首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
马尾松毛虫雄蛾触角毛状感受器的细微结构   总被引:1,自引:0,他引:1  
马尾松毛虫Dendrolimuspunctatus(Walker)雄蛾有一对羽毛状触角。在触角鞭节的每对侧枝的内侧(迎风面)着生许多毛状感受器。每个毛状感受器由几丁质表皮毛及位于其下的三个感觉神经原和三个呈同心排列的辅助细胞──鞘原细胞、毛原细胞和膜原细胞构成。几丁质表皮毛上有许多孔。毛腔内充满感受器淋巴液。感觉神经原发出的树状突伸入毛腔,浸浴于感受器淋巴液内。这些结构特征表明它是一种司嗅觉的化学感受器。雄蛾终生不取食,推断它的嗅觉感受器主要用以感受雌蛾释放的性外激素,帮助寻找配偶  相似文献   

2.
蒲氏钩蝠蛾Thitarodes pui(Zhang et al.)是冬虫夏草寄主昆虫之一,其雄成虫触角感受器在求偶交配过程中起主要作用。本研究应用电子扫描显微镜对蒲氏钩蝠蛾雄成虫触角上的化学感受器进行观察。结果发现,雄成虫触角上有7种感受器,即毛形感受器、刺形感受器、锥形感受器、腔锥形感受器、钟形感受器、Bhm氏鬃毛和鳞形感受器,其中以毛形感受器和鳞形感受器数目最多,腔锥感受器又分为长栓形和短栓形两种。综合本研究结果与已知蝠蛾的触角感受器,发现蝠蛾触角感受器在表面结构、感受器类型等方面与其它鳞翅目昆虫存在差异。  相似文献   

3.
茶银尺蠖雄蛾触角的扫描电镜观察   总被引:2,自引:0,他引:2  
本文采用扫描电镜对茶银尺蠖Scopula subpunctaria Herrich-Schaeffer雄蛾触角感受器进行了外部形态的观察和研究。结果表明,茶银尺蠖雄蛾的触角感受器主要有毛形感受器、鳞形感受器和刺形感受器3种。描述了各种感受器的形态特征和着生规律,对其主要生理功能进行了分析和讨论。  相似文献   

4.
小地老虎雄蛾触角感受器的扫描电镜观察   总被引:1,自引:0,他引:1  
利用扫描电镜观察了小地老虎雄蛾触角感受器的种类、形态和分布.结果表明, 小地老虎雄蛾触角为双栉状(端半部为丝状),由1节柄节、1节梗节和82~92节鞭节组成.在触角上分布有毛形感器、刺形感器、鳞形感器、腔锥感器、腔形感器、 耳形感器、B(o)hm's氏鬃毛7种感受器,其中毛形感器数量最多.  相似文献   

5.
梨小食心虫触角感受器雌雄二型的超微研究   总被引:1,自引:0,他引:1  
梨小食心虫是果树上的一种重要害虫。本文采用扫描电子显微镜技术(SEM)对成虫离体触角外部形态进行观察,以Onagbola和Fadamiro(2008)为分类标准,对梨小食心虫的触角感受器重新进行分类。结果显示,梨小食心虫触角为线状,由柄节、梗节和鞭节构成,鞭节细分为38-45个亚节。雌、雄蛾共有8种触角感受器,分别为无孔栓锥形感受器、无孔B9hm's鬃毛、单孔刺形感受器、多孔毛形感受器、多孔锥形感受器、多孔腔锥形感受器、多孔耳形感受器和芽孢形感受器(只在雌蛾触角上观察到)。感受器在类型、形态和数量上存在雌雄二型现象。耳形感受器数量在雌雄间差异显著,雌雄蛾刺形感受器、栓锥形感受器、毛形感受器、锥形感受器、腔锥形感受器长度差异显著,并对其功能进行了推测。  相似文献   

6.
七星瓢虫成虫下颚须上的化学感受器   总被引:9,自引:0,他引:9  
七星瓢虫成虫下颚须端节的内侧是一个船背形隆起的平面, 其上着生栓锥形化学感受器约1, 500个, 其中一半左右是味觉感受器, 其余为嗅觉感受器.每一个味觉感受器小体内, 有感受细胞4—8个, 它们的树突远区通过感橛腔时, 或处于同一个感橛腔中, 或在2个感橛腔中, 或在3个感橛腔中.每一个嗅觉感受器小体内, 感受细胞的数目恒为3个, 有限大的感受器淋巴腔.感橛较薄, 终止于栓锥腔的基部.树突在栓锥腔内分枝.栓锥的顶部有许多半球状突起.下颚须内所具有的感受细胞比下唇须内所具有的超百倍之多, 由取食时下颚须的动作来判断, 它们的主要作用在于寻找和试探食物.  相似文献   

7.
为了解榆木蠹蛾Holcocerus vicarius (Walker)雌蛾性信息素分泌腺(性信息素释放系统)位置、 表面形态和超微结构及雄蛾触角感受器(性信息素接收系统)的种类、 形态、 分布及功能, 利用扫描电镜和透射电镜对榆木蠹蛾雌蛾性信息素分泌腺和雄蛾的触角进行观察。结果表明: 榆木蠹蛾雌蛾性信息素分泌腺位于腹尖末端第8~9节节间膜上的背面中央区域, 腺体表面分布着许多饱满的锥状突起, 2日龄处女雌蛾腺体细胞间有明显的胞连接, 细胞基底膜基褶较多, 质膜上分布着微绒毛, 并与内表皮连接, 内表皮上含有多层几丁质, 胞质中含有脂质粒、 大量空泡、 光面内质网、 粗面内质网及线粒体; 雄蛾触角鞭节上有5种感受器, 为毛形感器、 刺形感器、 锥形感器、 腔锥形感器和曲毛形感器, 其中毛形感器数量最多, 曲毛形感器最少。柄节和梗节被大量鳞片覆盖, 未观察到感器。榆木蠹蛾性信息素通讯系统的研究为榆木蠹蛾性信息素的生物合成、 性信息素的提取、 鉴定及成虫生殖交配生物学行为提供了依据。  相似文献   

8.
北京幽灵蛛体表微感受器的类型、结构和分布   总被引:2,自引:1,他引:1  
北京幽灵蛛(Pholcus beijingensis)体表的微感受器包括毛状感受器(触毛、听毛、味觉毛和刺)、裂缝状感受器(单个裂缝器、竖琴器)和跗节器等.扫描电镜观察显示,北京幽灵蛛体表的毛状感受器数量最多,分布最广;其次是裂缝感受器;此外,每个跗节末端具有一个跗节器.除触毛在整个身体表面均有分布外,其他毛状感受器(...  相似文献   

9.
大螟雄蛾触角对性外激素及其类似物的电生理反应   总被引:4,自引:1,他引:3  
电生理试验显示出:大螟Sesamia inferens(Walker)雄蛾触角对Z11-16:Ac(A)oZ11-16:OH(B)激起强烈的触角电位(EAG)反应,Z11-16:ALD?,E11-16:Ac(D),Z9-14:Ac(E)和Z7-12:Ac(F)四种化合物也能激起较强的EAG反应;A化合物的刺激阈比B高,此两种化合物5:5比例时,激起的反应最强烈。电生理的试验推测,雄蛾触角对A和B两种化合物的感受,是通过触角内两种不同类型的嗅觉感受器。A和B不同比例混合后,田间诱蛾试验证明:在9:1,8:2,5:5的比例时,其诱蛾量远远超过单独的A化合物;E加入A与B的混合物中,起抑制诱蛾的效果,上述试验表明,Z11-16:OH是大螟的性诱剂。  相似文献   

10.
柑橘大实蝇成虫超微感器的扫描电镜观察   总被引:2,自引:0,他引:2  
利用扫描电镜观察了柑橘大实蝇Bactrocera minax成虫触角、下颚须、平衡棒、前足跗节和产卵器的感器。共发现5种感受器,包括毛形感受器、微毛感受器、刺形感受器、锥形感受器和腔锥形感受器,其中,柑橘大实蝇的触角分布有毛形感受器、微毛感受器、刺形感受器和锥形感受器,下颚须有微毛感受器、刺形感受器和锥形感受器分布,平衡棒分布有微毛感受器和刺形感受器,足跗节有毛形感受器和刺形感受器分布。产卵管针突缩入产卵器基节中,其上有毛形感受器和腔锥形感受器分布,产卵管基节有较多毛形感受器。  相似文献   

11.
Drosophila olfactory receptor neurons are found within specialized sensory hairs on antenna and maxillary palps. The linking of odorant-induced responses to olfactory neuron activities is often accomplished via Single Sensillum Recordings (SSR), in which an electrode inserted into a single sensory hair records the neuronal activities of all the neurons housed in that sensillum. The identification of the recorded sensillum requires matching the neuronal responses with known odor-response profiles. To record from specific sensilla, or to systematically screen all sensillar types, requires repetitive and semi-random SSR experiments. Here, we validate an approach in which the GAL4/UAS binary expression system is used for targeting specific sensilla for recordings. We take advantage of available OrX-Gal4 lines, in combination with recently generated strong membrane targeted GFP reporters, to guide electrophysiological recordings to GFP-labeled sensilla. We validate a full set of reagents that can be used to rapidly screen the odor-response profiles of all basiconic, intermediate, and trichoid sensilla. Fluorescence-guided SSR further revealed that two antennal trichoid sensilla types should be re-classified as intermediate sensilla. This approach provides a simple and practical addition to a proven method for investigating olfactory neurons, and can be extended by the addition of UAS-geneX effectors for gain-of-function or loss-of-function studies.  相似文献   

12.
棉铃虫Helicoverpa armigera主要借助于性信息素通讯完成雌雄识别,实现交配和种群繁衍。关于棉铃虫感受性信息素机制的研究一直是我国化学生态学领域的热点和重心,研究结果有助于开发和改进棉铃虫防治的性引诱剂。本文将对棉铃虫雄虫感受雌虫释放的性信息素的机制进行综述,以期为深入研究棉铃虫及其他相关昆虫的性信息素感受的分子和神经机理提供参考。棉铃虫雌虫性信息素腺体合成和释放多种长链、饱和或非饱和的脂肪醛和醇等化合物,其中Z11-16:Ald为主要性信息素成分,Z9-16∶Ald和Z9-14∶Ald为次要性信息素成分,不同组分按一定比例混合可明显增强对雄性棉铃虫的引诱效果,而化合物Z11-16∶OH和高剂量的Z9-14∶Ald对性信息素引诱活性具有明显的抑制效果。相应地,雄性棉铃虫触角上A, B和C 3种类型的毛形感器能够感受这些信息化合物。A类型毛形感器内表达受体OR13感受Z11-16∶Ald,B类型毛形感器内表达OR14b感受Z9-14∶Ald,C类型毛形感器内表达OR6和OR16感受Z9-16∶Ald, Z9-14∶Ald, Z11-16:Ac和Z11-16∶OH。受体的表达位置和功能与不同类型毛形感器的电生理反应特性相一致。钙离子成像证明在棉铃虫触角叶内的3个扩大型神经纤维球接受这些气味信息,其中神经纤维球云状体接受Z11-16∶Ald,背中间后侧纤维球接受Z9-16∶Ald,背中间前侧纤维球接受Z9-14∶Ald, Z11-16∶Ac和Z11-16∶OH。这些研究成果在感器、受体和脑中枢水平上揭示了棉铃虫感受性信息素的机制,在这些研究基础上,我们认为需要深入开展以下方面的研究:(1)进一步鉴定相关性信息素受体的功能和定位;(2)深入研究脑内嗅觉高级中枢对性信息素信息的处理和整合神经机制;(3)明确棉铃虫性信息素感受受到寄主植物、光周期、温度、湿度等环境因素的影响及机制。  相似文献   

13.
The ultrastructure of the mouthparts of Dermatobia hominis was studied using scanning electron microscopy. The morphological characteristics of the segments, articulations, sensory organs, and pilose covering are described. Mechanoreceptors of the long trichoid sensillum and smaller trichoid sensillum types were observed, as well as labellar gustatory receptors of the basiconic sensillum type, which differed between the sexes. These observations are discussed with reference to the current literature on the morphology and sense organs of dipteran mouthparts, and the prevailing view that the adult mouthparts of this species are non-functional is challenged.  相似文献   

14.
Scanning- and transmission electron-microscope studies of the sensilla of the pedicel of Nilaparvata lugens have revealed an elaborate plaque organ and three structurally different types of trichoid hairs. Each plaque organ is innervated by 120-150 neurons arranged in groups. The porous sensory cuticle is folded into finger-like projections and is surrounded by protective non-sensory denticles. Trichoid sensilla differ in number of neurons, appearance of dendrites and arrangement of pores. Type I, innervated by 2 neurons, has pores along its length and is probably olfactory in function. Types II and III are innervated by one and five neurons, respectively, and the absence of pores along the hair shaft indicates a possible gustatory role. The importance of these sensilla is discussed with reference to the behaviour of this important insect pest.  相似文献   

15.
Insect repellents are widely used to protect against insect bites and thus prevent allergic reaction and the spread of disease. To gain insight into the mosquito’s response to chemicals repellents, we investigated the interaction between the olfactory system of the mosquito Culex quinquefasciatus Say and chemical repellents using single sensillum recording. The interactions of 50 repellent chemicals with olfactory receptor neurons were measured in six different types of mosquito sensilla: long sharp trichoid (LST), short sharp trichoid (SST), short blunt trichoid I (SBT-I), short blunt trichoid II (SBT-II), short blunt trichoid-curved (SBT-C), and grooved peg (GP). A single olfactory neuron reacted to the chemical repellents in each of the sensilla except for SBT-I and SBT-II, where two neurons were involved. Other than LST and GP, which showed no or very weak responses to the repellents tested, all the sensilla showed significant excitatory responses to certain types of repellents. Terpene-derived chemicals such as eucalyptol, α-pinene, and camphor, stimulated olfactory receptor neurons in a dose-dependent manner and mosquitoes responded more strongly to terpene-derived chemical repellents than to non-terpene-derived chemicals such as dimethyl phthalate. Mosquitoes also exhibited a similar response to stereoisomers of chemicals such as (−)-β-pinene versus (+)-β-pinene, and (−)-menthone versus (+)-menthone. This study not only demonstrates the effects of chemical repellents on the mosquito olfactory system but also provides important information that will assist those screening new mosquito repellents and designing new mosquito control agents.  相似文献   

16.
G. -W. Guse 《Protoplasma》1980,105(1-2):53-67
Summary The sensilla are associated with 6 enveloping cells. The innermost enveloping cell (e 1) secretes the dendritic sheath (=thecogen cell). All other enveloping cells are involved in the formation of the outer cuticular apparatus in secreting the cuticle of a definite region of the new hair shaft.The development of the new sensilla begins when an exuvial space expands between old cuticle and epithelium. The newly forming hair shafts lie folded back in an invagination of the epidermal tissue. Only a distal shaft part projects into the free exuvial space. The cuticle of the distal and middle shaft region is secreted by the three middle enveloping cells (e 2–e 4) (=trichogen cells), which are arranged around the dendritic sheath.The wall of the cylinder, in which the distal shaft is situated, is formed by the cuticle of the future proximal shaft region. It is secreted by the outer enveloping cells (e 5 and e 6). Furthermore, both enveloping cells form the hair socket (=trichogen-tormogen cells).The outer dendritic segments encased within a dendritic sheath run up through the newly formed hair shaft and continue to the old cuticular apparatus. The connection between sensory cells and old hair shaft is maintained until ecdysis. On ecdysis the old cuticle is shed and the newly formed shaft of the sensillum is everted like the invaginated finger of a glove. The dendritic sheath and the outer dendritic segments break off at the tip of the new hair shaft. Morphologically this moulting process ensures that the sensitivity of the receptors is maintained until ecdysis.The internal organization of the sensory cells shows no striking changes during the moulting cycle. An increased number of vesicles is accumulated distally within the inner dendritic segments and distributed throughout the outer segments of the dendrites. The cytoplasmic feature of the enveloping cells indicates that synthesis and release of substances for the cuticular apparatus of the new sensillum take place.  相似文献   

17.
Stable flies, Stomoxys calcitrans L. (Diptera: Muscidae), are economically important biting flies that have caused billions of dollars in losses in the livestock industry. Field monitoring studies have indicated that olfaction plays an important role in host location. To further our understanding of stable fly olfaction, we examined the antennal morphology of adults using scanning electron microscopy techniques. Four major types of sensillum were found and classified as: (a) basiconic sensilla; (b) trichoid sensilla with three subtypes; (c) clavate sensilla, and (d) coeloconic sensilla. No significant differences between male and female flies in abundances (total numbers) of these sensillum types were observed, except for medium-sized trichoid sensilla. The distinctive pore structures found on the surface of basiconic and clavate sensilla suggest their olfactory functions. No wall pores were found in trichoid and coeloconic sensilla, which suggests that these two types of sensillum may function as mechano-receptors. Details of the distributions of different sensillum types located on the funicle of the fly antenna were also recorded. Electroantennogram results indicated significant antennal responses to host-associated compounds. The importance of stable fly olfaction relative to host and host environment seeking is discussed. This research provides valuable new information that will enhance future developments in integrated stable fly management.  相似文献   

18.
斜脉蝠蛾幼虫分类特征研究   总被引:4,自引:0,他引:4  
余虹  高祖Xun 《昆虫学报》1993,36(4):465-468
本文研究报道了冬虫夏草主要寄主之一斜脉蝠蛾Hipialus oblifurcus Chu et Wang幼虫头、胸、腹各部分的形态特征、颜色、毛序及各龄幼虫的头宽和体长,可作为鉴别种类的依据。  相似文献   

19.
While chemical communication has been investigated intensively in vertebrates and insects, relatively little is known about the sensory world of spiders despite the fact that chemical cues play a key role in natural and sexual selection in this group. In insects, olfaction is performed with wall–pore and gustation with tip-pore sensilla. Since spiders possess tip-pore sensilla only, it is unclear how they accomplish olfaction. We scrutinized the ultrastructure of the trichoid tip-pore sensilla of the orb weaving spider Argiope bruennichi—a common Palearctic species the males of which are known to be attracted by female sex pheromone. We also investigated the congener Argiope blanda. We examined whether the tip-pore sensilla differ in ultrastructure depending on sex and their position on the tarsi of walking legs of which only the distal parts are in contact with the substrate. We hypothesized as yet undetected differences in ultrastructure that suggest gustatory versus olfactory functions. All tarsal tip-pore sensilla of both species exhibit characters typical of contact-chemoreceptors, such as (a) the presence of a pore at the tip of the sensillum shaft, (b) 2–22 uniciliated chemoreceptive cells with elongated and unbranched dendrites reaching up to the tip-pore, (c) two integrated mechanoreceptive cells with short dendrites and large tubular bodies attached to the sensillum shaft's base, and (d) a socket structure with suspension fibres that render the sensillum shaft flexible. The newly found third mechanoreceptive cell attached to the proximal end of the peridendritic shaft cylinder by a small tubular body was likely overlooked in previous studies. The organization of tarsal tip-pore sensilla did not differ depending on the position on the tarsus nor between the sexes. As no wall-pore sensilla were detected, we discuss the probability that a single type of sensillum performs both gustation and olfaction in spiders.  相似文献   

20.
The morphology of spider sensilla. I. Mechanoreceptors   总被引:3,自引:0,他引:3  
The common tactile hair sensilla of spider tarsi were studied in web spiders (Araneus) and ground spiders (Lycosa, Dugesiella) using scanning and transmission electron microscopy. All of these sensilla are innervated by three bipolar neurons whose dendrites end proximally at the sensillum base. Each dendritic terminal exhibits a tubular body, a dense array of microtubules typical for mechanoreceptive sensilla. A dendritic sheath encloses the outer dendritic segments and connects the dendritic terminals to cuticular components of the hair sensillum in three different ways: (1) A distal extension of the dendritic sheath connects to the midline of the hair base; (2) A forked arrangement of cuticular (?) strands attaches on both lateral sides of the hair base, and (3) The socket cuticle directly contacts a part of the dendritic sheath. The latter connection provides a fixed position for the three dendritic terminals and any movement of the hair shaft could be transmitted via connections (I) and (2). The triple innervation strongly suggests a directional sensitivity of these sensilla.Structural comparison between arachnid and insect mechanoreceptive sensilla indicates that tactile hair sensilla in Arachnida are multi-innervated whereas the corresponding reccptors in Insecta are singly innervated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号