首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 524 毫秒
1.
Aromatase transgenic mice exhibit hyperplastic and dysplastic changes, attesting to the importance of local estrogen in breast carcinogenesis. These mice also show increased levels of the estrogen receptor and β (ER, ERβ) suggesting that this receptor may play an important role in the initiation of estrogen-mediated mammary hyperplasia observed in these mice. To address the specific role of ER in the mammary development and in the induction of estrogen-mediated hyperplasia in aromatase transgenic mice, we have generated MMTV-aromatase × ER knockout cross (referred as aromatase/ERKO). Even though ERβ is expressed in aromatase/ERKO mice, lack of ER leads to impaired mammary growth in these mice. The data suggest that ER plays an important role in the mammary gland development as well as in the induction of mammary hyperplasia in aromatase transgenic mice. Lack of ER expression in the aromatase/ERKO mice resulted in a decrease in the expression of Cyclin D1, PCNA and TGFβ relative to the aromatase parental strain. The studies involving aromatase/ERKO mice show that lack of ER results in impaired mammary development even in the presence of continuous tissue estrogen, suggesting estrogen/ER-mediated actions are critical for mammary development and carcinogenesis.  相似文献   

2.
The transforming growth factor alpha (TGF) and its receptor (EGFR) are expressed in many breast cancers. Typically, the progression of estrogen dependent primary breast cancers into a hormone-independent state, due to the loss of the estrogen receptor, is associated with increased levels of TGF and EGFR, leading to aggressive breast carcinomas. The relationship between breast tumorigenesis and TGF is evident in the transgenic mice overexpressing TGF in the mammary glands. In the aromatase transgenic mice, the mammary glands exhibit preneoplastic developments but do not form frank tumors. To test the interactions between growth factor overexpression with tissue estrogen, we have crossed the aromatase transgenic mice with the TGF transgenic mice to produce a double transgenic strain. The histological data for the mammary glands of aromatase x TGF double transgenic mice show that these mice develop hyperplastic changes similar to the aromatase parental strain but no tumors are formed. Consistently, the expression of cyclin D1 and PCNA is diminished in the double transgenic strain as compared to the parental strains. In addition, the expression of TGF, EGF and EGFR are also decreased in the double transgenic strain, suggesting that continuous estrogen presence in the tissue due to aromatase overexpression downregulates the expression of EGFR and its ligands.  相似文献   

3.
Breast cancer is one of the most common forms of cancer observed in women. Endogenous estrogen is thought to play a major role in its development and estrogen receptor blockers are the most important drugs in its treatment. It has long been thought that any conditions or exposures, which enhance estrogenic responses, would result in an increased risk for breast cancer. The discovery of the second estrogen receptor, ERβ, which can have effects opposite to those of the well-known ‘original’ estrogen receptor (now called ER) challenges this simplistic view. In order to understand breast cancer one must first understand how the normal breast is maintained. The functions of ERβ in the breast remain to be defined but from what we have learnt about its activities in in vitro systems, this estrogen receptor may have a protective role in the breast. Studies in human and rodent breasts as well as in human breast cancer biopsies reveal that ERβ is by far the more abundant of the two ERs. Despite the role of estrogen in proliferation of the breast, neither of the two ERs appears to located in epithelial cells which divide in response to estrogen. In order to define the functions of ERβ in the normal and malignant breast, we have created mice in which the ERβ gene has been inactivated. Studies of the breasts of ERβ knock out mice (BERKO) revealed abnormal epithelial growth, overexpression of Ki67 and severe cystic breast disease as mice age.  相似文献   

4.
5.
6.

Background

Differences in the incidence and outcome of breast cancer among Hispanic women compared with white women are well documented and are likely explained by ethnic differences in genetic composition, lifestyle, or environmental exposures.

Methodolgy/Principal Findings

A population-based study was conducted in Galicia, Spain. A total of 510 women diagnosed with operable invasive breast cancer between 1997 and 2010 participated in the study. Data on demographics, breast cancer risk factors, and clinico-pathological characteristics were collected. The different breast cancer tumor subtypes were compared on their clinico-pathological characteristics and risk factor profiles, particularly reproductive variables and breastfeeding. Among the 501 breast cancer patients (with known ER and PR receptors), 85% were ER+/PR+ and 15% were ER-&PR-. Among the 405 breast cancer with known ER, PR and HER2 status, 71% were ER+/PR+/HER2- (luminal A), 14% were ER+/PR+/HER2+ (luminal B), 10% were ER−/PR−/HER2- (triple negative breast cancer, TNBC), and 5% were ER−/PR−/HER2+ (non-luminal). A lifetime breastfeeding period equal to or longer than 7 months was less frequent in case patients with TNBC (OR = 0.25, 95% CI = 0.08–0.68) compared to luminal A breast cancers. Both a low (2 or fewer pregnancies) and a high (3–4 pregnancies) number of pregnancies combined with a long breastfeeding period were associated with reduced odds of TNBC compared with luminal A breast cancer, although the association seemed to be slightly more pronounced among women with a low number of pregnancies (OR = 0.09, 95% CI = 0.005–0.54).

Conclusions/Significance

In case-case analyses with the luminal A cases as the reference group, we observed a lower proportion of TNBC among women who breastfed 7 or more months. The combination of longer breastfeeding duration and lower parity seemed to further reduce the odds of having a TNBC compared to a luminal A breast cancer.  相似文献   

7.
8.
9.
10.
Targeted disruption of the different ER genes has generated experimental animal models that are very useful in evaluating the distinct and cooperative roles of the two estrogen receptors, ER and ERβ, in reproductive but also non-reproductive tissues of both sexes. Phenotypic analysis has provided definitive experimental findings for estrogen receptor mediated physiological actions, involving ER in uterine, mammary gland and neuroendocrine sites. ERβ is involved most dramatically in the ovary as is ER. More detailed studies in combination with tissue specific or inducible ER knock outs will be important for future research.  相似文献   

11.
Postmenopausal estrogen depletion is a characterized risk factor for Alzheimer disease (AD), a human disorder linked to high levels of β-amyloid peptide (Aβ) in brain tissue. Previous studies suggest that estrogen negatively regulates the level of Aβ in the brain, but the molecular mechanism is unknown. Here, we provide evidence that estrogen promotes Aβ degradation mainly through a principal Aβ degrading enzyme, neprilysin, in neuroblastoma SH-SY5Y cells. We also demonstrate that up-regulation of neprilysin by estrogen is dependent on both estrogen receptor α and β (ERα and ERβ), and ligand-activated ER regulates expression of neprilysin through physical interactions between ER and estrogen response elements (EREs) identified in the neprilysin gene. These results were confirmed by in vitro gel shift and in vivo chromatin immunoprecipitation analyses, which demonstrate specific binding of ERα and ERβ to two putative EREs in the neprilysin gene. The EREs also enhance ERα- and ERβ-dependent reporter gene expression in a yeast model system. Therefore, the study described here provides a putative mechanism by which estrogen positively regulates expression of neprilysin to promote degradation of Aβ, reducing risk for AD. These results may lead to novel approaches to prevent or treat AD.  相似文献   

12.
Androgen receptor (AR) is commonly expressed in both the epithelium of normal mammary glands and in breast cancers. AR expression in breast cancers is independent of estrogen receptor alpha (ERα) status and is frequently associated with overexpression of the ERBB2 oncogene. AR signaling effects on breast cancer progression may depend on ERα and ERBB2 status. Up to 30% of human breast cancers are driven by overactive ERBB2 signaling and it is not clear whether AR expression affects any steps of tumor progression in this cohort of patients. To test this, we generated mammary specific Ar depleted mice (MARKO) by combining the floxed allele of Ar with the MMTV-cre transgene on an MMTV-NeuNT background and compared them to littermate MMTV-NeuNT, Arfl/+ control females. Heterozygous MARKO females displayed reduced levels of AR in mammary glands with mosaic AR expression in ductal epithelium. The loss of AR dramatically accelerated the onset of MMTV-NeuNT tumors in female MARKO mice. In this report we show that accelerated MMTV-NeuNT-dependent tumorigenesis is due specifically to the loss of AR, as hormonal levels, estrogen and progesterone receptors expression, and MMTV-NeuNT expression were similar between MARKO and control groups. MMTV-NeuNT induced tumors in both cohorts displayed distinct loss of AR in addition to ERα, PR, and the pioneer factor FOXA1. Erbb3 mRNA levels were significantly elevated in tumors in comparison to normal mammary glands. Thus the loss of AR in mouse mammary epithelium accelerates malignant transformation rather than the rate of tumorigenesis.  相似文献   

13.
14.
15.
Vascular smooth muscle cells (VSMCs) synthesize elastin (ELN), major protein of aortic tunica media which confers strength and elasticity to aortic wall. Protein loss or distortion is typical in aneurysm tunica media. Transforming growth factor β1 (TGFβ1) inhibits growth and connective protein expression of abdominal VSMCs cultures. Also, in atherogenic studies, estrogen (but not estrogen plus progestin) treatments inhibit aortic collagen accumulation and elastic loss, risk factors to subsequent aortic enlargement. Therefore, polymorphisms of ELN, estrogen receptor (ER) and β (ERβ), progesterone receptor (PR) and TGFβ1 genes and their products may be involved in the abdominal aortic aneurysm (AAA) development. Using PCR-RFLP method, we analyzed ELN RmaI (exon 16), ER PvuII-XbaI (intron 1), ERβ AluI (exon 8), PR TaqI (intron 7) and TGFβ1 Bsu36I (−509 bp, promoter) polymorphisms in 324 Caucasian male subjects: 225 healthy controls (mean age 71.20 ± 6.85 years) and 99 unrelated AAA patients (mean age 69.8 ± 7.1 years). No difference in ELN, ER, PR and TGFβ1 allele frequencies was observed in AAA patients versus controls (P > 0.05). However, because possessing at least an ERβ AluI restriction site was statistically associated to AAA onset (χ2 = 5.220; OR = 1.82, P < 0.05), ERβ polymorphism was proposed as genetic determinant in the AAA susceptibility.  相似文献   

16.
17.
The research of carcinogenetic mechanisms of breast cancer in different ethnic backgrounds is an interesting field, as clinical features of breast cancers vary among races. High premenopausal incidence is distinctive in East-Asian breast cancer. However, human cell lines derived from Asian primary breast tumor are rare. To provide alternative cell line models with a relevant genetic background, we aimed to establish breast cancer cell lines from Taiwanese patients of Han-Chinese ethnicity. Fresh tissue from mammary tumors were digested into organoids, plated and grown in basal serum-free medium of human mammary epithelial cells (HuMEC) with supplements. Cells were further enriched by positive selection with CD326 (epithelial cell adhesion molecule; EpCAM)-coated micro-magnetic beads. Two breast cancer cell lines derived from premenopausal women were successfully established by this method, and named Chang-Gung Breast Cancer 01 (CGBC 01) and 02 (CGBC 02). These two cell lines had a similar phenotype with weak expression of estrogen receptor (ER), progesterone receptor (PR), and without amplification of receptor tyrosine protein kinase erbB-2 (HER2/neu). Genome-wide Single Nucleotide Polymorphism (SNP) array showed multiple copy number alterations in both cell lines. Based on gene expression profiles, CGBC 01 and 02 were clustered into basal-like subtype with reference to the breast cancer cell line gene expression database. The tumorigenicity of both cell lines was extremely low in both anchorage-independence assay and transplantation into the mammary fat pads of nude mice. CGBC 01 and CGBC 02 are low tumorigenic breast cancer cell lines, established from Han-Chinese premenopausal breast cancer patients, which serve as in vitro models in studying the biological features of Asian breast cancer.  相似文献   

18.
Clinical and experimental studies show a modulatory role of estrogens in the brain and suggest their beneficial action in mental and neurodegenerative diseases. The estrogen receptors ER and ERβ are present in the brain and their targeting could bring selectivity and reduced risk of cancer. Implication of ERs in the effect of estradiol on dopamine, opiate and glutamate neurotransmission is reviewed. The ER agonist, PPT, is shown as estradiol to modulate hippocampal NMDA receptors and AMPA receptors in cortex and striatum of ovariectomized rats whereas the ERβ agonist DPN is inactive. Striatal DPN activity suggests implication of ERβ in estradiol modulation of D2 receptors and transporters in ovariectomized rats and is supported by the lack of effect of estradiol in ERβ knockout (ERKOβ) mice. Both ER and ERβ agonists modulate striatal preproenkephalin (PPE) gene expression in ovariectomized rats. In male mice PPT protects against MPTP toxicity to striatal dopamine; this implicates Akt/GSK3β signaling and the apoptotic regulators Bcl2 and Bad. This suggests a role for ER in striatal dopamine neuroprotection. ERKO mice are more susceptible to MPTP toxicity and not protected by estradiol; differences in ERKOβ mice are subtler. These results suggest therapeutic potential for the brain of ER specific agonists.  相似文献   

19.
20.

Background

Estrogen is an established enhancer of breast cancer development, but less is known on its effect on local progression or metastasis. We studied the effect of estrogen receptor recruitment on actin cytoskeleton remodeling and breast cancer cell movement and invasion. Moreover, we characterized the signaling steps through which these actions are enacted.

Methodology/Principal Findings

In estrogen receptor (ER) positive T47-D breast cancer cells ER activation with 17β-estradiol induces rapid and dynamic actin cytoskeleton remodeling with the formation of specialized cell membrane structures like ruffles and pseudopodia. These effects depend on the rapid recruitment of the actin-binding protein moesin. Moesin activation by estradiol depends on the interaction of ERα with the G protein Gα13, which results in the recruitment of the small GTPase RhoA and in the subsequent activation of its downstream effector Rho-associated kinase-2 (ROCK-2). ROCK-2 is responsible for moesin phosphorylation. The Gα13/RhoA/ROCK/moesin cascade is necessary for the cytoskeletal remodeling and for the enhancement of breast cancer cell horizontal migration and invasion of three-dimensional matrices induced by estrogen. In addition, human samples of normal breast tissue, fibroadenomas and invasive ductal carcinomas show that the expression of wild-type moesin as well as of its active form is deranged in cancers, with increased protein amounts and a loss of association with the cell membrane.

Conclusions/Significance

These results provide an original mechanism through which estrogen can facilitate breast cancer local and distant progression, identifying the extra-nuclear Gα13/RhoA/ROCK/moesin signaling cascade as a target of ERα in breast cancer cells. This information helps to understand the effects of estrogen on breast cancer metastasis and may provide new targets for therapeutic interventions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号