首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
北京地区人工湿地植物活力及污染物去除能力   总被引:11,自引:1,他引:10  
研究了北京地区常见9种水生植物在水平流潜流型人工湿地中的污染物去除能力和生活力.结果表明,前边湿地单元对COD、TP、TN等污染物的去除贡献大于后边湿地单元.供试植物均可在人工湿地中正常生长,稳定生长112 d后,不同植物的氮磷含量和生物量差异显著(P<0.05),多数植物氮磷含量地下部高于地上部,地下地上部生物量比(U/A)接近或大于1.植物体内的氮磷累积量为1.36~7.89 g·m-2和0.19~1.07 g·m-2.植物生物量对氮磷累积量的影响力大于氮磷含量对氮磷累积量的影响力.水生鸢尾应为北京地区首选人工湿地植物,菖蒲、香蒲和荻等次之.泽泻和芦竹在人工湿地中不能越冬成活.  相似文献   

2.
人工湿地研究进展及应用   总被引:12,自引:0,他引:12  
王平  周少奇 《生态科学》2005,24(3):278-281
基于生态学原理的人工湿地污水处理技术已成为人们竞相研究开发的热点。介绍了人工湿地的分类,论述了污染物包括有机物、氮磷污染物、重金属的去除机理的研究进展,分析了湿地植物种类与根系量对污染物去除效果的影响,讨论了湿地结构以及工艺设计的研究情况。最后以人工湿地处理生活用水和工业用水为例综述了人工湿地目前在国内应用的状况。通过以上分析评述发现,人工湿地运行费用低,操作简单,是一种具有前景的污水处理技术,但在污染物去除机理和实践应用方面还需做更深入的研究。  相似文献   

3.
人工湿地的氮去除机理   总被引:87,自引:1,他引:86  
卢少勇  金相灿  余刚 《生态学报》2006,26(8):2670-2677
湖泊等水环境的富营养化给人类带来诸多损害,如环境、生态和经济等方面的损害。富营养化的原因和控制途径引起了包括中国在内的很多国家的关注。我国针对水环境的富营养化问题开展了大量的工作。氮是引发水环境富营养化的主要营养物之一。外源氮负荷(分点源和非点源两部分)是水环境污染负荷的重要组成部分。传统污水处理技术应用于收集系统欠缺的非点源污染的治理时成本过高。人工湿地是有效削减水环境中外源氮负荷的重要技术手段,在处理非点源污染源带来的氮负荷时更是如此。人工湿地具有氮去除效果好、耐冲击负荷能力强、投资低和生态环境友好等优点。因此人工湿地非常适合于水环境富营养化的防治。阐明人工湿地中氮的去除机理对水环境的富营养化等具有重要的意义。防渗人工湿地的氮去除机理主要包括挥发、氨化、硝化/反硝化、植物摄取和基质吸附。未防渗的人工湿地中,周围水体与人工湿地的氮交换影响着人工湿地中氮的去除。一般情况下,人工湿地中硝化/反硝化是最主要的氮去除机理。pH值小于7.5时,氨挥发可忽略。pH值在9.3以上时,氨挥发很显著。处理生活污水的人工湿地中氮的去除主要是依靠微生物的硝化/反硝化作用。在进水负荷低、气候适宜、植物物种适宜和收割频率与时机适宜的条件下,植物收割可能成为主要的去氮途径。人工合理导向的湿地的氮去除效果通常优于天然湿地。合理的设计(填料的搭配、植物物种的配置以及布水和集水的优化)对人工湿地系统中氮去除的改善有重要影响。合理的运行,如有效的水位控制,正确的植物培育、合理的植物收割等,能有效地改善湿地中的氮去除。  相似文献   

4.
郭颖  谢慧君  张建 《水生生物学报》2022,46(10):1501-1509
研究以表面流人工湿地为研究对象, 探讨不同类型底栖动物在夏季和冬季对人工湿地系统氮磷去除效果的影响, 并通过人工湿地系统运行前后不同介质氮磷含量变化及不同介质微生物丰度变化进行水质净化机理分析。结果表明, 夏季添加河蚌和添加田螺均能增强人工湿地系统NO3-N和TN去除效果, 其中添加河蚌使得系统NO3-N和TN平均去除率较对照组分别提升37.19%和24.32%, 添加田螺使得系统NO3-N和TN平均去除率较对照组分别提升22.98%和12.46%。冬季添加摇蚊幼虫使得表面流人工湿地NO3-N、TN和TP平均去除率分别在37.8%、54.0%和94.8%, 与对照组相比分别增加了29.51%、15.16%和37.62%, 添加河蚌和田螺受底栖动物半冬眠活动和代谢降低影响没有显著水质提升效果。这表明通过添加底栖动物可以增强表面流人工湿地运行效果, 选取适合的底栖动物种类组合可能在全年提升人工湿地水质净化效果。机理研究结果表明, 底栖动物通过增强底泥和基质中微生物硝化反硝化作用、植物氮吸收和基质氮吸附等促进人工湿地氮去除, 通过增强下层基质磷吸附沉淀和植物磷吸收提升水质磷去除。研究结果将为底栖动物在人工湿地的应用及表面流人工湿地运行效果提升提供理论依据和合理借鉴。  相似文献   

5.
人工湿地植物对观赏水中氮磷去除的贡献   总被引:113,自引:3,他引:110  
蒋跃平  葛滢  岳春雷  常杰 《生态学报》2004,24(8):1718-1723
研究了处理观赏用轻度富营养化水的人工湿地中植物的生长特性和氮磷去除作用。研究发现 ,所选用的 2 1种植物中 ,有17种植物在人工湿地中生长良好 ,稳定生长 10 5 d以后 ,其平均总生物量在 15 5~ 1317g/ m2之间 ,除了鸭跖草的地上地下生物量比 (A/ U)为 2 0 .5外 ,其余都在 1.18~ 4 .2 9之间。植株地上部 N和 P的浓度分别在 10 .99~ 34.74 mg/ g和 0 .5 9~ 3.81mg/ g之间 ;地下部 N和 P浓度分别在 6 .2 0~ 2 9.5 0 mg/ g及 0 .72~ 3.83mg/ g之间。大部分植物地上部 N和 P的浓度大于地下部 (p<0 .0 5 )。植物的 N、P积累量分别在 2 .10~ 2 4 .4 8g/ m2 和 0 .2 3~ 1.95 g/ m2 之间。在处理轻度富营养化水的人工湿地中 ,植物吸收对氮磷的去除起着主要作用——贡献率分别为 4 6 .8%和 5 1.0 %。植物的氮磷积累量与浓度及生物量之间均存在显著相关 ,所以可以直接以生物量为指标选择人工湿地植物。同时考虑净化和景观效果 ,可为处理城镇轻度富营养化水的人工湿地的植物选择提供参考  相似文献   

6.
洱海流域44种湿地植物的氮磷含量特征   总被引:6,自引:0,他引:6  
研究湿地植物中的氮和磷含量既能帮助了解其所处生境的营养状况,又能为湿地生态恢复提供指导。测定了洱海流域44种湿地植物干生物量中的氮、磷含量。结果表明洱海湿地植物中总氮和总磷平均含量为15.7 mg/g和3.3 mg/g,变化范围为6.4-34.3 mg/g和1.4-6.5 mg/g,明显高于其他地区;氮磷比范围为2.2-9.5,显示该地区磷过剩,氮是限制因子;不同功能群植物间的氮和磷含量有显著差异,总氮含量以沉水植物最高而挺水和漂浮/浮叶植物最低,而总磷含量则为湿生植物最高而沉水植物最低;植物的地上部分分别占有整株72%的生物量、82%的氮含量和75%的磷含量,表明收割湿地植物的地上部分可以高效去除湿地生态系统中的氮和磷。  相似文献   

7.
大型人工湿地生态可持续性评价   总被引:3,自引:0,他引:3  
张依然  王仁卿  张建  刘建 《生态学报》2012,32(15):4803-4810
大型人工湿地现已广泛应用于湖滨带、河滨带水质净化及湿地生态修复,这些人工湿地的生态可持续性评价对于其科学管理调控及长期可持续运行具有重要意义。运用综合指标评价及层次分析法,根据人工湿地生态系统的特点,提出并建立了适合评价人工湿地可持续性运行的指标体系,建立的评价指标包括生态特征与功能、水质净化功能及经济社会功能三项一级指标,及对应的14个二级指标。运用建立的评价指标体系对南四湖湖滨带新薛河大型人工湿地示范工程的生态可持续性运行了评价,评价结果显示:植物多样性、氨氮去除能力、生物入侵抵抗力、野生动物栖息地、COD去除能力是影响大型人工湿地运行效果的主要制约因素;新薛河人工湿地生态可持续性综合指数为0.6862,处于"良"级,其中生态特征功能可持续性指数最高,为0.7732;水质净化功能和社会经济功能指数分别为0.6190,0.6492。由结果可知,南四湖新薛河大型人工湿地具有重要的生态修复功能,水质净化功能方面应加强植物定期收割及植被管理,同时经济社会功能还有待加强,植物经济效益及旅游娱乐效益还有待深入开发。建立的人工湿地可持续性运行的评价指标体系具有较强的针对性,可用于其他大型人工湿地的生态可持续性评价。  相似文献   

8.
人工湿地对农业径流污染物去除效果显著,已成为控制农业径流污染的有效措施.本文结合国内外研究,介绍了当前水体农药污染的现状;从物理、化学及生物角度阐述了人工湿地对农药的去除机理和关键过程;归纳总结了人工湿地对农药的去除效率,指出人工湿地对农药的去除效率随农药类型的不同而差异较大:农药的平均去除率,按农药用途分为杀虫剂>杀菌剂>除草剂,按农药化学结构分为拟除虫菊酯类>有机磷类>三唑类>酰胺类>三嗪类>脲类;综合考虑,潜流人工湿地在农药去除方面的效果优于表面流人工湿地.在此基础上分析了农药理化性质、人工湿地工艺类型及运行参数、进水中农药浓度、湿地植物等因素对农药在人工湿地中去除的影响.最后指出了当前研究中存在的问题,并提出了研究展望.  相似文献   

9.
不同人工湿地植物对生活污水净化效果研究   总被引:2,自引:0,他引:2  
探讨不同湿地植物对COD、总氮、总磷和铵态氮的去除能力,为生活污水净化的相关植物筛选提供依据。选择美人蕉(Canna indica)、香蒲(Typha latifolia)、再力花(Thalia dealbata)、菖蒲(Acorus calamus)、水葱(Scirpus validus)、千屈菜(Lythrum salicaria)和芦苇(Phragmites australis)共7种常见湿地植物作为研究对象,通过建立人工湿地污水处理系统,考察不同植物在7个月内对COD、总氮、总磷和铵态氮的去除率,同时考察7种湿地植物的氮磷累积能力。结果显示,香蒲、芦苇和水葱具有较高的COD去除率,水葱、千屈菜和芦苇具有较高的总氮去除率,香蒲、水葱和千屈菜对总磷的去除率较高,水葱、香蒲和千屈菜对铵态氮的去除率较高。7种植物对COD的去除率在4~8月份呈逐渐上升趋势,此后开始下降;而对总氮的去除率则从4~8月份整体呈上升趋势,8~10月去除率稳定保持在较高水平;随着时间的延长,不同植物对总磷的去除率基本呈升高的趋势;不同植物对铵态氮的去除率在4~7月期间显著上升,此后去除率均维持在较高水平。7种湿地植物对氮的累积能力均显著高于磷。香蒲、水葱、芦苇和千屈菜对4种污染物具有较好的去除能力。不同植物对4种污染物的去除过程至少需要3个月,并且均在7和8月份具有较高的去除能力。美人蕉和芦苇与其他湿地植物相比,具有更高的氮磷累积能力。  相似文献   

10.
梁子湖湿地植物的氮磷积累特征   总被引:4,自引:1,他引:3  
采用野外测定结合室内分析的方法,探讨了梁子湖湿地植物对氮磷的积累特征。结果表明,湿地不同植物种类对氮磷的积累特征明显不同。浮游植物积累各种营养物质量最多,其体内全氮量平均为29.07g.kg-1,全磷量平均为9.53g.kg-1。梁子湖湿地各类植物氮磷含量的大小依次为浮游植物>浮叶植物>沉水植物>水稻>挺水植物。各类植物中氮磷积累的大小依次为浮叶植物>挺水植物>沉水植物>沼泽植物>水稻。梁子湖湿地水生植物氮磷营养元素的吸收系数大于湿生植物,各类植物氮元素的吸收系数均大于磷。  相似文献   

11.
Water reclamation and reuse is being actively promoted in Australia. In Queensland, surface-flow constructed wetlands with a diversity of macrophyte types offer the greatest potential for effluent polishing. Constructed wetlands in subtropical climates in coastal regions and arid climates in inland western regions are conducive to high macrophyte growth rates and nutrient removal, in particular nitrogen, producing an effluent suitable for irrigation, restoration of wetlands and/or release into natural waterways. Faecal-coliform removal is also high, producing effluent with <1000 cfu/100 mL and as low as 100 cfu/100 mL, acceptable for agricultural irrigation. Constructed wetlands can be designed to maximise the removal of both nutrients and pathogens by enhancing macrophyte diversity and natural disinfection processes by incorporating lagoons, shallow-water wetlands and subsurface-flow wetlands into the treatment train. Surface-flow wetlands can also be designed to minimise mosquito breeding by increasing macro-invertebrate predators, thereby alleviating community concerns about potential health risks. This paper addresses the role of constructed wetlands in nutrient and pathogen removal in Queensland's wetlands, and presents three case studies with respect to effluent reuse.  相似文献   

12.
We aimed at indicating some regularities of a constructed wetland treating agricultural runoff in China. The regularities, including the nitrogen removal capacity all year round, the nitrogen distribution pathways, and the nitrogen species removal kinetics, of a free water surface constructed wetland (2,800 m2) in the Dianchi Valley, which has been in operation for 27 months, were studied. The planted Phragmites australis and Zizania caduciflora were harvested biannually. The average inflow rate was recorded by an ultrasonic flow instrument, and then the hydraulic loading rate (HLR) and hydraulic retention time (HRT) were calculated. The average inflow and outflow concentrations of total nitrogen (TN), ammonia, and nitrate were measured, while the corresponding removal rates were calculated, showing better results than other constructed wetlands. Then the distribution pathways of nitrogen were analyzed, which indicated that plant harvesting was more important in wetland-treated agricultural runoff than in domestic wastewater. The reason for a good nitrogen removal capability and the obvious function of plants in the present wetland is the sound climate and intermittent inflow in the wetland. Results showed that inflow load had significant correction with both TN and ammonia removal efficiency. HLR, inflow rate, inflow nitrogen concentration, and temperature had significant and positive correction with both TN and ammonia removal. However, HRT had negative correction with both TN and ammonia removal, and the nitrate removal efficiency and parameters mentioned earlier were not significantly correlated. The rate constant values for nitrate and ammonia in summer were obviously larger than in winter. It is possible that bacterial and microbial activities were more active in summer than winter, and more conducive to bacterial and vegetative growth in summer than winter. Since this study was a pioneer for the implementation of constructed wetlands in China treating agricultural runoff, it has proved that this eco-technology could be used effectively for water quality enhancement in China and other areas with a similar climate.  相似文献   

13.
为了解氮浓度对生物操纵和草-藻竞争的影响, 选取铜绿微囊藻、大型溞和金鱼藻分别作为浮游植物、浮游动物和沉水植物的代表, 在温度25℃, 光强2600 lx, 光暗比14h﹕10h, 磷浓度1.5 mg/L时, 研究5种氮浓度(0.5、2、4、8和16 mg/L, 用KNO3溶液配制)下, 溞-藻, 草-藻和溞-草-藻共培养时各自的增长率和培养液中氮磷削减率的变化。结果表明: 在单独培养铜绿微囊藻时, 氮浓度控制在1.97 mg/L以下, 可有效降低培养液中藻的增长率。在溞-藻共培养时, 大型溞有效控藻的氮浓度范围为0.5—4 mg/L; 在草-藻共培养时, 有效控藻的氮浓度范围为0.5—2 mg/L, 对应氮浓度下(0.5和2 mg/L), 实验末期铜绿微囊藻细胞密度分别是溞-藻共培养的23.89%和21.51%, 控藻效果更好; 在溞-草-藻三者共培养时, 有效控藻的氮浓度范围为0.5—16 mg/L, 且氮浓度为0.5—4 mg/L时, 大型溞和金鱼藻的增长率均显著大于铜绿微囊藻, 铜绿微囊藻的增长率均为负值, 控藻效果最好。大型沉水植物的加入, 可以有效提高生物操纵的控藻效果, 减少水中氮磷含量, 长期有效地改善水质。  相似文献   

14.
The independent and interactive effects of nutrient concentration and epiphyte grazers on epiphyte biomass and macrophyte growth and production were examined in Zostera marina L. (eelgrass) microcosms. Experiments were conducted during early summer, late summer, fall, and spring in a greenhouse on the York River estuary of Chesapeake Bay. Nutrient treatments consisted of ambient or enriched (3× ambient) concentrations of inorganic nitrogen (ammonium nitrate) and phosphate. Grazer treatments consisted of the presence or absence of field densities of isopods, amphipods, and gastropods. epiphyte biomass increased with both grazer removal and nutrient enrichment during summer and spring experiments. The effect of grazers was stronger than that of nutrients. There was little epiphyte response to treatment during the fall, a result possibly of high ambient nutrient concentrations and low grazing pressure. Under low grazer densities of early summer, macrophyte production (g m–2 d–1) was reduced by grazer removal and nutrient enrichment independently. Under high grazer densities of late summer, macrophyte production was reduced by enrichment only with grazers absent. During spring and fall there were no macrophyte responses to treatment. The relative influence of epiphytes on macrophyte production may have been related to seasonally changing water temperature and macrophyte requirements for light and inorganic carbon.  相似文献   

15.
The aim of the present study is to probe the relation between plant growth and its decontamination effect in constructed wetlands.Four species were studied in the small-scale mono-cuitured constructed wetlands, which were fed with domestic wastewater. Plant growth indexes were correlated with contaminant removal performance of the constructed wetlands. Wetlands planted with Cyperus flabelliformis Rottb. showed the highest growth indexes such as shoot growth, biomass, root activity, root biomass increment, and the highest contaminant removal rates, whereas wetlands planted with Vetiveria zizanioides L. Nash had the lowest growth indexes and the lowest removal rates. Above-ground biomass and total biomass were significantly correlated with ammonia nitrogen removal, and below-ground biomass with soluble reactive phosphorus removal. Photosynthetic rate had higher correlation with nitrogen removal in these species. Root activity and root biomass increment was more correlated with 5 d biochemical oxygen demand removal.Chemical oxygen demand removal had lower correlations with plant growth indexes. All four species had higher removal rates in summer and autumn. The results suggest that the effect of plant growth on contaminant removal in constructed wetlands were different specifically in plants and contaminants.  相似文献   

16.
Trapa maximowiczii is a floating-leaved macrophyte common in China. The plant population in East Bay, Lake Taihu, has been expanding rapidly in recent years. In order to better understand the mechanisms controlling the population dynamics in this species, two outdoor experiments were conducted from 9 May to 8 July 2007, evaluating the effect on the growth of T. maximowiczii of different nutrient levels in water column and sediment. Results showed that high concentration of nutrients (nitrogen and phosphorous) in water led to significant increases in rosette diameter and plant dry weight, dry weight of aquatic roots and anchoring roots, but had no effect on plant height or main stem node count. Phosphorus enrichment resulted in increases in plant dry weight and seed number. However, no such difference was observed between the nitrogen enrichment treatment and the control. Sediment fertility had significant effects on plant growth. Plant height, plant dry weight, dry weight of aquatic and anchoring roots, and maximum rosette diameter were significantly greater in high-nutrient sediment than those in low-nutrient sediment. This study suggests that eutrophication of water (especially increasing phosphorus loading) and accumulated nutrients in sediment may be among the causes leading to increasing biomass of the floating-leaved macrophyte T. maximowiczii in East Bay of Lake Taihu.  相似文献   

17.
A natural wetland of about 12 000 m2 along the east coast of Lake Taihu was separated into five subzones with different macrophyte structures to investigate their nutrient removal dynamics. Wastewater was continuously pumped into the wetland from July 2008 to June 2009 at an average rate of 22 m3/h. Neighboring natural wetland with high density of macrophyte was chosen as a comparison site. The removal of TN, TDN, TP, and TDP in the experimental wetlands as a whole was about 79.3, 54.5, 4.5, and 3.4 kg, respectively. The decrease of nitrogen concentration was more pronounced in winter (January–March) 2009, representing a respective reduction of 46.4%, 48.0%, and 47.9% in TN, TDN, and NH4–N concentration. Results reveal a higher nutrient removal potential in wetland dominated by Typha orientalis Presl, Zizania latifolia Turcz, and Hemarthria sibirica under high nutrient load. However, areas dominated by Zizania latifolia Turcz, Nelumbo nucifera Gaertn, and Ceratophyllum demersum L. had better purification performance when the above-water-surface macrophytes were harvested frequently. Dissolved oxygen, pH, and oxidation–reduction potential decreased with the increase of the percentage of Zizania latifolia Turcz-dominated macrophytes. High nutrient concentration in the comparison site and net increase of NH4–N in Z1 indicate the possibility of water re-pollution by intense macrophyte decomposition. Furthermore, results suggest that harvesting macrophytes has potential ability in nitrogen, especially ammonium nitrogen removal, and hence could be considered in wetland construction for lake restoration.  相似文献   

18.
Treatment wetlands can remove nutrients from inflow sources through biogeochemical processes. Plant composition and temperature play important roles in the nutrient removal efficiency of these wetlands, but the interactions between these variables are not well understood. We investigated the seasonal efficiency of wetland macrophytes to reduce soil leachate concentrations of total nitrogen and total phosphorus in experimental microcosms. Each microcosm contained one of six vegetation treatments: unplanted, planted with one of four species (Carex lacustris, Scirpus validus, Phalaris arundinacea and Typha latifolid) in monoculture or planted with an equal abundance of all four species. Microcosms were also subjected to two temperature treatments: insulated microcosms and microcosms exposed to environmental conditions. A constant nutrient solution containing 56 mg/l N and 31 mg/l P was added to all microcosms three times a week. Water samples were analyzed monthly for total dissolved nitrogen and total dissolved phosphorous. Microcosms exhibited a typical pattern of seasonal nutrient removal with higher removal rates in the growing season and lower rates in the winter months. In general, planted microcosms outperformed unplanted microcosms. Among the plant treatments, Carex lacustris was the least efficient. The four remaining plant treatments removed an equivalent amount of nutrients. Insulated microcosms were more efficient in the winter and early spring months. Although a seasonal pattern of nutrient removal was observed, this variation can be minimized through planting and insulation of wetlands.  相似文献   

19.
Production and bioavailability of dissolved organic matter (DOM) were followed during a year in the nutrient-rich estuary, Roskilde Fjord (RF), and the more oligotrophic strait, Great Belt (GB), in Denmark. Bioavailability of dissolved organic carbon (DOC), nitrogen (DON), and phosphorous (DOP) was determined during incubations over six months. Overall, RF had three to five times larger pools of total nitrogen (TN) and total phosphorous (TP) and five to eight times higher concentrations of inorganic nutrients compared to GB. However, the allocation of carbon, nitrogen, and phosphorous into different pools were remarkably similar between the two systems. DON and DOP contributed with about equal relative fractions in the two systems: 72 ± 13% of total nitrogen and 21 ± 12% of total phosphorous. The average bioavailability of DOM was 25 ± 15, 17 ± 5.5, and 49 ± 29% for carbon, nitrogen, and phosphorous, respectively. The observed release of DIN from degradation of DON amounted to between 0.1 (RF winter) and 14 times (GB summer) the loadings from land and contributed with half of the total input of bioavailable nitrogen during summer. Hence, this study shows that nitrogen in DOM is important for the nitrogen cycling, especially during summer. The sum of inorganic nutrients, particulate organic matter, and bioavailable DOM (the dynamic pools of nutrients) accounted for 42 and 92% of nitrogen, and phosphorous, respectively, and was remarkably similar between the two systems compared to the difference in nutrient richness. It is hypothesized that the pelagic metabolism of nutrients in marine systems dictates a rather uniform distribution of the different fractions of nitrogen and phosphorous containing compounds regardless of eutrophication level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号