首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
庞勇  李增元 《植物生态学报》2012,36(10):1095-1105
使用小兴安岭温带森林机载遥感-地面观测同步试验获取的机载激光雷达(light detection and ranging, Lidar)点云数据和地面实测样地数据, 估测了典型森林类型的树叶、树枝、树干、地上、树根和总生物量等组分的生物量。从激光雷达数据中提取了两组变量(树冠高度变量组和植被密度变量组)作为自变量, 并采用逐步回归方法进行自变量选择。结果表明: 激光雷达数据得到的变量与森林各组分生物量有很强的相关性; 对于针叶林、阔叶林和针阔叶混交林三种不同森林类型生物量的估测结果是: 针叶林优于阔叶林, 阔叶林优于针阔叶混交林; 不区分森林类型的各组分生物量估测与地面实测值显著相关, 模型决定系数在0.6以上; 区分森林类型进行建模可以进一步提高生物量的估测精度。  相似文献   

2.
苏华  李静  陈修治  廖吉善  温达志 《生态学报》2017,37(17):5742-5755
基于福建省Landsat8 OLI影像,利用混合像元分解模型筛选出"纯净"的植被像元,提取296个调查样地对应植被像元的红光和近红外波段的中心波长(分别CWR和CWNIR)及其对应的反射率(分别R和NIR),构建以(NIR-R)/(CWNIR-CWR)为特征指数的叶生物量回归模型。然后根据针叶林、阔叶林及针阔混交林叶生物量与干、枝、叶所组成的地上生物量的关系方程,结合福建省植被覆盖分类数据,估测了整个福建省针叶林、阔叶林、混交林的地上生物量,并绘制了福建省地上生物量分布图。结果表明:红光和近红外两个波段反射率和其中心波长所组成的斜率与叶生物量相关性显著,与针叶林、阔叶林、混交林叶生物量的精度分别达到70.55%、68.89%、51.75%,采用这种方法对福建省叶生物量和地上总生物量进行估算,并进行精度验证,其中,针叶林、阔叶林、混交林叶物量的模型误差(RMSE)分别达到29.2467 t/hm~2(R~2=66.64%)、14.0258 t/hm~2(R~2=61.13%)、10.1788 t/hm~2(R~2=55.43%),地上总生物量的模型精度分别达到49.8315 t/hm~2(R~2=54.65%)、45.1820 t/hm~2(R~2=49.01%)、41.5131 t/hm~2(R~2=38.79%),这说明,采用红光波段和近红外波段与其中心波长所组成的斜率估测森林叶生物量,进而估算其地上总生物量的方法是可行的。  相似文献   

3.
芦苇作为湿地生态系统中重要的群落类型,其地上生物量是衡量湿地生态系统质量的关键指标。应用面向对象的土地覆盖分类技术,基于多季相Landsat8 OLI遥感数据,提取松嫩平原西部芦苇湿地分布信息;依托野外实测芦苇地上生物量数据(AGB)和同期MODIS数据源的NDVI、EVI、RVI、MSAVI和WDVI 5种光谱植被指数,探讨不同光谱植被指数对芦苇AGB的敏感性,进而构建松嫩平原西部芦苇AGB遥感估算最优模型,并进行芦苇AGB遥感反演及空间格局分析。结果表明:2014年松嫩平原西部地区芦苇总面积为1653 km~2,其中扎龙湿地自然保护区内芦苇分布面积最大(1178km~2),占区域芦苇总面积的71.3%;所选取的5种植被指数均与芦苇AGB呈极显著正相关(P0.01),基于EVI构建的指数曲线模型为松嫩平原西部芦苇AGB反演的最优模型(R2=0.55)。研究区芦苇平均AGB为372.1g/m~2,AGB总量为6.14×105t,其中扎龙湿地自然保护区内芦苇AGB总量为4.38×105t;各保护区芦苇平均AGB由大到小依次为:向海保护区(469.7 g/m~2)大布苏保护区(454.1 g/m~2)莫莫格保护区(373.0 g/m~2)扎龙保护区(372.4 g/m~2)查干湖保护区(369.8 g/m~2);松嫩平原西部芦苇AGB总体呈现南高北低的分布格局,将为湿地生态系统管理与保护及芦苇资源的合理利用提供科学依据。  相似文献   

4.
帽儿山地区森林冠层叶面积指数的地面观测与遥感反演   总被引:13,自引:0,他引:13  
Zhu GL  Ju WM  Jm C  Fan WY  Zhou YL  Li XF  Li MZ 《应用生态学报》2010,21(8):2117-2124
叶面积指数(leaf area index,LAI)是陆地生态系统最重要的结构参数之一,遥感和基于冠层孔隙率模型的光学仪器观测是快速获取LAI的有效方法,但由于植被叶片的聚集效应,这些方法通常只能获取有效叶面积指数(effective LAI,LAIe).本文以东北林业大学帽儿山实验林场为研究区,利用LAI2000观测森林冠层LAIe,并结合TRAC观测的叶片聚集度系数估算了森林冠层LAI,并通过分析基于Landsat5-TM数据计算的不同植被指数与LAIe之间的关系,建立了该区森林LAI遥感估算模型.结果表明:研究区阔叶林的LAI和LAIe基本相当,而针叶林的LAI比LAIe大27%;减化比值植被指数(reduced simple ratio,RSR)与该区LAIe的相关性最好(R2=0.763,n=23),最适合该区LAI的遥感提取.当海拔<400 m时,LAI随海拔高度的上升而快速增大;当海拔在400~750 m时,LAI随海拔高度的上升缓慢增大;当海拔>750 m时,LAI呈下降趋势.研究区森林冠层LAI与森林地上生物量存在显著的正相关关系.  相似文献   

5.
快速、定量、精确地估算区域森林生物量一直是森林生态功能评价以及碳储量研究的重要问题。该研究基于机载激光雷达(Li DAR)点云与Landsat 8 OLI多光谱数据,借助江苏省常熟市虞山地区55块调查样地数据,首先提取并分析了87个特征变量(53个OLI特征变量,34个LiDAR特征变量)与森林地上、地下生物量的Pearson’s相关系数以进行变量优选,然后利用多元逐步回归法建立森林生物量估算模型(OLI生物量估算模型和LiDAR生物量估算模型),并与基于两种数据建立的综合生物量估算模型的结果进行比较,讨论预测结果及其精确性。结果表明:3种模型(OLI模型、LiDAR模型和综合模型)在所有样地无区分分析时,地上和地下生物量的估算精度均达到0.4以上,基于不同森林类型(针叶林、阔叶林、混交林)分析时地上和地下生物量的估算精度均有明显提高,达到0.67及以上。利用分森林类型模型估算生物量,综合生物量估算模型精度(地上生物量:R2为0.88;地下生物量:R2为0.92)优于OLI生物量估算模型(地上生物量:R2为0.73;地下生物量:R2为0.81)和Li DAR生物量估算模型(地上生物量:R2为0.86;地下生物量:R2为0.83)。  相似文献   

6.
遥感数据可以实时快速获取森林属性信息,利用遥感技术数据估算的森林地上生物量(aboveground biomass, AGB)具有空间连续性且精度较高的优势。与低纬度或低海拔的森林生态系统相比,高寒区因地形复杂、气候特殊,森林属性信息的获取更加困难,因此遥感是获取大尺度高寒区森林属性的重要手段。本研究以青藏高原为研究区,利用MODIS卫星影像和样地调查数据,建立随机森林模型(RF)估算森林AGB,并结合K最近邻算法(KNN)进一步探究该区域主要树种AGB。本研究在不同尺度上验证了模型预测精度,并分析预测变量的重要性。结果表明:(1)建立的AGB估算模型在像元(R2=0.82,RMSE=64.93 t·hm-2)和景观尺度(t=0.15,P=0.88)上皆表现较好;(2)青藏高原森林AGB空间分布呈现由东南向西北逐渐降低的趋势,平均森林AGB为181.28±104.54 t·hm-2;最高的森林AGB出现在海拔1000 m以下,为237.66±60.92 t·hm-2;树种水平上,冷杉、云杉和云南松A...  相似文献   

7.
基于HJ1B和ALOS/PALSAR数据的森林地上生物量遥感估算   总被引:1,自引:0,他引:1  
王新云  郭艺歌  何杰 《生态学报》2016,36(13):4109-4121
森林地上生物量的精确估算能够减小碳储量估算的不确定性。为了探寻一种有效地提高森林生物量估算精度的方法,探讨了基于遥感物理模型和经验统计模型估算山地森林地上生物量的方法。首先,基于Li-Strahler几何光学模型和多元前向模式(MFM)进行模型模拟,结合查找表算法(LUT)从多光谱图像HJ1B估算贺兰山研究区的森林地上生物量。其次,采用统计方法建立了2种回归模型:(1)多光谱图像HJ1B进行混合像元分解(SMA),并与雷达图像ALOS/PALSAR进行图像融合建立生物量回归模型;(2)雷达图像ALOS/PALSAR后向散射系数和实测生物量建立了生物量回归模型。用实测数据对3种算法估算结果进行精度验证。研究结果表明:采用几何光学模型和MFM算法估算的森林地上生物量精度最好(决定系数R2=0.61,均方根误差RMSE=8.33 t/hm2,P0.001),其估算地上生物量与实测值一致性较好,估算生物量精度略优于SMA估算的精度(R2=0.60,RMSE=9.417 t/hm2);ALOS/PALSAR多元回归估算的精度最差(R2=0.39,RMSE=14.89 t/hm2)。由此可见,采用几何光学模型和混合像元分解SMA适合估算森林地上生物量,利用这2种方法进行森林地上生物量遥感监测研究具有一定的应用潜力。  相似文献   

8.
地形对植被生物量遥感反演的影响——以广州市为例   总被引:2,自引:0,他引:2  
宋巍巍  管东生  王刚 《生态学报》2012,32(23):7440-7451
目前植被生物量遥感反演研究中的地形校正主要是校正地形变化对地表反射率的影响,较少考虑地形起伏引起的像元面积与实际地表面积的差异,而这种差异将导致植被生物量估算结果的偏差.在生物量遥感反演的基础上,结合地表面积计算模型和物质守恒定律,建立了生物量地形校正模型,定量分析和讨论了地形起伏对广州市植被类型面积提取和生物量准确估算的影响.结果表明:地形校正前后全市针叶林、阔叶林、草地、灌木林和园地面积分别增加6.18%、3.70%、2.86%、1.92%和1.29%;在综合分析区域生物量遥感反演中的各种不确定性的基础上,建立的各植被类型的生物量模型均具有较高精度,相关系数均接近或者超过0.9,可以满足生物量反演的要求;全市植被生物量呈现出东、北高,西、南低的分布格局,像元实际代表的林地(阔叶林和针叶林)平均生物量为61.86t/hm2,高于珠三角区域生物量平均值,但与亚热带林的顶级群落生物量水平有较大差距,林地生物量还有较大的增长空间;经过校正地形变化引起的像元面积和实际地表面积差异对生物量提取结果的影响后,植被总生物量比校正前增加了5.82%,5种植被类型的总生物量有不同程度的增加,阔叶林、针叶林、草地、灌木林和园地分别增加了7.74%,4.76%、3.34%、2.50%和1.58%.与其它的表面积计算模型相比,利用的像元地表面积模型具有较高的精度,可以满足生物量遥感估算中地形校正的需要.  相似文献   

9.
为了建立基于遥感影像和环境因子的森林碳密度估测的有效方法,本文基于2009年森林清查数据和SPOT遥感影像,以山西省阳泉地区为例,采用生物量换算因子连续函数法对研究区乔木林地上生物量和碳密度进行估算;在此基础上,选取遥感影像、环境因子(海拔、坡度、坡向等)为自变量,利用增强型BP神经网络建立研究区乔木林碳密度估算模型并输出空间分布图。结果表明:阳泉地区乔木林生物量为552774 t,碳密度为11.38t·hm-2;从不同林型、林龄和起源的生物量及碳密度来看,针叶林、幼龄林、人工林的生物量最大,阔叶林、成熟林、天然林的碳密度最大;采用增强型BP神经网络可以很好地模拟乔木林碳密度,针叶林、阔叶林、针阔混交林仿真结果的平均相对误差和平均相对误差的绝对值分别2.40%、6.87%、-4.09%和6.83%、2.77%、3.99%;基于BP神经网络模型输出乔木林碳密度空间分布图,模拟精度达到85.05%,进一步验证了人工神经网络能为森林碳密度提供快速准确的估测,为今后的森林资源调查和管理提供了科学依据。  相似文献   

10.
黑龙江省黑河地区森林地上生物量和NPP估测及时空格局   总被引:1,自引:0,他引:1  
根据黑龙江省黑河地区2005和2010年1390块固定样地数据和东北地区树种生物量异速模型,估算各样地单位面积森林地上生物量(AGB)和净初级生产力(NPP).结合该地区2005和2010年两期ETM+遥感图像,运用地统计克里格与协同克里格法对AGB和NPP进行插值,比较多种方差函数的拟合效果,并用最佳插值方法得出该地区AGB和NPP的分布图;通过两期分布图的对比,分析该区域AGB和NPP随时间和空间的动态变化趋势,及其与地形因子(坡向、坡度、海拔)和不同林分类型的时空变化规律.结果表明: 2005—2010年,黑河地区AGB呈现增加趋势,高于40 t·hm-2的生物量面积明显增加;NPP有所下降,出现高NPP地区向低NPP地区转变的现象.AGB和NPP与各地形因子均有一定的相关性,其中,与海拔的相关性明显,说明AGB和NPP的分布受海拔影响显著.研究期间,AGB在各个坡向均有所提高,NPP则降低;AGB和NPP随着坡度增大、海拔增高有增加趋势;常绿针叶林AGB和NPP增长最多,针阔混交林AGB增长最少,落叶阔叶林NPP增长最少.  相似文献   

11.
Aim The objectives of this study were to determine the relationships between climatic factors and litterfall in coniferous and broadleaf forests in Eurasia and to explore the difference in litterfall between coniferous and broadleaf forests as related to climate at a continental scale. Location We have used data from across Eurasia. Methods The relationships between litterfall and climatic factors were examined using linear regression analysis of a compilation of published data from coniferous and broadleaf forests in Eurasia. Results The relationships between litterfall and climatic factors show that in the temperate, subtropical, and tropical areas, broadleaf forests had higher litterfall than coniferous ones, whilst the opposite was found for boreal forests. Combining all climatic zones, a multiple regression analysis using annual mean temperature (T) and annual precipitation (P) as independent variables gave an adjusted R2 () of 0.272 for total litterfall in coniferous forests (n = 199, P < 0.001), 0.498 for broadleaf litterfall (n = 240, P < 0.001), and 0.535 for combined coniferous and broadleaf litterfall (n = 439, P < 0.001). The linear models for broadleaf stands have significantly higher coefficients for T and P than those for coniferous ones but the intercepts were similar. Thus, litterfall in broadleaf forests increased faster with T and P than that in coniferous forests. Further, a transformation of temperature and precipitation to relative units showed that a relative‐unit change in T had a larger impact than P on total litterfall in broadleaf forests. The results indicate that at a continental scale, climatic controls over litterfall differ between coniferous and broadleaf forests. Conclusions A relative unit change in annual mean temperature has a greater effect on litterfall compared to the same change in annual precipitation across the Eurasian forests. Further, the higher response to T for broadleaf forests indicates a difference in climate control between coniferous and broadleaf forests at a continental scale, and consequently different litterfall responses to climate change.  相似文献   

12.
Biomass change of the world's forests is critical to the global carbon cycle. Despite storing nearly half of global forest carbon, the boreal biome of diverse forest types and ages is a poorly understood component of the carbon cycle. Using data from 871 permanent plots in the western boreal forest of Canada, we examined net annual aboveground biomass change (ΔAGB) of four major forest types between 1958 and 2011. We found that ΔAGB was higher for deciduous broadleaf (DEC) (1.44 Mg ha?1 year?1, 95% Bayesian confidence interval (CI), 1.22–1.68) and early‐successional coniferous forests (ESC) (1.42, CI, 1.30–1.56) than mixed forests (MIX) (0.80, CI, 0.50–1.11) and late‐successional coniferous (LSC) forests (0.62, CI, 0.39–0.88). ΔAGB declined with forest age as well as calendar year. After accounting for the effects of forest age, ΔAGB declined by 0.035, 0.021, 0.032 and 0.069 Mg ha?1 year?1 per calendar year in DEC, ESC, MIX and LSC forests, respectively. The ΔAGB declines resulted from increased tree mortality and reduced growth in all forest types except DEC, in which a large biomass loss from mortality was accompanied with a small increase in growth. With every degree of annual temperature increase, ΔAGB decreased by 1.00, 0.20, 0.55 and 1.07 Mg ha?1 year?1 in DEC, ESC, MIX and LSC forests, respectively. With every cm decrease of annual climatic moisture availability, ΔAGB decreased 0.030, 0.045 and 0.17 Mg ha?1 year?1 in ESC, MIX and LSC forests, but changed little in DEC forests. Our results suggest that persistent warming and decreasing water availability have profound negative effects on forest biomass in the boreal forests of western Canada. Furthermore, our results indicate that forest responses to climate change are strongly dependent on forest composition with late‐successional coniferous forests being most vulnerable to climate changes in terms of aboveground biomass.  相似文献   

13.
Tropical forests contain an important proportion of the carbon stored in terrestrial vegetation, but estimated aboveground biomass (AGB) in tropical forests varies two‐fold, with little consensus on the relative importance of climate, soil and forest structure in explaining spatial patterns. Here, we present analyses from a plot network designed to examine differences among contrasting forest habitats (terra firme, seasonally flooded, and white‐sand forests) that span the gradient of climate and soil conditions of the Amazon basin. We installed 0.5‐ha plots in 74 sites representing the three lowland forest habitats in both Loreto, Peru and French Guiana, and we integrated data describing climate, soil physical and chemical characteristics and stand variables, including local measures of wood specific gravity (WSG). We use a hierarchical model to separate the contributions of stand variables from climate and soil variables in explaining spatial variation in AGB. AGB differed among both habitats and regions, varying from 78 Mg ha?1 in white‐sand forest in Peru to 605 Mg ha?1 in terra firme clay forest of French Guiana. Stand variables including tree size and basal area, and to a lesser extent WSG, were strong predictors of spatial variation in AGB. In contrast, soil and climate variables explained little overall variation in AGB, though they did co‐vary to a limited extent with stand parameters that explained AGB. Our results suggest that positive feedbacks in forest structure and turnover control AGB in Amazonian forests, with richer soils (Peruvian terra firme and all seasonally flooded habitats) supporting smaller trees with lower wood density and moderate soils (French Guianan terra firme) supporting many larger trees with high wood density. The weak direct relationships we observed between soil and climate variables and AGB suggest that the most appropriate approaches to landscape scale modeling of AGB in the Amazon would be based on remote sensing methods to map stand structure.  相似文献   

14.
利用树木年轮宽度结合树木生物量方程,重建了贵州3个地区典型森林(2个常绿与落叶阔叶混交林和1个典型常绿阔叶林)6个优势树种(天龙山:化香树Platycarya strobilacea、安顺润楠Machilus cavaleriei;茂兰:化香树、马尾松Pinus massoniana;雷公山:华山松Pinus armandii、白梓树Pterostyrax psilophyllus)以树木个体为单元的地上生物量(AGB)与地上净初级生产力(ANPP);比较了喀斯特与非喀斯特地区树木AGB与ANPP的差异;并研究了近50年气候变化对ANPP的影响。结果显示,针叶树的平均年轮宽度大于阔叶树,喀斯特地区针叶树和阔叶树的平均树木年轮宽度,分别小于非喀斯特地区针叶树和阔叶树的平均树木年轮宽度。喀斯特地区树木的AGB及其变异幅度均小于非喀斯特地区树木。近50年来,喀斯特地区阔叶树与针叶树的ANPP平均分别为(2.4±1.2) kg a~(-1)株~(-1)和(4.6±4.1) kg a~(-1)株~(-1),显著低于非喀斯特地区阔叶树与针叶树的(5.6±4.8) kg a~(-1)株~(-1)和(12.4±7.7) kg a~(-1)株~(-1)。喀斯特地区树木ANPP的增长趋势与年均温的相关性高于生长季降水,非喀斯特地区树木ANPP与年均温和生长季降水均显著相关,且不管是在喀斯特还是在非喀斯特地区,针叶树ANPP对气候指标的变化比阔叶树更敏感。  相似文献   

15.
Phenological events, such as bud burst, are strongly linked to ecosystem processes in temperate deciduous forests. However, the exact nature and magnitude of how seasonal and interannual variation in air temperatures influence phenology is poorly understood, and model‐based phenology representations fail to capture local‐ to regional‐scale variability arising from differences in species composition. In this paper, we use a combination of surface meteorological data, species composition maps, remote sensing, and ground‐based observations to estimate models that better represent how community‐level species composition affects the phenological response of deciduous broadleaf forests to climate forcing at spatial scales that are typically used in ecosystem models. Using time series of canopy greenness from repeat digital photography, citizen science data from the USA National Phenology Network, and satellite remote sensing‐based observations of phenology, we estimated and tested models that predict the timing of spring leaf emergence across five different deciduous broadleaf forest types in the eastern United States. Specifically, we evaluated two different approaches: (i) using species‐specific models in combination with species composition information to ‘upscale’ model predictions and (ii) using repeat digital photography of forest canopies that observe and integrate the phenological behavior of multiple representative species at each camera site to calibrate a single model for all deciduous broadleaf forests. Our results demonstrate variability in cumulative forcing requirements and photoperiod cues across species and forest types, and show how community composition influences phenological dynamics over large areas. At the same time, the response of different species to spatial and interannual variation in weather is, under the current climate regime, sufficiently similar that the generic deciduous forest model based on repeat digital photography performed comparably to the upscaled species‐specific models. More generally, results from this analysis demonstrate how in situ observation networks and remote sensing data can be used to synergistically calibrate and assess regional parameterizations of phenology in models.  相似文献   

16.
Forest structure is strongly related to forest ecology, and it is a key parameter to understand ecosystem processes and services. Airborne laser scanning (ALS) is becoming an important tool in environmental mapping. It is increasingly common to collect ALS data at high enough point density to recognize individual tree crowns (ITCs) allowing analyses to move beyond classical stand‐level approaches. In this study, an effective and simple method to map ITCs, and their stem diameter and aboveground biomass (AGB) is presented. ALS data were used to delineate ITCs and to extract ITCs’ height and crown diameter; then, using newly developed allometries, the ITCs’ diameter at breast height (DBH) and AGB were predicted. Gini coefficient of DBHs was also predicted and mapped aggregating ITCs predictions. Two datasets from spruce dominated temperate forests were considered: one was used to develop the allometric models, while the second was used to validate the methodology. The proposed approach provides accurate predictions of individual DBH and AGB (R2 = .85 and .78, respectively) and of tree size distributions. The proposed method had a higher generalization ability compared to a standard area‐based method, in particular for the prediction of the Gini coefficient of DBHs. The delineation method used detected more than 50% of the trees with DBH >10 cm. The detection rate was particularly low for trees with DBH below 10 cm, but they represent a small amount of the total biomass. The Gini coefficient of the DBH distribution was predicted at plot level with R2 = .46. The approach described in this work, easy applicable in different forested areas, is an important development of the traditional area‐based remote sensing tools and can be applied for more detailed analysis of forest ecology and dynamics.  相似文献   

17.
We studied the relative effects of landscape configuration, environmental variables, forest age, and spatial variables on estimated aboveground biomass (AGB) in Costa Rican secondary rain forests patches. We measured trees ≥5 cm dbh in 24, 0.25 ha plots and estimated AGB for trees 5–24.9 cm dbh and for trees >25 cm dbh using two allometric equations based on multispecies models using tree dbh and wood‐specific gravity. AGB averaged 87.3 Mg/ha for the 24 plots (not including remnant trees) and 123.4 Mg/ha including remnant trees (20 plots). There was no effect of forest age on AGB. Variation partitioning analysis showed that soils, climate, landscape configuration, and space together explained 61% of tree AGB variance. When controlling for the effects of the other three variables, only soils remained significant. Soil properties, specifically K and Cu, had the strongest independent effect on AGB (variation partitioning, R2 = 0.17, p = 0.0310), indicating that in this landscape, AGB variation in secondary forest patches is influenced by soil chemical properties. Elucidating the relative influence of soils in AGB variation is critical for understanding changes associated with land cover modification across Neotropical landscapes, as it could have important consequences for land use planning since secondary forests are considered carbon sinks. Abstract in Spanish is available with online material.  相似文献   

18.
Aim The aim of this study is to determine the patterns of nitrogen (N) concentrations in leaf litter of forest trees as functions of climatic factors, annual average temperature (Temp, °C) and annual precipitation (Precip, dm) and of forest type (coniferous vs. broadleaf, deciduous vs. evergreen, Pinus, etc.). Location The review was conducted using data from studies across the Eurasian continent. Methods Leaf litter N concentration was compiled from 204 sets of published data (81 sets from coniferous and 123 from broadleaf forests in Eurasia). We explored the relationships between leaf litter N concentration and Temp and Precip by means of regression analysis. Leaf litter data from N2‐fixing species were excluded from the analysis. Results Over the Eurasian continent, leaf litter N concentration increased with increasing Temp and Precip within functional groups such as conifers, broadleaf, deciduous, evergreen and the genus Pinus. There were highly significant linear relationships between ln(N) and Temp and Precip (P < 0.001) for all available data combined, as well as for coniferous trees, broadleaf trees, deciduous trees, evergreen trees and Pinus separately. With both Temp and Precip as independent variables in multiple regression equations, the adjusted coefficient of determination () was evidently higher than in simple regressions with either Temp or Precip as independent variable. Standardized regression coefficients showed that Temp had a larger impact than Precip on litter N concentration for all groups except evergreens. The impact of temperature was particularly strong for Pinus. Conclusions The relationship between leaf litter N concentration and temperature and precipitation can be well described with simple or multiple linear regression equations for forests over Eurasia. In the context of global warming, these regression equations are useful for a better understanding and modelling of the effects of geographical and climatic factors on leaf litter N at a regional and continental scale.  相似文献   

19.
Our ability to model global carbon fluxes depends on understanding how terrestrial carbon stocks respond to varying environmental conditions. Tropical forests contain the bulk of the biosphere's carbon. However, there is a lack of consensus as to how gradients in environmental conditions affect tropical forest carbon. Papua New Guinea (PNG) lies within one of the largest areas of contiguous tropical forest and is characterized by environmental gradients driven by altitude; yet, the region has been grossly understudied. Here, we present the first field assessment of aboveground biomass (AGB) across three main forest types of PNG using 193 plots stratified across 3,100‐m elevation gradient. Unexpectedly, AGB had no direct relationship to rainfall, temperature, soil, or topography. Instead, natural disturbances explained most variation in AGB. While large trees (diameter at breast height > 50 cm) drove altitudinal patterns of AGB, resulting in a major peak in AGB (2,200–3,100 m) and some of the most carbon‐rich forests at these altitudes anywhere. Large trees were correlated to a set of climatic variables following a hump‐shaped curve. The set of “optimal” climatic conditions found in montane cloud forests is similar to that of maritime temperate areas that harbor the largest trees in the world: high ratio of precipitation to evapotranspiration (2.8), moderate mean annual temperature (13.7°C), and low intra‐annual temperature range (7.5°C). At extreme altitudes (2,800–3,100 m), where tree diversity elsewhere is usually low and large trees are generally rare or absent, specimens from 18 families had girths >70 cm diameter and maximum heights 20–41 m. These findings indicate that simple AGB‐climate‐edaphic models may not be suitable for estimating carbon storage in forests where optimal climate niches exist. Our study, conducted in a very remote area, suggests that tropical montane forests may contain greater AGB than previously thought and the importance of securing their future under a changing climate is therefore enhanced.  相似文献   

20.
Accurate estimates of forest biomass stocks and fluxes are needed to quantify global carbon budgets and assess the response of forests to climate change. However, most forest inventories consider tree mortality as the only aboveground biomass (AGB) loss without accounting for losses via damage to living trees: branchfall, trunk breakage, and wood decay. Here, we use ~151,000 annual records of tree survival and structural completeness to compare AGB loss via damage to living trees to total AGB loss (mortality + damage) in seven tropical forests widely distributed across environmental conditions. We find that 42% (3.62 Mg ha−1 year−1; 95% confidence interval [CI] 2.36–5.25) of total AGB loss (8.72 Mg ha−1 year−1; CI 5.57–12.86) is due to damage to living trees. Total AGB loss was highly variable among forests, but these differences were mainly caused by site variability in damage-related AGB losses rather than by mortality-related AGB losses. We show that conventional forest inventories overestimate stand-level AGB stocks by 4% (1%–17% range across forests) because assume structurally complete trees, underestimate total AGB loss by 29% (6%–57% range across forests) due to overlooked damage-related AGB losses, and overestimate AGB loss via mortality by 22% (7%–80% range across forests) because of the assumption that trees are undamaged before dying. Our results indicate that forest carbon fluxes are higher than previously thought. Damage on living trees is an underappreciated component of the forest carbon cycle that is likely to become even more important as the frequency and severity of forest disturbances increase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号