首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
柳俊  谢从华 《植物学报》2001,18(5):531-539
马铃薯(Solanum tuberosum L.)块茎是有块茎马铃薯植物的地下变态器官,它由匍匐茎顶端膨大形成。对于马铃薯块茎形成的生理机制已有许多研究,这些研究表明,块茎发生受许多因素的影响,总体来讲短日照、较低的温度以及离体条件下培养基较高的蔗糖浓度等有利于块茎形成,同时,块茎形成过程中内源激素亦发生一系列变化。然而,对于块茎形成中相关基因表达,进而调控块茎形成的系统研究目前还较滞后。已有研究显示,块茎形成与膨大涉及到一系列基因的表达与关闭,同时它也与淀粉合成和块茎储藏蛋白基因的表达有关。综述了这一领域现有的研究进展。  相似文献   

2.
为研究抗坏血酸(AsA)处理对马铃薯试管薯形成和结薯相关基因表达的影响及敲除结薯关键基因Solanum tuberosum self-prunning 6A(StSP6A)对AsA诱导马铃薯结薯的效应,利用不同浓度(0、1、5、10、20和50 mmol/L)外源AsA处理2个二倍体马铃薯CIP-149(Solanum phureja)、CIP-178(S.ajanhuiri)和四倍体C-88(S.tuberosum)。结果表明,1~5 mmol/L外源AsA处理可显著诱导马铃薯块茎的形成。对10个块茎形成相关基因的表达分析结果表明,外源添加1 mmol/L AsA可显著影响块茎形成相关基因的表达,与对照相比,总体上呈正调控基因表达增强或负调控因子表达被抑制的趋势,特别是StSP6A在AsA处理过程中的块茎形成早期表达量极显著上调,敲除StSP6A可消除外源AsA对马铃薯块茎形成的诱导作用。这些结果表明,AsA诱导马铃薯块茎形成是通过调控与块茎形成相关的基因表达来实现的,而StSP6A在AsA诱导马铃薯块茎形成中起关键作用。  相似文献   

3.
马铃薯块茎的形成涉及一系列基因的表达和关闭。以马铃薯普通栽培品种"大西洋"为试验材料,采用RT-PCR扩增获得马铃薯STI-LIKE基因全长片段。RT-PCR定量分析表明,该基因在马铃薯营养器官中均有表达。生物信息学分析表明STI-LIKE蛋白具有3个TPR结构域,在高等植物中具有高同源性,是一个普遍存在的蛋白质。为验证STI-LIKE蛋白在拟南芥植株发育中功能,分别构建该基因强启动子表达载体(p BI121)和干扰载体(p HANNIBAL和p ART27),转化拟南芥获得了两种载体的拟南芥转基因植株,同时制备STI-LIKE蛋白抗体验证转基因植株蛋白表达。研究结果表明STI-LIKE基因可能参与拟南芥株型发育过程。  相似文献   

4.
报道了FMDV VP1基因与马铃薯块茎专一性表达class Ipatatin基因5′区融合,经农杆菌介导导入马铃薯植株,PCR、RT-PCR证实了其整合及转录表达。ELISA结果进一步表明,VP1在转基因马铃薯块茎中具有免疫活性。为探讨在马铃薯块茎中高表达VP1蛋白及进一步开发其作为FMDV口服疫苗生物反应器奠定基础。  相似文献   

5.
茉莉酸类与植物地下贮藏器官的形成   总被引:17,自引:0,他引:17  
茉莉酸类化合物(茉莉酸及其衍生物)可能参与了马铃薯,薯蓣,菊芋的块茎,甘薯的块根以及洋葱,大蒜的鳞茎形成,JA及MeJA均可诱导离体下马铃薯块茎的形成和马铃薯髓部细胞的膨大,JA诱导细胞膨大是由于蔗糖积累导致渗透压增加以及细胞壁结构变化,从而使其伸展性增加,纤维素的合成起了重要作用,细胞骨架也是JA诱导细胞膨大所必需的,但迄今为止,尚未确定块茎形成的直接诱导物。  相似文献   

6.
茉莉酸类化合物(茉莉酸及其衍生物)可能参与了马铃薯、薯蓣、菊芋的块茎,甘薯的块根以及洋葱、大蒜的鳞茎形成。JA及MeJA均可诱导离体条件下马铃薯块茎的形成和马铃薯髓部细胞的膨大。JA诱导细胞膨大是由于蔗糖积累导致渗透压增加以及细胞壁结构变化,从而使其伸展性增加,纤维素的合成起了重要作用,细胞骨架也是JA诱导细胞膨大所必需的。但迄今为止,尚未确定块茎形成的直接诱导物。  相似文献   

7.
马铃薯茄啶 糖基转移酶(solanidine glycosyltransferase,Sgt)家族成员Sgt1、Sgt2和Sgt3参与糖苷生物碱(glycoalkaloids,GAs)合成。已有研究证明,抑制该家族任一成员表达可影响马铃薯块茎中糖苷生物碱合成;然而,对Sgt家族成员的单基因实施调控很难有效降低块茎中总糖苷生物碱的积累。为降低马铃薯块茎中总糖苷生物碱的含量,本研究拟采用RNAi技术,对糖苷生物碱合成代谢途径末端酶基因家族成员Sgt1 3在转录水平进行共调控。为实现这一目的,构建了块茎特异性启动子Patatin驱动的,以Sgt1、Sgt2和Sgt3基因为靶向的RNAi表达载体pCEI-PFR,采用农杆菌介导法转化马铃薯茎段,获得10株可沉默Sgt1、Sgt2和Sgt3基因表达的Patatin RNAi融合基因的转基因植株。实时定量PCR(RT-qPCR)结果显示,Sgts基因的相对表达量分别降低了大约32%~60%(Sgt1)、29%~55%(Sgt2)和25%~66%(Sgt3),而草甘膦抗性基因--5-烯醇式丙酮酸-3-磷酸莽草酸合酶(5-enolpyruvylshikimate-3-phosphate synthase, EPSPS)的表达量则增加了约48%~135%。高效液相色谱法(HPLC)证明,尽管转基因株系的绿色组织中糖苷生物碱含量与野生型无显著差异,但块茎中糖苷生物碱分别比野生型降低了46%~59%(庄薯3号)和42%~62%(Favorita)。上述结果提示,复合沉默茄啶 糖基转移酶家族基因可降低马铃薯块茎中糖苷生物碱的积累。此外,该结果可能对研究马铃薯不同组织间糖苷生物碱的分布和积累,以及马铃薯种质资源的创新开发具有一定启示。  相似文献   

8.
马铃薯茄啶-糖基转移酶(solanidine glycosyltransferase,Sgt)家族成员Sgt1、Sgt2和Sgt3参与糖苷生物碱(glycoalkaloids,GAs)合成。已有研究证明,抑制该家族任一成员表达可影响马铃薯块茎中糖苷生物碱合成;然而,对Sgt家族成员的单基因实施调控很难有效降低块茎中总糖苷生物碱的积累。为降低马铃薯块茎中总糖苷生物碱的含量,本研究拟采用RNAi技术,对糖苷生物碱合成代谢途径末端酶基因家族成员Sgt1-3在转录水平进行共调控。为实现这一目的,构建了块茎特异性启动子Patatin驱动的,以Sgt1、Sgt2和Sgt3基因为靶向的RNAi表达载体p CEI-PFR,采用农杆菌介导法转化马铃薯茎段,获得10株可沉默Sgt1、Sgt2和Sgt3基因表达的Patatin-RNAi融合基因的转基因植株。实时定量PCR(RT-q PCR)结果显示,Sgts基因的相对表达量分别降低了大约32%~60%(Sgt1)、29%~55%(Sgt2)和25%~66%(Sgt3),而草甘膦抗性基因——5-烯醇式丙酮酸-3-磷酸莽草酸合酶(5-enolpyruvylshikimate-3-phosphate synthase,EPSPS)的表达量则增加了约48%~135%。高效液相色谱法(HPLC)证明,尽管转基因株系的绿色组织中糖苷生物碱含量与野生型无显著差异,但块茎中糖苷生物碱分别比野生型降低了46%~59%(庄薯3号)和42%~62%(Favorita)。上述结果提示,复合沉默茄啶-糖基转移酶家族基因可降低马铃薯块茎中糖苷生物碱的积累。此外,该结果可能对研究马铃薯不同组织间糖苷生物碱的分布和积累,以及马铃薯种质资源的创新开发具有一定启示。  相似文献   

9.
人降钙素基因相关肽转基因马铃薯的RT-PCR分析   总被引:3,自引:0,他引:3  
报道经过农杆菌介导将人降钙素基因相关肽(calcitoningenerelatedpeptide,CGRP)基因由马铃薯块茎专一表达classIpatatin基因5′侧翼区和CaMV35S启动子驱动构建的马铃薯表达载体导入马铃薯,PCR鉴定获得了转基因植株。RTPCR分析证实classIpatatin基因5′侧翼区驱动的CGRPmRNA在转基因马铃薯中的表达。研究结果在开发转基因马铃薯生物反应器表达医用多肽中具有重要意义。  相似文献   

10.
匍匐茎是马铃薯的产量构成因素,匍匐茎形成早晚与成熟期早晚紧密关联,但关联的分子基础尚属未知.以两基因型马铃薯匍匐茎及块茎为材料,构建了两基因型两器官消减eDNA文库4个,文库筛选识别了参与两器官形成EST 21个,转录水平检测显示,其中的6个EST呈现基因型及匍匐茎或块茎特异表达,随着块茎形成一些EST表达水平显著降低;对21个EST在20个不同基因型中的表达分析表明,其中9个EST表现基因型特异表达,最低表达频率仅为1/9;其中一些EST仅在早熟或晚熟基因型中表达;研究首次为匍匐茎形成早晚与成熟期早晚获得了分子证据,同时,也进一步明确了马铃薯各基因型间相对独立而稳定的遗传基础.  相似文献   

11.
GA biosynthesis and catabolism has been shown to play an important role in regulating tuberization in potato. Active GAs are inactivated in the stolon tips shortly after induction to tuberization. Overexpression of a GA inactivation gene results in an earlier tuberization phenotype, while reducing expression of the same gene results in delayed tuberization. In addition, overexpression of genes involved in GA biosynthesis results in delayed tuberization, while decreased expression of those genes results in earlied tuberization. The final step in GA biosynthesis is catalysed by StGA3ox1 and StGA3ox2 activity, that convert inactive forms of GA into active GA1 and GA4. In this study we cloned StGA3ox2 gene in an RNAi construct and used this construct to transform potato plants. The StGA3ox2 silenced plants were smaller and had shorter internodes. In addition, we assayed the concentrations of various GAs in the transgenic plants and showed an altered GA content. No difference was observed on the time point of tuber initiation. However, the transgenic clones had increased number of tubers with the same yield, resulting in smaller average tuber weight. In addition, we cloned the promoter of StGA3ox2 to direct expression of the GUS reporter gene to visualize the sites of GA biosynthesis in the potato plant. Finally, we discuss how changes of several GA levels can have an impact on shoot, stolon and tuber development, as well as the possible mechanisms that mediate feed-forward and feed-back regulation loops in the GA biosynthetic pathway in potato.  相似文献   

12.
The formation and growth of a potato ( Solanum tuberosum ) tuber is a complex process regulated by different environmental signals and plant hormones. In particular, the action of gibberellins (GAs) has been implicated in different aspects of potato tuber formation. Here we report on the isolation and functional analysis of a potato GA 2-oxidase gene ( StGA2ox1 ) and its role in tuber formation. StGA2ox1 is upregulated during the early stages of potato tuber development prior to visible swelling and is predominantly expressed in the subapical region of the stolon and growing tuber. 35S-over-expression transformants exhibit a dwarf phenotype, reduced stolon growth and earlier in vitro tuberization. Transgenic plants with reduced expression levels of StGA2ox1 showed normal plant growth, an altered stolon swelling phenotype and delayed in vitro tuberization. Tubers of the StGA2ox1 suppression clones contain increased levels of GA20, indicating altered GA metabolism. We propose a role for StGA2ox1 in early tuber initiation by modifying GA levels in the subapical stolon region at the onset of tuberization, thereby facilitating normal tuber development and growth.  相似文献   

13.
14.
Photoperiod regulates many different developmental processes, including floral induction in several species and tuber formation in potato. Research in Arabidopsis led to the identification of FLOWERING LOCUS T (FT) as a main component of the florigen or mobile flowering promoting signal produced in the leaves. A similar mobile signal or tuberigen has been reported to induce tuber formation in potato, recent evidence obtained in our laboratory indicates that a potato homolog of FT encodes this signal. Flowering regulators, like CONSTANS and miR172, also play a role in tuberization, although it remains unclear whether these regulators function in identical pathways. Here, we highlight differential regulation of these genes in flowering and tuberization control and discuss on their possible tuberization-related function.  相似文献   

15.
Jasmonates control diverse plant developmental processes, such as seed germination, flower, fruit and seed development, senescence and tuberization in potato. To understand the role of methyl jasmonate (MeJA) in potato tuberization, the Arabidopsis JMT gene encoding jasmonic acid carboxyl methyltransferase was constitutively overexpressed in transgenic potato plants. Increases in tuber yield and size as well as in vitro tuberization frequency were observed in transgenic plants. These were correlated with JMT mRNA level––the higher expression level, the higher the tuber yield and size. The levels of jasmonic acid (JA), MeJA and tuberonic acid (TA) were also higher than those in control plants. Transgenic plants also exhibited higher expression of jasmonate-responsive genes such as those for allene oxide cyclase (AOC) and proteinase inhibitor II (PINII). These results indicate that JMT overexpression induces jasmonate biosynthesis genes and thus JA and TA pools in transgenic potatoes. This results in enhanced tuber yield and size in transgenic potato plants.  相似文献   

16.
17.
Tuberization in potato (Solanum tuberosum L.) is a complex biological phenomenon which is affected by several environmental cues, genetic factors and plant nutrition. Understanding the regulation of tuber induction is essential to devise strategies to improve tuber yield and quality. It is well established that short-day photoperiods promote tuberization, whereas long days and high-temperatures inhibit or delay tuberization. Worldwide research on this complex biological process has yielded information on the important bio-molecules (proteins, RNAs, plant growth regulators) associated with the tuberization process in potato. Key proteins involved in the regulation of tuberization include StSP6A, POTH1, StBEL5, StPHYB, StCONSTANS, Sucrose transporter StSUT4, StSP5G, etc. Biomolecules that become transported from “source to sink” have also been suggested to be important signaling candidates regulating the tuberization process in potatos. Four molecules, namely StSP6A protein, StBEL5 RNA, miR172 and GAs, have been found to be the main candidates acting as mobile signals for tuberization. These biomolecules can be manipulated (overexpressed/inhibited) for improving the tuberization in commercial varieties/cultivars of potato. In this review, information about the genes/proteins and their mechanism of action associated with the tuberization process is discussed.  相似文献   

18.
Potato tuber development has proven to be a valuable model system for studying underground sink organ formation. Research on this topic has led to the identification of many genes involved in this complex process and has aided in the unravelling of the mechanisms underlying starch synthesis. However, less attention has been paid to the biochemical pathways of other important metabolites or to the changing metabolic fluxes occurring during potato tuber development. In this paper, we describe the construction of a potato complementary DNA (cDNA) microarray specifically designed for genes involved in processes related to tuber development and tuber quality traits. We present expression profiles of 1315 cDNAs during tuber development where the predominant profiles were strong up- and down-regulation. Gene expression profiles showing transient increases or decreases were less abundantly represented and followed more moderate changes, mainly during tuber initiation. In addition to the confirmation of gene expression patterns during tuber development, many novel differentially expressed genes were identified and are considered as candidate genes for direct involvement in potato tuber development. A detailed analysis of starch metabolism genes provided a unique overview of expression changes during tuber development. Characteristic expression profiles were often clearly different between gene family members. A link between differential gene expression during tuber development and potato tissue specificity is described. This dataset provides a firm basis for the identification of key regulatory genes in a number of metabolic pathways that may provide researchers with new tools to achieve breeding goals for use in industrial applications.  相似文献   

19.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号