首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ability of plant lectins to modify the interactions of the insulin receptor (IR) and insulin-like growth factor (IGF) receptors (IGFRs) with their ligands was investigated. The lectins profoundly affected the competition-binding curves for (125)I-labelled IGF-I and insulin, causing an increase in the affinity of placental IGF1R and IR towards their ligands. This increment was of such a magnitude that it could affect the receptors' specificity towards these ligands. The lower the ligand concentration, the greater was the lectin-induced affinity shift, which suggests potential physiological significance of the effect. The affinity modulation occurred in a lectin-specific and dose-dependent manner. In contrast to IGF1R and IR, the binding of (125)I-labelled IGF-II to its receptors resisted lectin modulation. Here we provide evidence of the possibility of external modulation of the affinity of placental IGF1R and IR via interactions of the receptors' carbohydrate moieties with lectins. The existence of modulators that would selectively inhibit or enhance the binding of IGFs or insulin to their corresponding receptors may have important implications for placental cell responses to these molecules.  相似文献   

2.
To investigate the interaction of the insulin-like growth factor (IGF) ligands with the insulin-like growth factor type 1 receptor (IGF-1R), we have generated two soluble variants of the IGF-1R. We have recombinantly expressed the ectodomain of IGF-1R or fused this domain to the constant domain from the Fc fragment of mouse immunoglobulin. The ligand binding properties of these soluble IGF-1Rs for IGF-I and IGF-II were investigated using conventional ligand competition assays and BIAcore biosensor technology. In ligand competition assays, the soluble IGF-1Rs both bound IGF-I with similar affinities and a 5-fold lower affinity than that seen for the wild type receptor. In addition, both soluble receptors bound IGF-II with similar affinities to the wild type receptor. BIAcore analyses showed that both soluble IGF-1Rs exhibited similar ligand-specific association and dissociation rates for IGF-I and for IGF-II. The soluble IGF-1R proteins both exhibited negative cooperativity for IGF-I, IGF-II, and the 24-60 antibody, which binds to the IGF-1R cysteine-rich domain. We conclude that the addition of the self-associating Fc domain to the IGF-1R ectodomain does not affect ligand binding affinity, which is in contrast to the soluble ectodomain of the IR. This study highlights some significant differences in ligand binding modes between the IGF-1R and the insulin receptor, which may ultimately contribute to the different biological activities conferred by the two receptors.  相似文献   

3.
Fetal murine neuronal cells bear somatomedin receptors which can be classified according to their affinities for IGF-I, IGF-II and insulin. Binding of 125I-IGF-I is half-maximally displaced by 7 ng/ml IGF-I while 15- and 700-fold higher concentrations are required for, respectively, IGF-II and insulin. Linear Scatchard plots of competitive-binding data with IGF-I suggest one single class of type I IGF receptors (Ka = 2.6 X 10(9) M-1; Ro = 4500 sites per cell). The occurrence of IGF-II receptors appears from the specific binding of 125I-IGF-II and competition by unlabeled IGF-II; the IGF-II binding sites display a low affinity for IGF-II and no affinity for insulin. IGF-II also interacts with insulin receptors although 50- to 100-fold less potent than insulin in competing for 125I-insulin binding. The presence of distinct receptors for IGF-I, IGF-II and insulin on fetal neuronal cells is consistent with a role of these peptides in neuronal development, although our data also indicate that IGF-I receptors could mediate the growth promoting effects of insulin.  相似文献   

4.
The insulin receptor (IR) lacking the alternatively spliced exon 11 (IR-A) is preferentially expressed in fetal and cancer cells. The IR-A has been identified as a high-affinity receptor for insulin and IGF-II but not IGF-I, which it binds with substantially lower affinity. Several cancer cell types that express the IR-A also overexpress IGF-II, suggesting a possible autocrine proliferative loop. To determine the regions of IGF-I and IGF-II responsible for this differential affinity, chimeras were made where the C and D domains were exchanged between IGF-I and IGF-II either singly or together. The abilities of these chimeras to bind to, and activate, the IR-A were investigated. We also investigated the ability of these chimeras to bind and activate the IR exon 11+ isoform (IR-B) and as a positive control, the IGF-I receptor (IGF-1R). We show that the C domain and, to a lesser extent, the D domains represent the principal determinants of the binding differences between IGF-I and IGF-II to IR-A. The C and D domains of IGF-II promote higher affinity binding to the IR-A than the equivalent domains of IGF-I, resulting in an affinity close to that of insulin for the IR-A. The C and D domains also regulate the IR-B binding specificity of the IGFs in a similar manner, although the level of binding for all IGF ligands to IR-B is lower than to IR-A. In contrast, the C and D domains of IGF-I allow higher affinity binding to the IGF-1R than the analogous domains of IGF-II. Activation of IGF-1R by the chimeras reflected their binding affinities whereas the phosphorylation of the two IR isoforms was more complex.  相似文献   

5.
Abstract

Insulin and IGF-I affect in vitro ovarian stromal and follicular cell function in several species. We previously characterized insulin receptors on human granulosa cells obtained from in vitro fertilization procedures but were unable to demonstrate specific binding of IGF-I.

Following modification of the assay conditions, we now report specific, high affinity IGF-1 binding sites on human granulosa cells. Substitution of equimolar concentrations of sucrose for sodium chloride in the buffer solution increased binding of IGF but not insulin in equilibrium assays. Maximal specific IGF-I binding was 2.69 ± 0.30%/105 cells (SEM, n=9) with half-maximal inhibition of binding at 2 ng/ml IGF-I. Unlabeled insulin recognized the type I IGF receptor with low affinity. An IGF-I receptor monoclonal antibody (αIR-3) inhibited 125I-IGF-I but not 125I-insulin binding. Affinity crosslinking followed by SDS/PAGE under reducing conditions revealed IGF-I binding at a molecular weight compatible with the αsubunit of the type I IGF receptor and with a pattern of inhibition by various ligands that paralleled the equilibrium binding assays.

IGF-I receptors are present on freshly isolated human ovarian granulosa cells obtained following pharmacologic stimulation with gonadotrophin according to the protocols of in vitro fertilization. The biologic function of these receptors currently is being investigated.  相似文献   

6.
Abstract

Human platelets, freshly isolated from healthy human adults, express receptors for insulin-like growth factor I. The IC50 for displacement of 125I-IGF-I binding by unlabeled IGF-I was 0.2 nM, by IGF-II 32 nM and by insulin 160 nM. Scatchard analysis of IGF-I binding demonstrates dissociation constants of 0.14 ± 0.08 nM for high affinity binding site and 54 ± 18 nM for low affinty binding site. The presence of the α-subunit of type I IGF receptor, as high affinity binding site, was verified by affinity crosslinking of 125I-IGF-I to platelet surface membranes. Under reducing con-conditions a Mr= 135,000 band was preferentially labeled. The complete type I IGF receptor complex, which revealed under nonreducing conditions, has an approximately molecular mass of Mr > 400,000. The immunoprecipitation of the 125I-IGF-I cross-linked type I receptor with αIR-3 confirmed the results achieved by affinity crosslinking.  相似文献   

7.
The review presents data on the insulin-like growth factor-II (IGF-II), a regulatory peptide included in the insulin superfamily, as its structure and function are the closest to those of insulin and IGF-I. The last decade investigations revealed the biological properties of IGF-II which distinguish it from related peptides. The primary sequence of the IGF-II structure has peculiar differences from those of insulin but insignificant ones from IGF-I. The tertiary structure of IGF-II is similar to that of the related peptide molecules, but a peculiar receptor-binding domain in the IGF-II molecule provides for its unique capability of interacting with receptors. IGF-II interacts with three types of receptors: receptors of IGF-I, IGF-2, and insulin. IGF-II has the highest affinity to IGF-2 receptors but its mitogenic effects are mediated by IGF-I receptors (i.e., the phenomenon of divergence of binding and biological activities). The arguments obtainedin vitro andin vivo are presented, which confirm propagation of mitogenic effects by IGF-I receptors but deny participation of IGF-2 receptors. The structural and functional bivalency of the M6P/IGF-2 receptor (a peculiar form of the M6P receptor in mammals) is considered in detail. The results of interactions of IGF-II and the M6P/IGF-2 receptors are not yet known. The primary function of the M6P/IGF-2 receptor (sorting and transport of the lysosomal enzymes) is likely to be due to the peptides inactivation and does not imply its participation in the IGF-II signaling. However, several data do not permit ruling out participation of the IGF-2 receptor in the IGF-II effects different from mitogenic ones. The organization of related peptide gene in the lancelet allows us to suggest the appearance of the IGF-II gene at the initial steps of the vertebrate evolution and to trace all stages of formation of two separate IGF genes up to the mammalian IGF-II and IGF-I genes with different structural organizations. The IGF-II expression by embryonic tissues is revealed earlier than that of other related peptides and reaches the highest level at the embryonal period. The general regularities of the IGF-II regulatory activity in embryogenesis and of the growth hormone effect on the IGF-II expression in embryonal tissues are considered.  相似文献   

8.
Beating rat hearts were perfused with 125I-IGF-II alone or 125I-IGF-II and unlabeled IGF-II or insulin, then prepared for radioautography. Maximal 125I-IGF-II grain counts over capillaries were decreased in a dose-dependent manner by unlabeled IGF-II but were unaffected by coperfusion with insulin. To determine a potential role for capillary receptors in the transfer of circulating IGF to cardiac muscle, the effects of sequential loss of capillary IGF binding sites was determined. For IGF-I, loss of capillary binding sites by trypsin perfusion was accompanied by proportional decreases in the subsequent appearance of IGF-I in cardiac muscle. In contrast, similar decrements of capillary IGF-II binding did not affect muscle levels of IGF-II. We conclude that capillary endothelium of the intact heart possesses distinct IGF-I and IGF-II binding sites, with the capillary IGF-I binding sites being of potential importance in the transfer of vascular IGF-I to subendothelial cardiac muscle.  相似文献   

9.
Summary Previous investigations have demonstrated specific receptors and associated mitogenic actions for insulin and insulinlike growth factors I and II (IGF-I and II) in postnatal bovine aortic smooth muscle. Using fetal tissue we have observed different patterns of binding and action for these peptides. Smooth muscle cells isolated from near-term fetal bovine aortae were studied in early passage. Specific receptors for both IGF-I and IGF-II were identified. Specific binding averaged 5.7%/2.5×105 cells for IGF-I, and 16.2% for IGF-II, and 0.3% for insulin. High affinity K d for both IGF receptors were nanomolar. IGF-II was fivefold less potent than IGF-I in displacing IGF-I binding. IGF-I showed no affinity for the IGF-II receptor. Insulin, at physiologic concentrations, was incapable of displacing either IGF-I or IGF-II binding. Cellular incorporation of [methyl-3H]thymidine was stimulated at the lowest dose of IGF-I tested, 0.5 ng/ml. IGF-II showed no effect up to 100 ng/ml, after which a sharp increase in incorporation was noted. Insulin had a similar effect only at concentrations >0.5 μg/ml, with a maximal response noted at 5 to 10 μg/ml. Our results indicate that fetal bovine aortic smooth muscle cells have an abundance of IGF receptors but lack specific insulin receptors. In addition, IGF-II binding levels are three times higher than for IGF-I. These results are consistent with observations in other species, in which a predominance of IGF over insulin receptors has been demonstrated in fetal tissue, and provide further evidence for a role for the IGFs in embryonic cellular metabolism. This project was supported by grants AM22190 (R. L. H.), AM28229 (R. G. R.) from the National Institutes of Health, Bethesda, MD, and Research Career Development Award AM01275 from the NIH (R. G. R.). Dr. Lee was the recipient of a fellowship award from the Juvenile Diabetes Foundation International and is currently supported by funds from the American Diabetes Association. Dr. Benitz is the recipient of a Clinician-Scientist Award from the American Heart Association, with funds contributed in part by the California Affiliate.  相似文献   

10.
Hyperandrogenism observed in a variety of hyperinsulinemic states is thought to be due to an effect of insulin mediated through the type I insulin-like growth factor (IGF) receptors. These receptors, however, have not yet been demonstrated in normal human ovarian cells capable of androgen production. We now report the presence of type I IGF receptors in membrane preparations of human ovarian stroma. The ovarian stromal tissue was obtained from women undergoing indicated oophorectomy. Stromal plasma membranes were prepared. Specific 125I-IGF-I binding was 6.6 +/- 0.2%/100 micrograms protein. The affinity constant estimated by Scatchard analysis was 4.6 X 10(-9) M. 50% inhibition of 125I-IGF-1 binding was observed at 5 ng/ml of IGF-1. Specificity of the 125I-IGF-I-binding sites was confirmed by analogue specificity studies and in experiments utilizing monoclonal antibody to the IGF-I receptor, alpha-IR-3. IGF-II and insulin competed with 125I-IGF-I for the binding sites, but with an affinity significantly lower than that of IGF-I: 50% inhibition was observed at approximately 60 ng/ml of IGF-II or insulin. alpha-IR-3, a monoclonal antibody with high specificity for the type I IGF receptor, effectively inhibited 125I-IGF-I binding in a dose-dependent manner, confirming that the 125I-IGF-I binding was indeed to the type I IGF receptor. We conclude that type I IGF receptors are present in human ovarian stroma. These receptors may mediate effects of insulin on the ovary in hyperinsulinemic insulin-resistant states.  相似文献   

11.
Bovine articular cartilage discs (3 mm diameter x 400 micrometer thick) were equilibrated in buffer containing (125)I-insulin-like growth factor (IGF)-I (4 degrees C) +/- unlabeled IGF-I or IGF-II. Competition for binding to cartilage discs by each unlabeled IGF was concentration-dependent, with ED(50) values for inhibition of (125)I-IGF-I binding of 11 and 10 nM for IGF-I and -II, respectively, and saturation by 50 nM. By contrast, an analog of IGF-I with very low affinity for the insulin-like growth factor-binding proteins (IGF-BPs), des-(1-3)-IGF-I, was not competitive with (125)I-IGF-I for cartilage binding even at 100-400 nM. Binding of the (125)I-labeled IGF-II isoform to cartilage was competed for by unlabeled IGF-I or -II, with ED(50)s of 160 and 8 nM, respectively. This probably reflected the differential affinities of the endogenous IGF-BPs (IGF-BP-6 and -2) for IGF-II/IGF-I. Transport of (125)I-IGF-I was also measured in an apparatus that allows diffusion only across the discs (400 micrometer), by addition to one side and continuous monitoring of efflux on the other side. The time lag for transport of (125)I-IGF was 266 min, an order of magnitude longer than the theoretical prediction for free diffusion in the matrix. (125)I-IGF-I transport then reached a steady state rate (% efflux of total added (125)I-IGF/unit time), which was subsequently accelerated approximately 2-fold by addition of an excess of unlabeled IGF-I. Taken together, these results indicate that IGF binding to cartilage, mostly through the IGF-BPs, regulates the transport of IGFs in articular cartilage, probably contributing to the control of their paracrine activities.  相似文献   

12.
The insulin-like growth factors (insulin-like growth factor I [IGF-I] and IGF-II) exert important effects on growth, development, and differentiation through the IGF-I receptor (IGF-IR) transmembrane tyrosine kinase. The insulin receptor (IR) is structurally related to the IGF-IR, and at high concentrations, the IGFs can also activate the IR, in spite of their generally low affinity for the latter. Two mechanisms that facilitate cross talk between the IGF ligands and the IR at physiological concentrations have been described. The first of these is the existence of an alternatively spliced IR variant that exhibits high affinity for IGF-II as well as for insulin. A second phenomenon is the ability of hybrid receptors comprised of IGF-IR and IR hemireceptors to bind IGFs, but not insulin. To date, however, direct activation of an IR holoreceptor by IGF-I at physiological levels has not been demonstrated. We have now found that IGF-I can function through both splice variants of the IR, in spite of low affinity, to specifically activate IRS-2 to levels similar to those seen with equivalent concentrations of insulin or IGF-II. The specific activation of IRS-2 by IGF-I through the IR does not result in activation of the extracellular signal-regulated kinase pathway but does induce delayed low-level activation of the phosphatidylinositol 3-kinase pathway and biological effects such as enhanced cell viability and protection from apoptosis. These findings suggest that IGF-I can function directly through the IR and that the observed effects of IGF-I on insulin sensitivity may be the result of direct facilitation of insulin action by IGF-I costimulation of the IR in insulin target tissues.  相似文献   

13.
14.
Endothelial cells were cultured from bovine fat capillaries, aortae and pulmonary arteries and their interactions with 125I-IGF-I, 125I-MSA (an IGF-II), 125I-insulin and the corresponding unlabeled hormones were evaluated. Each endothelial culture showed similar binding parameters. With 125I-insulin, unlabeled insulin competed with high affinity while IGF-I and MSA were approximately 1% as potent. With 125I-MSA, MSA was greater than or equal to IGF-I in potency and insulin did not compete for binding. Using 125I-IGF-I, IGF-I was greater than or equal to MSA whereas insulin decreased 125I-IGF-I binding by up to 72%. Exposing cells to anti-insulin receptor antibodies inhibited 125I-insulin binding by greater than 90%, did not change 125I-MSA binding, while 125I-IGF-I binding was decreased by 30-44%, suggesting overlapping antigenic determinants between IGF-I and insulin receptors that were not present on MSA receptors. We conclude that cultured capillary and large vessel endothelial cells have distinct receptors for insulin, IGF-I and MSA (IGF-II).  相似文献   

15.
We obtained 20 mouse monoclonal antibodies specific for human type I insulin-like growth factor (IGF) receptors, using transfected cells expressing high levels of receptors (IGF-1R/3T3 cells) as immunogen. The antibodies immunoprecipitated receptor.125I-IGF-I complexes and biosynthetically labeled receptors from IGF-1R/3T3 cells but did not react with human insulin receptors or rat type I IGF receptors. Several antibodies stimulated DNA synthesis in IGF-1R/3T3 cells, but the maximum stimulation was only 25% of that produced by IGF-I. The antibodies fell into seven groups recognizing distinct epitopes and with different effects on receptor function. All the antibodies reacted with the extracellular portion of the receptor, and epitopes were localized to specific domains by investigating their reaction with a series of chimeric IGF/insulin receptor constructs. Binding of IGF-I was inhibited up to 90% by antibody 24-60 reacting in the region 184-283, and by antibody 24-57 reacting in the region 440-586. IGF-I binding was stimulated up to 2.5-fold by antibodies 4-52 and 16-13 reacting in the region 62-184, and by antibody 26-3 reacting downstream of 283. The latter two groups of antibodies also dramatically stimulated insulin binding to intact IGF-1R/3T3 cells (by up to 50-fold), and potentiated insulin stimulation of DNA synthesis. Scatchard analysis indicated that in the presence of these antibodies, the affinity of the type I IGF receptor for insulin was comparable with that of the insulin receptor. These data indicate that regions both within and outside the cysteine-rich domain of the receptor alpha-subunit are important in determining the affinity and specificity of ligand binding. These antibodies promise to be valuable tools in resolving issues of IGF-I receptor heterogeneity and in studying the structure and function of classical type I receptors and insulin/IGF receptor hybrids.  相似文献   

16.
The erythroleukemia cell line K562 was previously shown to have specific binding sites for insulin but not for insulin-like growth factor I (IGF-I). In this study the presence of specific receptors for insulin-like growth factor II (IGFqI) is established. Scatchard analysis of the competition curve for IGF-II disclosed a non-cooperative binding kinetic with a calculated affinity constant of 2.4×108 M–1 and a receptor number of 4.8×l04 sites/cell. IGF-I displayed 10% crossreactivity over the IGF-II receptor but insulin did not crossreact at all. Instead insulin, present in high concentrations, enhanced the binding of IGF-II. The presence of IGF II but not IGF-I receptors makes t h e K562 cell line suitable for studying properties of the type-2 receptor.  相似文献   

17.
The IGF-1R [type 1 IGF (insulin-like growth factor) receptor] is activated upon binding to IGF-I and IGF-II leading to cell growth, survival and migration of both normal and cancerous cells. We have characterized the binding interaction between the IGF-1R and its ligands using two high-affinity mouse anti-IGF-1R mAbs (monoclonal antibodies), 7C2 and 9E11. These mAbs both block IGF-I binding to the IGF-1R but have no effect on IGF-II binding. Epitope mapping using chimaeras of the IGF-1R and insulin receptor revealed that the mAbs bind to the CR (cysteine-rich) domain of IGF-1R. The epitope was finely mapped using single point mutations in the IGF-1R. Mutation of Phe241, Phe251 or Phe266 completely abolished 7C2 and 9E11 binding. The three-dimensional structure showed that these residues cluster on the surface of the CR-domain. BIAcore analyses revealed that IGF-I and a chimaeric IGF-II with the IGF-I C-domain competed for the binding of both mAbs with the IGF-1R, whereas neither IGF-II nor a chimaeric IGF-I with the IGF-II C-domain affected antibody binding. We therefore conclude the IGF-I C-domain interacts with the CR (cysteine-rich) domain of the receptor at the cluster of residues Phe241, Phe251 and Phe266. These results allow precise orientation of IGF-I within the IGF-I-IGF-1R complex involving the IGF-I C-domain binding to the IGF-1R CR domain. In addition, mAbs 7C2 and 9E11 inhibited both IGF-I- and IGF-II-induced cancer cell proliferation, migration and IGF-1R down-regulation, demonstrating that targeting the IGF-1R is an effective strategy for inhibition of cancer cell growth.  相似文献   

18.
We have reevaluated IGF binding specificity to membrane receptors in rabbit mammary gland (RMG) and hypophysectomized rat liver (HRL) using recombinant DNA-derived and synthetic analogues of human IGF-I and highly purified IGF-II. SDS-PAGE demonstrated that [125I]IGF-I bound to type-I IGF receptors in RMG; this binding was inhibited in a similar fashion by the IGF-I analogues (IC50 = 10 ng/ml) and to a lesser extent by IGF-II (IC50 = 60 ng/ml). [125I]IGF-II bound to type-II IGF receptors in both RMG and HRL. The IC50 for IGF-II was 9 and 3 ng/ml with RMG and HRL, respectively. At a dose as high as 1 microgram/ml, IGF-I analogues inhibited less than 20% of [125I]IGF-II binding. These results suggest that IGF-I has little or no affinity for type-II IGF receptors.  相似文献   

19.
Using affinity cross-linking techniques, we report the presence of type I IGF and type II IGF receptors in Madin-Darby canine kidney cells, a line of cells lacking insulin receptors. The IGF receptors were further characterized by competition binding studies and found to be similar to IGF receptors in other tissue types. In Madin-Darby canine kidney cells, the type I IGF receptor binds IGF-I greater than IGF-II greater than insulin and the type II IGF receptor binds IGF-II and IGF-I with approximately the same affinity, but does not bind insulin.  相似文献   

20.
Insulin and insulin-like growth factor-1 (IGF-1) act on highly homologous receptors, yet in vivo elicit distinct effects on metabolism and growth. To investigate how the insulin and IGF-1 receptors exert specificity in their biological responses, we assessed their role in the regulation of gene expression using three experimental paradigms: 1) preadipocytes before and after differentiation into adipocytes that express both receptors, but at different ratios; 2) insulin receptor (IR) or IGF1R knock-out preadipocytes that only express the complimentary receptor; and 3) IR/IGF1R double knock-out (DKO) cells reconstituted with the IR, IGF1R, or both. In wild-type preadipocytes, which express predominantly IGF1R, microarray analysis revealed ∼500 IGF-1 regulated genes (p < 0.05). The largest of these were confirmed by quantitative PCR, which also revealed that insulin produced a similar effect, but with a smaller magnitude of response. After differentiation, when IR levels increase and IGF1R decrease, insulin became the dominant regulator of each of these genes. Measurement of the 50 most highly regulated genes by quantitative PCR did not reveal a single gene regulated uniquely via the IR or IGF1R using cells expressing exclusively IGF-1 or insulin receptors. Insulin and IGF-1 dose responses from 1 to 100 nm in WT, IRKO, IGFRKO, and DKO cells re-expressing IR, IGF1R, or both showed that insulin and IGF-1 produced effects in proportion to the concentration of ligand and the specific receptor on which they act. Thus, IR and IGF1R act as identical portals to the regulation of gene expression, with differences between insulin and IGF-1 effects due to a modulation of the amplitude of the signal created by the specific ligand-receptor interaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号