共查询到18条相似文献,搜索用时 31 毫秒
1.
通过2010年6月现场航次19个站点的调查,应用反相高效液相色谱(RP - HPLC) 并结合二极管阵列检测器分析技术,分析了丰水期广西钦州湾浮游植物光合色素组成,进而由CHEMTAX 软件估算全粒级浮游植物的群落结构。结果表明,钦州湾浮游植物光合色素含量以叶绿素a最高,其次为岩藻黄素;浮游植物的优势类群为硅藻,其次为蓝藻和青绿藻,它们分别平均占据了浮游植物生物量的70.2%、12.6%和9.4%,而其它藻类除了绿藻茅岭江河口占据较高的比例(40.2%)之外在其它站点所占比例很低。钦州湾浮游植物群落结构形成了茅岭江口、内湾、外湾和湾外近海共四种类型,茅岭江口以绿藻为优势类群,内湾以硅藻、蓝藻和青绿藻为主要优势类群,外湾以硅藻为单一优势类群,湾外相对于外湾硅藻比重略为下降。主要光合色素含量及浮游植物类群生物量的分布特征与盐度、营养盐关系密切,浮游植物群落结构的分布变化主要受径流及其输入导致的营养盐变化的影响,而这种影响导致了内湾和外湾之间浮游植物主要类群的生物量多寡及浮游植物群落结构的差异。 相似文献
2.
对2012年中国第5次北极科学考察期间的挪威海和格陵兰海两个断面的光合色素进行了高效液相色谱(HPLC)分级分析,通过藻类色素化学分类分析软件(CHEMTAX)获得了不同浮游植物类群对叶绿素a的贡献,进而得到该海域表层和次表层(30 m)的浮游植物群落结构。结果表明:表层总叶绿素a的浓度为23.59 ng/L,低于次表层的30.38 ng/L,其中浮游植物根据粒径划分对总叶绿素a的贡献由高到低依次是微型浮游植物、小型浮游植物和微微型浮游植物。该海域同时存在葱绿叶绿素(Prasino)、墨角藻黄素(Fuco)、别藻黄素(Allo)、多甲藻素(Perid)、玉米黄素(Zea)、19-丁墨甲藻黄素(19’BF)和19-六已墨甲藻黄素(19’HF)等色素,其浓度和分布与温盐和营养盐等环境因子存在一定的相关性。不同粒径浮游植物色素组成显示,微微型浮游植物群落中以S型定鞭藻(28%)、N型定鞭藻(21%)、硅藻(18%)和青绿藻(12%)占优;微型浮游植物群落的优势类群为S型定鞭藻(53%)、N型定鞭藻(20%)和硅藻(12%);而小型浮游植物群落主要为硅藻(63%)和甲藻(17%)。 相似文献
3.
为了探究人类活动对钦州湾浮游植物群落的影响,分别于2013年3月和7月进行了两航次综合调查。采用聚类和典型对应分析法,分别对浮游植物群落及其与环境因子的关系进行了研究。结果表明春夏两季浮游植物共有3门45属115种,其中硅藻100种、甲藻14种、蓝藻1种。两季浮游植物生态类群分别以暖温带广布种和暖温带近岸种为主,季节性差异明显。典型对应分析表明,影响浮游植物分布的主要环境因子是悬浮物、pH、盐度和营养盐。受入海径流和外来水团等因子影响,钦州湾浮游植物群落在夏季更易聚为相似性群落,春季则呈斑块化分布。 相似文献
4.
于 2009 年 3 月至 2010 年 1 月对烟台四十里湾 15 个站进行了 11 个航次的浮游植物群落调查, 并同步监测其它环境因子(表层水温、盐度、透明度、无机氮等)。共鉴定浮游植物 3 门 39 属 82 种, 其中硅藻 13 科 30 属 68 种, 是构成调查海域浮游植物群落的主要类群; 甲藻 7 科 8 属 13 种, 金藻 1 科 1 属 1 种。浮游植物丰度与种类多样性年度变化均呈明显的“双峰”模型, 种类数最高峰出现在 9 月(48 种), 次高峰为 4 月(40 种), 5 月浮游植物种类最少(12 种); 丰度最高值出现在 10 月(9264.9×104 cells·m-3), 次高峰 3 月(1039.0×104 cells·m-3), 最低值同样出现在 5 月(31.5×104cells·m-3)。调查期间优势种主要为中肋骨条藻(Skeletonema costatum)、尖刺伪菱形藻(Pseudo... 相似文献
5.
钦州湾浮游植物周年生态特征 总被引:6,自引:0,他引:6
2008-2009年对钦州湾及附近海域进行4个季节航次的浮游植物调查,共鉴定出浮游植物131种,其中硅藻种数最多,达101种,占浮游植物总种数的77.1%;甲藻次之,23种;其他种类3门7种.浮游植物以广温性种和暖水性种为主.总种类数的季节变化与硅藻种类数均为春季最低,夏、秋、冬依次增加,冬季最高.各季节浮游植物丰度为232.28×104~ 977.0×104 cell·m-3,平均为558.57×104 cell·m-3;各季节浮游植物丰度呈现夏、春、冬和秋依次减少的趋势;各区域浮游植物丰度四季均为由内湾至外湾先升高、到湾外逐渐降低的趋势,但在夏季其高丰度区由外湾南移至湾口附近.浮游植物群落的Shannon多样性指数和均匀度指数平均值分别为3.18和0.63,多样性水平较高.浮游植物丰度与温度、盐度、溶解性无机氮及活性磷酸盐的相关关系因季节而变化. 相似文献
6.
2008-2009年对钦州湾及附近海域进行4个季节航次的浮游植物调查,共鉴定出浮游植物131种,其中硅藻种数最多,达101种,占浮游植物总种数的77.1%;甲藻次之,23种;其他种类3门7种.浮游植物以广温性种和暖水性种为主.总种类数的季节变化与硅藻种类数均为春季最低,夏、秋、冬依次增加,冬季最高.各季节浮游植物丰度为232.28×104~977.0×104 cell·m-3,平均为558.57×104 cell·m-3;各季节浮游植物丰度呈现夏、春、冬和秋依次减少的趋势;各区域浮游植物丰度四季均为由内湾至外湾先升高、到湾外逐渐降低的趋势,但在夏季其高丰度区由外湾南移至湾口附近.浮游植物群落的Shannon多样性指数和均匀度指数平均值分别为3.18和0.63,多样性水平较高.浮游植物丰度与温度、盐度、溶解性无机氮及活性磷酸盐的相关关系因季节而变化. 相似文献
7.
8.
2008年3月采用室内中型受控系统,开展了大型海藻龙须菜(Gracilaria lemaneiformis)对浮游植物群落结构影响的实验研究.实验培养池为9个2 m×0.7 m×1 m的培养池,注入1 000 L沙滤海水.实验设置3个处理组:对照组(未添加龙须菜)、3 kg龙须菜组和6 kg龙须菜组,每组3个平行,实验周期为10 d.结果表明,未添加龙须菜的对照组发生了中肋骨条藻赤潮,水体浑浊并伴有恶臭,浮游植物细胞密度峰值为3.88×107cells·L-1,叶绿素a浓度峰值为43.87 μg·L-1;3 kg和6 kg龙须菜处理组水体浮游植物细胞密度最高值分别为3.78×106cells·L-1和1.33×107cells·L-1,叶绿素a浓度最高值分别为15.16 μg·L-1和6.69 μg·L-1,均显著低于对照组(p≤0.01).龙须菜处理组浮游植物种类较多,群落结构较稳定.大型海藻龙须菜作为富营养化水体生物修复材料,可有效提高水质和防治赤潮. 相似文献
9.
汉江中下游浮游植物群落结构及水质评价 总被引:1,自引:0,他引:1
南水北调中线工程调水后,汉江中下游水华频发引起社会关注。为掌握调水后汉江中下游浮游植物的群落结构特征,于2017年11月、2018年2月、4月和8月在汉江中下游的8个断面对浮游植物进行了定量调查。调查结果显示:共鉴定浮游植物163种,群落组成以硅藻门(Bacillariophyta)、绿藻门(Chlorophyta)为主,其次是蓝藻门(Cyanophyta)。浮游植物优势种主要为硅藻门的梅尼小环藻(Cyclotellameneghiniana )、颗粒直链藻最窄变种(Melosiragranulata var.)、变异直链藻(Melosiravarians )、颗粒直链藻(Melosiragranulata ),隐藻门的卵形隐藻(Cryptomonasovata ),蓝藻门的弯曲颤藻(Oscillatoria sp.)和伪鱼腥藻(Pseudoanabaena sp. ),且都有较高的优势度。浮游植物密度和生物量的季节变化范围分别为0.33×106cells/L~1.82×106cells/L和0.49mg/L~7.38mg/L。基于Shannon⁃Weaver多样性指数和Pielou均匀度指数以及优势种评价法对汉江中下游的水质进行评价,判断汉江中下游水质整体处于中污状态。 相似文献
10.
武汉沙湖冬季和春季浮游植物群落结构的变化 总被引:1,自引:0,他引:1
富营养化是指水体中由于营养盐的增加而导致藻类或水生植物生产力的增加、水质下降等一系列的变化,从而使水的用途受到影响。湖泊富营养化是我国目前以及今后相当长一段时期内面临的重大水环境问题。浮 相似文献
11.
《农业工程》2014,34(3):141-147
Qinzhou Bay, the biggest bay in Guangxi Province, is very species-rich and is developing a robust marine economy. In recent years, as human impact has increased, problems associated with the environment have become more complicated. Measuring zooplankton diversity and abundance is a way to monitor environmental conditions. According to the data from four ecological surveys of the zooplankton in Qinzhou Bay during 2008 and 2009, a total of 134 species of zooplankton were identified, including 52 Copepoda species, 27 Medusa species, 14 Planktonic larvae, 9 Chaetognatha species, 8 Pteropoda species, 5 Amphipoda species, 4 Cladocera species, 4 Ostracoda species, 3 Thaliacea species, 2 Appendiculata species, 2 Sergestdae species, 2 Protlsta species, 1 Rotiera species and 1 Cumacea species. The fauna was clearly characterized as tropical population. The total species number was highest in autumn, followed by spring, winter and summer. Zooplankton species diversity in Qinzhou Bay has increased compared with the results obtained in 1983–1985 (83 species). However, compared with other bays, the number of zooplankton species in Qinzhou Bay is close to Daya Bay (128), higher than in Zhilin Bay (60), Jiaozhou Bay (81) and Luoyuan Bay (70), and far lower than in the north South Sea (709). We adopted the dominant index Y > 0.02 as the distinguishing standard of dominant species. The number of dominant species in spring, summer, autumn and winter were six, nine, eight and five. There was only one common dominant species (Penilia avirostris) appeared in different seasons, For summer and autumn, the shared dominant species numbered about four. Between other seasons, the shared dominant species varied between two and three. The number of uniquely dominant species was four in summer, three in autumn and one in both spring and winter. The dominant species in different seasons have some overlaps and some differences. The average biomass of zooplankton was 378 mg/m3 at all times of year. The average biomass was largest in autumn, followed by winter, and was the least in spring and summer. The average density of zooplankton for the entire year was 805.11 ind/m3. The average density was largest in summer, followed by winter, and was least in autumn and spring. Copepoda and Planktonic larvae were the major components of zooplankton in spring and summer at Qinzhou Bay, with the other species’ densities under 10%. In autumn, Copepoda, Planktonic larvae and Chaetognatha were the major components of the biomass, and in winter, the major species were Copepoda and Cladocera, with the others species’ density under 10%. The average value of the Shannon–Wiener diversity index (H′) was 3.84 and the evenness index (J′) was 0.77. The zooplankton diversity index and community evenness overall were good and the community organization had a complete and stable state, but the status of the community was relatively weak. The relationship between biomass/density of zooplankton and environmental factors is remarkable. Biomass and density are positively correlated with temperature and nutrient concentration, and are negatively correlated with salinity. 相似文献
12.
2014年秋、冬两季,每个季节在大潮期和小潮期对水东湾海域浮游植物群落结构和环境因子进行了调查,共鉴定出4门57属134种。其中硅藻门42属106种,占浮游植物种类数的79.1%;甲藻门13属26种,占浮游植物种类数的19.4%;蓝藻门1属1种,占浮游植物种类数的0.8%;针胞藻纲1属1种,占浮游植物种类数的0.8%。优势种15种,主要为尖布纹藻Gyrosigma aluminatum、圆海链藻Thalassiosira rotula、中肋骨条藻Skeletonema costatum、丹麦细柱藻Leptocylindrus danicus和舟形鞍链藻Campylosira cymbelliformis等。4个航次共有种类数在18—40种,Jaccard种类相似性指数范围在0.200—0.404,多样性指数和均匀度平均值分别为2.60和0.60。秋季大、小潮期多样性指数差异较显著(P0.05),冬季细胞丰度、多样性指数和均匀度大、小潮期均无明显差异。浮游植物细胞丰度变化范围为0.95×10~4个/L—28.0×10~4个/L,平均为6.86×10~4个/L,平均丰度冬季小潮期(9.46×10~4个/L)秋季小潮期(7.56×10~4个/L)冬季大潮期(5.97×10~4个/L)秋季大潮期(4.44×10~4个/L)。主成分分析(PCA)表明:盐度和营养盐可能是影响水东湾海域生态环境的主导因子。对水东湾海域浮游植物群落结构与主要环境因子进行Spearman相关性分析,细胞丰度与盐度在秋季大、小潮期为负相关,在冬季大、小潮期呈显著正相关;与无机氮和磷酸盐在冬季大、小潮期呈极显著负相关,在秋季大、小潮期均无相关性。冬季小潮期水温与多样性指数、均匀度和细胞丰度均呈正相关;从测定结果来看浮游植物细胞丰度、多样性指数和均匀度与叶绿素a含量均无统计学意义上的相关性。 相似文献
13.
对三江平原湿地虎林地区水域的浮游植物群落结构进行了初步研究。在采集区域设置10个采样点,经鉴定共有133个浮游植物分类单位,隶属于8门10纲16目27科48属。该地区浮游植物群落组成以硅藻门(Bacillariophyta)、绿藻门(Chlorophyta)为主。各采样点浮游植物种类组成及细胞密度差异显著,采样点Ⅸ的浮游植物种类最丰富,采样点Ⅱ的浮游植物细胞密度最大。在三江平原湿地虎林地区发现了大量的β-中污指示种,经聚类和多维尺度分析评价,初步推断三江平原湿地虎林地区水域受到一定污染,呈中营养状态。 相似文献
14.
武汉东湖浮游藻类物种多样性的研究 总被引:28,自引:7,他引:28
从 1994年 1月至 1996年 12月 ,每月定期从东湖四个常规采样站采集浮游藻类标本进行研究。经鉴定共发现 2 6 0个分类单位 ,隶属于 7个门的 99个属 ,其中有 2种为中国新记录。以 1995年浮游藻类的群落结构进行分析的结果是 :浮游藻类的种类数以绿藻门最多 ,硅藻门次之 ;各站基本上均以夏季种类最多 ,其次为秋季和春季 ,冬季最低 ;四个站中分布的种类差异不明显 ,各站都出现的种类数占全部种类数的 39.6 % ;不同的站或同一个站在不同的季节其优势类群亦不同。计算了与水体营养类型有关的浮游藻类群落的两种指标—多样性指数和硅藻商。对东湖浮游藻类群落结构的特征及变化与水质的关系进行了探讨 ,从浮游藻类群落的演替指出东湖的富营养化程度自2 0世纪 5 0年代以来一直在加剧。 相似文献
15.
为探究西安市城市河流浮游植物群落结构特征及其与环境因子的关系, 分别于2020年10月和2021年6月对灞河、浐河、沣河及黑河共计24个采样点进行了浮游植物群落组成、细胞密度和生物量的调查研究, 并利用冗余分析(RDA)研究环境因子对浮游植物群落结构的影响。调查结果显示, 枯水期共鉴定出浮游植物6门115种, 主要包括蓝藻门(11.30%)、硅藻门(54.78%)及绿藻门(26.96%), 浮游植物细胞密度均值为(3.36±3.50)×106 cells/L, 生物量均值为(1.79±3.59) mg/L。丰水期共鉴定出浮游植物7门168种, 主要包括蓝藻门(7.74%)、硅藻门(51.79%)及绿藻门(29.76%), 浮游植物细胞密度均值为(9.17±9.73)×106 cells/L, 生物量均值为(6.54±11.57) mg/L。与枯水期相比, 丰水期在物种数量、细胞密度和生物量都大于枯水期。聚类分析结果表明, 西安城市河流大部分采样点之间浮游植物群落结构及水环境状况具有相似性, 而人类活动可能是导致其余点位具有空间差异性的主要原因。冗余分析(RNA)结果表明影响西安市城市河流浮游植物群落结构分布的主要环境因子有温度(Temp)、氨氮(NH3-N)、pH、溶解氧(DO)、河流宽度(Wide)及叶绿素(CHL)。综合环境因子、生物多样性指数、浮游植物群落结构及优势种得出4支水系中黑河水质最好, 灞河、沣河水质一般, 浐河水质较差。 相似文献
16.
流溪河和潖江河从化段浮游植物群落结构研究 总被引:2,自引:0,他引:2
2007年9月至2008年9月对广州流溪河和琶江河从化段浮游植物进行周年调查,分析其种类组成、细胞数量、优势种类组成、种类多样性等群落结构特征及其季节变化。广州流溪河和琶江河从化段浮游植物种类丰富,共鉴定了隶属于90属的218种(包含变种和变型),其中绿藻为优势种类,共31属92种,占总种类数的42.20%。浮游植物细胞数量的变化范围是5.1~2090×103cell/L之间,平均值为152×103cell/L,最高值出现在春季,最低值出现在夏季。多样性H’指数较高,各站平均值变化范围为1.03~4.22,丰富度的变化范围为1.00~7.83,均匀度变化范围为0.63~0.85。多样性指数的最高值都出现在夏季,最低值出现在冬季。 相似文献
17.
郭晶;陈冬素;张屹;黄代中;严广寒;卢少勇 《水生生物学报》2025,49(5):052514-1-052514-9
为探究洞庭湖浮游植物群落结构特征及其影响因素, 于2023年在洞庭湖不同水域开展季度调查监测。结果表明: 2023年洞庭湖共检出浮游植物6门44属, 其中绿藻门16属, 硅藻门12属和蓝藻门10属。平均密度为8.499×105 cells/L, 以硅藻门(57.1%)和蓝藻门(18.6%)为多。从时间分布看, 6月浮游植物平均密度最高(1.352×106cells/L) , 12月最低(3.448×105 cells/L); 从空间分布看, 西洞庭湖浮游植物密度最高(1.419×106 cells/L), 以硅藻门为主; 其次为入湖口、南洞庭湖、东洞庭湖和出湖口。洞庭湖Shannon-wiener多样性指数介于2.76—3.62, 入湖口、东洞庭湖和出湖口评价为优秀, 西洞庭湖和南洞庭湖为良好。全湖综合营养状态指数为48.1, 中营养水平。主成分分析显示水温、高锰酸盐指数为主要影响因素; 冗余分析表明水温、溶解氧和氨氮是影响洞庭湖浮游植物分布的主要因素。研究可为洞庭湖水生态修复和保护治理提供数据支撑。 相似文献
18.
安徽沱湖夏季浮游植物群落结构特征与环境因子关系 总被引:3,自引:0,他引:3
为了揭示沱湖浮游植物群落结构特征及其与水环境因子的关系,于2016年7月(夏季),对沱湖流域上游至下游11个采样点浮游植物种类组成、细胞丰度、生物量等进行调查研究。结果显示,沱湖共有浮游植物96种(含变种),隶属8门48属,其中绿藻门(Chlorophyta)和硅藻门(Bacillariophyta)种类最多,绿藻门有23属39种,占总种数的40.63%,硅藻门有7属20种,占总种数的20.83%;其次为裸藻门(Euglenophyta),有5属17种,占总种数的17.71%,蓝藻门(Cyanophyta) 8属14种,占14.58%;甲藻门(Pyrrophyta) 2属2种,隐藻门(Cryptophyta) 1属2种,各占总种数的2.08%,黄藻门(Xanthophyta)与金藻门(Chrysophyta)均有1属1种,均占总种数的1.04%。绿藻和硅藻类物种在沱湖浮游植物群落结构中处于优势地位,沱湖夏季浮游植物种类组成表现为绿藻-硅藻型。沱湖夏季浮游植物细胞丰度与生物量从上游到下游呈逐渐增加趋势,细胞丰度与生物量平均值分别为4.022×106cells/L与3.046 mg/L,蓝藻门和绿藻门类群为沱湖浮游植物细胞丰度主体,硅藻门和裸藻门类群为沱湖浮游植物生物量的主体;上游浮游植物多样性指数与均匀度指数均略高于下游采样点,沱湖水质呈β中污型-无污染型,上游水质优于下游水质。浮游植物群落结构与水环境因子的典型对应分析(CCA)结果表明,电导率、透明度、水深及pH值等环境因子与沱湖夏季浮游植物群落结构有较强的相关性。 相似文献