首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rice straw was used as an alternative raw material to obtain cellulosics pulps. Pulping was done by using classics reagents as soda (with anthraquinone and parabenzoquinone as aditives), potassium hydroxide and Kraft process. The holocellulose, alpha-cellulose and lignin contents of rice straw (viz. 60.7, 41.2 and 21.9 wt%, respectively) are similar to those of some woody raw materials such as pine and eucalyptus, and various non-wood materials including olive tree prunings, wheat straw and sunflower stalks. Pulping tests were conducted by using soda, soda and anthraquinone at 1 wt%, soda and parabenzoquinone at 1 wt%, potassium hydroxide and sodium sulphate (Kraft process) under two different sets of operating conditions, namely: (a) a 10 wt% reagent concentration, 170 degrees C and 60 min; and (b) 15 wt% reagent, 180 degrees C and 90 min. The solid/liquid ratio was 6 in both cases. Paper sheets made from pulp extracted by cooking with soda (15 wt%) and AQ (1 wt%) at 180 degrees C and 90 min pulp exhibit the best drainage index, breaking length, stretch and burst index (viz. 23 degrees SR, 3494 m, 3.34% and 2.51 kN/g, respectively).  相似文献   

2.
Hydrothermal processing of Eucalyptus wood was performed at operation temperature of 181 degrees C, processing time or 37.5 min and solid water ratio of 1/6 to ensure a maximum loss of xylan recuperation with minimum cellulose fibre degradation. Under those conditions, the loss of xylan was 22% less than that achieved with the conditions 196 degrees C, 50.6 min and 1/8 (solid/water). IN In addition, an experimental design was used to study the influence of process variables: temperature (145-175 degrees C), pulping time (40-120 min) and ethanol concentration (40-70% weight concentration), on the properties of pulps (yield, kappa number, viscosity, cellulose, xylan, lignin acetyl groups contents and brightness) and paper sheets (stretch index, burst index and tear index) obtained from the solid fraction after hydrothermal treatment of Eucalyptus globulus. Pulps with acceptably high physical and chemical properties can be obtained operating at 175 degrees C for 90 min with 55% ethanol concentration.  相似文献   

3.
We studied the influence of the operational variables (viz. ethylene-glycol concentrations of 50-70%, temperatures of 155-185 degrees C, times of 30-90 min and numbers of PFI beating revolutions of 500-1500) on pulp yield and various paper properties (breaking length, stretch, burst index, tear index and brightness) obtained in the ethylene-glycol pulping of vine shoots, cotton stalks, leucaena (Leucaena leucocephala) and tagasaste (Chamaecytisus proliferus). The fuzzy neural network models used reproduced the experimental results with errors less than 15% and smaller than those provided by second-order polynomial models in all cases. An ethylene-glycol concentration of 65% at 180 degrees C for 75 min and 1500 PFI beating revolutions were found to provide substantial savings in energy, chemicals and facility investments as a result of operating under milder conditions than the strongest ones studied in this work. Tagasaste was found to be the most suitable raw material among those tested as it provided the paper sheets with the highest breaking length (4644 m), stretch (2.87%), burst index (2.46 kN/g), tear index (0.33 m Nm(2)/g) and brightness (40.92%); its pulp yield was also high (62.88%), which reflects efficient use of this raw material.  相似文献   

4.
The influence of independent variables in the pulping of wheat straw by use of an ethanol-acetone-water mixture [processing temperature and time, ethanol/(ethanol + acetone) value and (ethanol + acetone)/(ethanol + acetone + water) value] and of the number of PFI beating revolutions to which the pulp was subjected, on the properties of the resulting pulp (yield and Shopper-Riegler index) and of the paper sheets obtained from it (breaking length, stretch, burst index and tear index) was examined. By using a central composite factor design and the BMDP software suite, equations that relate each dependent variable to the different independent variables were obtained that reproduced the experimental results for the dependent variables with errors less than 30% at temperatures, times, ethanol/(ethanol + acetone) value, (ethanol + acetone)/(ethanol + acetone + water) value and numbers of PFI beating revolutions in the ranges 140-180 degrees C, 60-120 min, 25-75%, 35-75% and 0-1750, respectively. Using values of the independent variables over the variation ranges considered provided the following optimum values of the dependent variables: 78.17% (yield), 15.21 degrees SR (Shopper-Riegler index), 5265 m (breaking length), 1.94% (stretch), 2.53 kN/g (burst index) and 4.26 mN m2/g (tear index). Obtaining reasonably good paper sheets (with properties that differed by less than 15% from their optimum values except for the burst index, which was 28% lower) entailed using a temperature of 180 degrees C, an ethanol/(ethanol + acetone) value of 50%, an (ethanol + acetone)/(ethanol + acetone + water) value of 75%, a processing time of 60 min and a number of PFI beating revolutions of 1750. The yield was 32% lower under these conditions, however. A comparison of the results provided by ethanol, acetone and ethanol-acetone pulping revealed that the second and third process-which provided an increased yield were the best choices. On the other hand, if the pulp is to be refined, ethanol pulping is the process of choice.  相似文献   

5.
The influence of temperature (150-170 degrees C), pulping time (15-45 min) and soda concentration (5-10%) in the pulping of abaca on the yield, kappa, viscosity, breaking length, stretch and tear index of pulp and paper sheets, was studied. Using a factorial design to identify the optimum operating conditions, equations relating the dependent variables to the operational variables of the pulping process were derived that reproduced the former with errors lower than 25%. Using a high temperature, and a medium time and soda concentration, led to pulp that was difficult to bleach (kappa 28.34) but provided acceptable strength-related properties (breaking length 4728 m; stretch 4.76%; tear index 18.25 mN m2/g), with good yield (77.33%) and potential savings on capital equipment costs. Obtaining pulp amenable to bleaching would entail using more drastic conditions than those employed in this work.  相似文献   

6.
We characterized vine shoots, cotton stalks, Leucaena leucocephala and Chamaecytisus proliferus as pulping raw materials and found C. proliferus and cotton stalks to be the best for the intended purpose on the grounds of their increased contents in holocellulose (79.73% and 72.86%) and alpha-cellulose (45.37% and 58.48%), and their decreased contents in ethanol-benzene extractables (2.64% and 1.42%), hot water solubles (2.79% and 3.33%) and 1% soda solubles (16.67% and 20.34%). These properties resulted in increased pulp yields and hence in efficient use of these two types of raw material. The previous raw materials were pulped by using an ethyleneglycol concentration of 65% at 180 degrees C for 75min, followed by beating at 1500 revolutions in a PFI refiner. The paper sheets obtained were characterized and those from C. proliferus found to be the best overall as they exhibited an increased breaking length (4644m), stretch (2.87%), burst index (2.46kN/g) tear index (0.33mNm(2)/g) and brightness (49.92% ISO); in addition C. proliferus pulp was obtained with a high-yield (62.88%). On the other hand, vine shoots provided the poorest results among the studied raw materials.  相似文献   

7.
Oil palm empty fruit bunches were used as an alternative raw material to obtain cellulosic pulp. Pulping was done by using high-boiling point organic solvents of decreased polluting power relative to classical (Kraft, sulphite) solvents but affording operation at similar pressure levels. The holocellulose, alpha-cellulose and lignin contents of oil palm empty fruit bunches (viz. 66.97%, 47.91% and 24.45%, respectively) are similar to those of some woody raw materials such as pine and eucalyptus, and various non-wood materials including olive tree prunings, wheat straw and sunflower stalks. Pulping tests were conducted by using ethyleneglycol, diethyleneglycol, ethanolamine and diethanolamine under two different sets of operating conditions, namely: (a) a 70% solvent concentration, 170 degrees C and 90 min; and (b) 80% solvent, 180 degrees C and 150 min. The solid/liquid ratio was six in both cases. The amine solvents were found to provide pulp with better properties than did the glycol solvents. Ethanolamine pulp exhibited the best viscosity and drainage index (viz. 636 mL/g and 17 degrees SR, respectively), and paper made from it the best breaking length (1709 m), stretch (1.95%), burst index (0.98 kN/g) and tear index (0.33 mNm(2)/g). Operating costs can be reduced by using milder conditions, which provide similar results. In any case, the amines are to be preferred to the glycols as solvents for this purpose.  相似文献   

8.
This paper will consider the influence of the temperature of autohydrolysis or hydrothermal process from Paulownia fortunei L. to obtain a valuable liquid phase and a suitable solid phase to produce pulp. The solid phase resulting of autohydrolysis was subjected to organosolv pulping process and formed paper sheets, analyzing the influence of operational variables (viz., ethanol concentration, temperature and pulping time) on the yield, viscosity, tensile index, burst index, tear index and brightness. Maximum glucose and xylose contents and minimum paper sheets characteristic loss have been obtained at 190 degrees C authohydrolysis temperature. Suitable characteristics of paper sheets and acceptable yield, viscosity and kappa number of pulp could be obtained by operating at 180 degrees C temperature, 30min pulping time and 20% ethanol concentration. Under those conditions sheets paper with 27.4% ISO brightness, 28.87Nm/g tensile index, 1.22kPam(2)/g burst index and 1.23kNm(2)/g tear index could be obtained.  相似文献   

9.
Paper sheets from olive tree wood pulp obtained by soda, sulphite or kraft pulping were studied to examine the influence of pulp beating on properties of the paper sheets.Paper sheets from kraft and sulphite pulps exhibited the highest resistance, and sulphite pulp the highest brightness. Soda pulp required more intensive beating than did kraft or sulphite pulps; in fact, the PFI beater had be operated at a 40–50% higher number of beating revolutions to obtain soda pulp with 70–80° SR.The breaking length, stretch, burst index and tear index of paper sheets obtained from kraft pulp, beaten to a Shopper–Riegler index of 70–80° SR were 20–30%, 30–50%, 50–60% and 15–35% higher, respectively, than those of sheets obtained from soda pulp.  相似文献   

10.
The influence of soda-anthraquinone pulping variables (temperature, time and soda concentration) and beating (number of PFI beating revolution) of palm oil empty fruit bunches (EFB) on the resulting paper sheets was studied, with a view to identifying the optimum operating conditions. Equations were derived that reproduced the properties of the paper sheets with errors less than 10-12% in 90-95% of cases. An optimum compromise was found as regards operating conditions (15% soda, 170 degrees C, 70 min and 2400 number of PFI beating revolutions) that provided paper properties departing by less than 12% from their optimum values (59.63 Nm/g tensile index, 4.48% stretch, 4.17 kN/g burst index and 7.20 m Nm(2)/g tear index), and a beating grade of 47.5 degrees SR, acceptable to obtain paper sheets. Because these conditions involve a lower soda, temperature, time and beating than those required to maximize the studied paper properties, they can save chemical reagents, energy and immobilized capital for industrial facilities. On the other hand, the stretch properties of these pulp beaten are higher than those of others non-wood pulps, as wheat straw and olive wood.  相似文献   

11.
In this work, we examined the influence of operational variables [viz. Ethyleneglycol concentration (50-70%), temperature (155-185 degrees C), time (30-90 min) and number of PFI beating revolutions (500-1500)] in the ethyleneglycol pulping of tagasaste (Chamaecytisus proliferus) on pulp yield and the breaking length, stretch, burst index, tear index and brightness of paper sheets formed from it. Application of a fuzzy neural network model in combination with an experimental factorial design allowed the results for the dependent variables to be predicted as a function of the operating conditions used with errors less than 15% in all cases. The operating conditions of choice provided pulp with a high yield (56.85%) and a low brightness (22.51%) which may thus be useful to obtain non-white paper.  相似文献   

12.
An alkalistable endoxylanase from Streptomyces cyaneus SN32 was applied in bleaching of wheat straw enriched soda pulp. The xylanase dose of 10 IUg(-1) moisture free pulp exhibited maximum bleach boosting of soda pulp (pH 9.5-10.0) optimally at 65 degrees C after 2 h of reaction time. Pre-treatment of pulp with xylanase and its subsequent treatment with 6% hypochlorite reduced the kappa number by 8.7%, enhanced the brightness index by 3.56% and improved other paper properties such as tear index and burst index. The enzymatically-prebleached pulp when treated with 10% reduced level of hypochlorite (5.4%) gave comparable brightness of resultant hand sheets to the fully bleached pulp (6% hypochlorite).  相似文献   

13.
In this work, we studied the influence of operational variables in the bleaching of soda pulp of Musa textilis nee (abaca) [viz. temperature (55-85 degrees C), bleaching time (30-150 min) and peracetic acid concentration oven dry pulp (0.5-4.5%)] on the kappa number and viscosity of the bleached pulp, as well as on the breaking length, burst index and brightness of paper sheets made from it. For this purpose, we used a central composite factorial design in order to identify the optimum operating conditions. In this way equations relating the dependent variables to the operational variables of the bleaching process were derived. These equations reproduce the dependent variables with errors less than 12% for all, except the viscosity which was predicted with errors less than 18%. Obtaining bleached pulp with the highest possible viscosity (1519 ml/g), and paper sheets with the maximum possible breaking length (6547 m) and burst index (5.00 kN/g), entails using a temperature of 55 degrees C, a peracetic acid concentration of 4.5% and a bleaching time of 150 min. This provides a brightness of 79.90%, which is only 6.53% lower than the maximum possible value (85.48%).  相似文献   

14.
Two woody legumes species (Chamaecytisus proliferus L.F. ssp. palmensis and Leucaena diversifolia) were evaluated for integrally exploitation. The raw material was subjected to autohydrolysis under variable operating conditions which provided a liquid phase rich in hemicellulose oligomers and a solid phase that was used to obtain cellulose pulp and paper sheets by using organosolv procedures. The chemical properties of both C. proliferus and L. diversifolia allow their integral exploitation by using a hydrothermal treatment prior to their organosolv pulping with ethanol. The pulp yields obtained are quite high (40.3% for L. diversifolia and 58.2% for C. proliferus), and so are the sugar concentrations in the liquors from the thermal pretreatment (viz. 16.1 and 20.0 g oligomers/l in C. proliferus and L. diversifolia, respectively, and 1.5 and 1.1g xylose/l, respectively, in the two raw materials). The strength-related properties of the paper sheets obtained are acceptable (tensile index 7.76 and 10.77 kN m/kg for C. proliferus and L. diversifolia, respectively and kappa index 31 and 12.5 for C. proliferus and L. diversifolia, respectively), but somewhat worse than those provided by other raw materials such as eucalyptus; however, they can be improved by mechanical refining of the pulp.  相似文献   

15.
The influence of operational variables in the pulping of vine shoots by use of ethylene glycol [viz. temperature (155-185 degrees C), cooking time (30-90 min) and ethylene glycol concentration (50-70% v/v)] on the properties of the resulting pulp (viz. yield, kappa number and viscosity) and paper sheets (breaking length, stretch, burst index, tear index and brightness) was studied. A central composite factorial design was used in conjunction with the software ANFIS Edit Matlab 6.5 to develop fuzzy neural model that reproduced the experimental results of the dependent variables with errors less than 5%. The model is therefore effective with a view to simulating the ethylene glycol pulping process.  相似文献   

16.
In this work, published experimental result data of the pulping of tagasaste (Chamaecytisus proliferus L.F.) with soda and anthraquinone (AQ) have been used to develop a model using a neural network. The paper presents the development of a model with a neural network to predict the effects that the operational variables of the pulping reactor (temperature, soda concentration, AQ concentration, time and liquid/solid ratio) have on the properties of the paper sheets of the obtained pulp (brightness, traction index, burst index and tear index). Using a factorial experimental design, the results obtained with the neural network model are compared with those obtained from a polynomial model. The neural network model shows a higher prediction precision that the polynomial model.  相似文献   

17.
A normalized design was used to examine the influence of independent variables (alcohol concentration, cooking time and temperature) in the catalytic soda-ethanol pulping of rice straw on various mechanical properties (breaking length, burst, tear index and folding endurance) of paper sheets obtained from each pulping process. An equation of each dependent variable as a function of cooking variables (independent variables) was obtained by multiple non-linear regression using the least square method by MATLAB software for developing of empirical models. The ranges of alcohol concentration, cooking time and temperature were 40-65% (w/w), 150-180 min and 195-210 degrees C, respectively. Three-dimensional graphs of dependent variables were also plotted versus independent variables. The optimum values of breaking length, burst and tear index and folding endurance were 4683.7 (m), 30.99 (kN/g), 376.93 (mN m2/g) and 27.31, respectively. However, short cooking time (150 min), high ethanol concentration (65%) and high temperature (210 degrees C) could be used to produce papers with suitable burst and tear index. However, for papers with best breaking length and folding endurance low temperature (195 degrees C) was desirable. Differences between optimum values of dependent variables obtained by normalized design and experimental data were less than 20%.  相似文献   

18.
A pilot plant (IBUS) consisting of three reactors was used for hydrothermal treatment of wheat straw (120-150 kg/h) aiming at co-production of bioethanol (from sugars) and electricity (from lignin). The first reactor step was pre-soaking at 80 degrees C, the second extraction of hemicellulose at 170-180 degrees C and the third improvement of the enzymatic cellulose convertibility at 195 degrees C. Water added to the third reactor passed countercurrent to straw. The highest water addition (600 kg/h) gave the highest hemicellulose recovery (83%). With no water addition xylose degradation occurred resulting in low hemicellulose recovery (33%) but also in high glucose yield in the enzymatic hydrolysis (72 g/100g glucose in straw). Under these conditions most of the lignin was retained in the fibre fraction, which resulted in a lignin rich residue with high combustion energy (up to 31 MJ/kg) after enzymatic hydrolysis of cellulose and hemicellulose.  相似文献   

19.
The AOpAZRP bleaching sequence (A is an acid treatment, Op an oxygen and peroxide stage, Z an ozone stage, R a reductive treatment and P a peroxide stage) have been applied to oil palm empty fruit bunches (EFB) soda-anthraquinone and diethanolamine pulp. On similar Kappa numbers for the two types of pulp (14.2 and 17.3), paper from unbleached soda-anthraquinone pulp exhibited increased tensile index (25.8 Nm/g), stretch (2.35%), burst index (1.69 kN/g), tear index (0.50 mN m(2)/g) and brightness (60.6%) relative to paper for unbleached diethanolamine pulp; but the latter type of pulp exhibited higher viscosity (659 mL/g) than the former. Upon bleaching with the AOpAZRP sequence, diethanolamine pulp exhibited higher viscosity (783 mL/g), and the properties of the paper sheets were close to or even better to those from soda-anthraquinone pulp, namely: 22.2 vs 20.4 Nm/g tensile index, 1.30 vs 1.42 kN/g burst index, 0.71 vs 0.70 mN m(2)/g tear index and 71.3% vs 77.5% brightness. Therefore, the properties of paper from diethanolamine pulp evolved more favourably during bleaching than did those of paper from soda-anthraquinone pulp.  相似文献   

20.
Pulp from agricultural residues (wheat straw) was bleached with the DEPD (chlorine dioxide-extraction with soda and hydrogen peroxide-chlorine dioxide) or P sequence (hydrogen peroxide) after enzymatic pretreatment with cartazyme HS.The enzymatic pretreatment increases the final brightness of the pulp after bleaching with the P and DEPD sequences (+3.7%) and saves bleaching reagents (from 3.5 to 5.2%); however, it also decreases the pulp yield (from 9.3 to 14.1%) and breaking length (from 20.2 to 13.2%), burst index (from 13.1 to 8.2%) and tear index (from 4.2% to 16.8%) of the paper sheets formed from the pulp.The authors wish to express their gratitude to DGICyT, Spanish Ministry of Education and Science, for financial support granted for the realization of this work as part of Project PB 91-0841.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号