium (Pass.) Ell. and Halst. or Cladosporium cucumerinum Ell. and Arth. and analyzed for disease development. Two of these cultivars, Poinsette and Calypso Hybrid, were disease resistant, while the third cultivar, Straight-8, was disease susceptible. Preinfectional treatment of 1 to 7 days with UV-BBE in Straight-8 led to greater severity of both diseases. Postinfectional UV treatment did not lead to increased disease severity caused by C. lagenarium, while preinfectional UV treatment in both Straight-8 and Poinsette substantially increased disease severity. Although resistant cultivars Poinsette and Calypso Hybrid showed increased anthracnose disease severity when exposed to UV-B, this effect was apparent only on the cotyledons. Both higher spore concentration and exposure to UV-B radiation resulted in greater disease severity. Of the cucumber cultivars tested for UV-B sensitivity, growth in Poinsette was most sensitive and Calypso Hybrid was least sensitive. These preliminary results indicate that the effects of UV-B radiation on disease development in cucumber vary depending on cultivar, timing and duration of UV-B exposure, inoculation level, and plant age.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号