首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
  • Successful alien plant invasion is influenced by both climate change and plant–plant interactions. We estimate the single and interactive effects of competition and extreme weather events on the performance of the global legume invader Lupinus polyphyllus (Lindl.).
  • In three experimental studies we assessed (i) the stress tolerance of seedling and adult L. polyphyllus plants against extreme weather events (drought, fluctuating precipitation, late frost), (ii) the competitive effects of L. polyphyllus on native grassland species and vice versa, and (iii) the interactive effects of extreme weather events and competition on the performance of L. polyphyllus.
  • Drought reduced growth and led to early senescence of L. polyphyllus but did not reduce adult survival. Fluctuating precipitation events and late frost reduced the length of inflorescences. Under control conditions, interspecific competition reduced photosynthetic activity and growth of L. polyphyllus. When subjected to competition during drought, L. polyphyllus conserved water while simultaneously maintaining high assimilation rates, demonstrating increased water use efficiency. Meanwhile, native species had reduced performance under drought.
  • In summary, the invader gained an advantage under drought conditions through a smaller reduction in performance relative to its native competitors but was competitively inferior under control conditions. This provides evidence for a possible invasion window for this species. While regions of high elevation or latitude with regular severe late frost events might remain inaccessible for L. polyphyllus, further spread across Europe seems probable as the predicted increase in drought events may favour this non‐native legume over native species.
  相似文献   

2.
Non‐native fish generally cause native fish decline, and once non‐natives are established, control or elimination is usually problematic. Because non‐native fish colonization has been greatest in anthropogenically altered habitats, restoring habitat similar to predisturbance conditions may offer a viable means of non‐native fish control. In this investigation we identified habitats favoring native over non‐native fish in a Mojave Desert oasis (Ash Meadows) and used this information to restore one of its major warm water spring systems (Kings Pool Spring). Prior to restoration, native fishes predominated in warm water (25–32°C) stream and spring‐pool habitat, whereas non‐natives predominated in cool water (≤23°C) spring‐pool and marsh/slack water habitat. Native Amargosa pupfish (Cyprinodon nevadensis) and Ash Meadows speckled dace (Rhinichthys osculus nevadensis) inhabited significantly faster mean water column velocities (MWCV) and greater total depth (TD) than non‐native Sailfin molly (Poecilia latipinna) and Mosquitofish (Gambusia affinis) in warm water stream habitat, and Ash Meadows speckled dace inhabited significantly faster water than non‐natives in cool water stream habitat. Modification of the outflow of Kings Pool Spring from marsh to warm water stream, with MWCV, TD, and temperature favoring native fish, changed the fish composition from predominantly non‐native Sailfin molly and Mosquitofish to predominantly Ash Meadows pupfish. This result supports the hypothesis that restoring spring systems to a semblance of predisturbance conditions would promote recolonization of native fishes and deter non‐native fish invasion and proliferation.  相似文献   

3.
4.
  1. Exotic plant species can evolve adaptations to environmental conditions in the exotic range. Furthermore, soil biota can foster exotic spread in the absence of negative soil pathogen–plant interactions or because of increased positive soil biota–plant feedbacks in the exotic range. Little is known, however, about the evolutionary dimension of plant–soil biota interactions when comparing native and introduced ranges.
  2. To assess the role of soil microbes for rapid evolution in plant invasion, we subjected Verbascum thapsus, a species native to Europe, to a reciprocal transplant experiment with soil and seed material originating from Germany (native) and New Zealand (exotic). Soil samples were treated with biocides to distinguish between effects of soil fungi and bacteria. Seedlings from each of five native and exotic populations were transplanted into soil biota communities originating from all populations and subjected to treatments of soil biota reduction: application of (a) fungicide, (b) biocide, (c) a combination of the two, and (d) control.
  3. For most of the investigated traits, native populations showed higher performance than exotic populations; there was no effect of soil biota origin. However, plants developed longer leaves and larger rosettes when treated with their respective home soil communities, indicating that native and exotic plant populations differed in their interaction with soil biota origin. The absence of fungi and bacteria resulted in a higher specific root length, suggesting that V. thapsus may compensate the absence of mutualistic microbes by increasing its root–soil surface contact.
  4. Synthesis. Introduced plants can evolve adaptations to soil biota in their new distribution range. This demonstrates the importance of biogeographic differences in plant–soil biota relationships and suggests that future studies addressing evolutionary divergence should account for differential effects of soil biota from the home and exotic range on native and exotic populations of successful plant invaders.
  相似文献   

5.
There is a general assumption that intraspecific populations originating from relatively arid climates will be better adapted to cope with the expected increase in drought from climate change. For ecologically and economically important species, more comprehensive, genecological studies that utilize large distributions of populations and direct measures of traits associated with drought‐resistance are needed to empirically support this assumption because of the implications for the natural or assisted regeneration of species. We conducted a space‐for‐time substitution, common garden experiment with 35 populations of coast Douglas‐fir (Pseudotsuga menziesii var. menziesii) growing at three test sites with distinct summer temperature and precipitation (referred to as ‘cool/moist’, ‘moderate’, or ‘warm/dry’) to test the hypotheses that (i) there is large genetic variation among populations and regions in traits associated with drought‐resistance, (ii) the patterns of genetic variation are related to the native source‐climate of each population, in particular with summer temperature and precipitation, (iii) the differences among populations and relationships with climate are stronger at the warm/dry test site owing to greater expression of drought‐resistance traits (i.e., a genotype × environment interaction). During midsummer 2012, we measured the rate of water loss after stomatal closure (transpirationmin), water deficit (% below turgid saturation), and specific leaf area (SLA, cmg?1) on new growth of sapling branches. There was significant genetic variation in all plant traits, with populations originating from warmer and drier climates having greater drought‐resistance (i.e., lower transpirationmin, water deficit and SLA), but these trends were most clearly expressed only at the warm/dry test site. Contrary to expectations, populations from cooler climates also had greater drought‐resistance across all test sites. Multiple regression analysis indicated that Douglas‐fir populations from regions with relatively cool winters and arid summers may be most adapted to cope with drought conditions that are expected in the future.  相似文献   

6.
Caño L  Escarré J  Vrieling K  Sans FX 《Oecologia》2009,159(1):95-106
This paper tests the prediction that introduced plants may become successful invaders because they experience evolutionary changes in growth and defence in their new range [evolution of increased competitive ability hypothesis (EICA)]. Interspecific and intraspecific binary feeding choices were offered to the snail Helix aspersa. The choices were between: (1) plants of the invasive Senecio inaequidens and Senecio pterophorus derived from populations in the introduced range (Europe) and plants of three indigenous species (Senecio jacobea, Senecio vulgaris and Senecio malacitanus) from populations in Europe; (2) plants of the invasive S. inaequidens and S. pterophorus from populations in the introduced range (Europe) and from populations in the native range (South Africa). We did not find a clear pattern of preference for indigenous or alien species of Senecio. However, we found that European invasive populations of S. inaequidens and S. pterophorus were less palatable than South African native populations. Moreover, in contrast to the predictions of the EICA hypothesis, the invasive genotypes of both species also showed a higher total concentration of pyrrolizidine alkaloids, and in the case of S. inaequidens we also found higher growth than in native genotypes. Our results are discussed with respect to the refinement of the EICA hypothesis that takes into account the difference between specialist and generalist herbivores and between qualitative and quantitative defences. We conclude that invasive populations of S. inaequidens and S. pterophorus are less palatable than native populations, suggesting that genetic differentiation associated with founding may occur and contribute to the plants’ invasion success by selecting the best-defended genotypes in the introduced range.  相似文献   

7.
Invaders exert new selection pressures on the resident species, for example, through competition for resources or by using novel weapons. It has been shown that novel weapons aid invasion but it is unclear whether native species co‐occurring with invaders have adapted to tolerate these novel weapons. Those resident species which are able to adapt to new selective agents can co‐occur with an invader while others face a risk of local extinction. We ran a factorial common garden experiment to study whether a native plant species, Anthriscus sylvestris, has been able to evolve a greater tolerance to the allelochemicals exerted by the invader, Lupinus polyphyllus. Lupinus polyphyllus produces allelochemicals which potentially act as a novel, strong selective agent on A. sylvestris. We grew A. sylvestris seedlings collected from uninvaded (naïve) and invaded (experienced) sites growing alone and in competition with L. polyphyllus in pots filled with soil with and without activated carbon. Because activated carbon absorbs allelochemicals, its addition should improve especially naïve A. sylvestris performance in the presence of the invader. To distinguish the allelochemicals absorption and fertilizing effects of activated carbon, we grew plants also in a mixture of soil and fertilizer. A common garden experiment indicated that the performances of naïve and experienced A. sylvestris seedlings did not differ when grown with L. polyphyllus. The addition of activated carbon, which reduces interference by allelochemicals, did not induce differences in their performances although it had a positive effect on the aboveground biomass of A. sylvestris. Together, these results suggest that naïve and experienced A. sylvestris plants tolerated equally the invader L. polyphyllus and thus the tolerance has not occurred over the course of invasion.  相似文献   

8.
9.
The success of conifers over much of the world's terrestrial surface is largely attributable to their tolerance to cold stress (i.e., cold hardiness). Due to an increase in climate variability, climate change may reduce conifer cold hardiness, which in turn could impact ecosystem functioning and productivity in conifer‐dominated forests. The expression of cold hardiness is a product of environmental cues (E), genetic differentiation (G), and their interaction (G × E), although few studies have considered all components together. To better understand and manage for the impacts of climate change on conifer cold hardiness, we conducted a common garden experiment replicated in three test environments (cool, moderate, and warm) using 35 populations of coast Douglas‐fir (Pseudotsuga menziesii var. menziesii) to test the hypotheses: (i) cool‐temperature cues in fall are necessary to trigger cold hardening, (ii) there is large genetic variation among populations in cold hardiness that can be predicted from seed‐source climate variables, (iii) observed differences among populations in cold hardiness in situ are dependent on effective environmental cues, and (iv) movement of seed sources from warmer to cooler climates will increase risk to cold injury. During fall 2012, we visually assessed cold damage of bud, needle, and stem tissues following artificial freeze tests. Cool‐temperature cues (e.g., degree hours below 2 °C) at the test sites were associated with cold hardening, which were minimal at the moderate test site owing to mild fall temperatures. Populations differed 3‐fold in cold hardiness, with winter minimum temperatures and fall frost dates as strong seed‐source climate predictors of cold hardiness, and with summer temperatures and aridity as secondary predictors. Seed‐source movement resulted in only modest increases in cold damage. Our findings indicate that increased fall temperatures delay cold hardening, warmer/drier summers confer a degree of cold hardiness, and seed‐source movement from warmer to cooler climates may be a viable option for adapting coniferous forest to future climate.  相似文献   

10.
11.
12.
13.
  • Under Mediterranean climates with dry‐hot summers and cool‐wet winters, many forbs with potential for habitat restoration are winter annuals, but there is little information about their germination.
  • We performed laboratory germination experiments on 13 ruderal dicots native to Andalusia (southern Spain). We measured the germination of recently harvested seeds from natural populations across nine temperature treatments (from 5 to 35 °C, constant and alternate); two storage periods; and eight water stress treatments (from 0 to ?1.0 MPa). We then calculated the hydrothermal thresholds for seed germination.
  • Final germination ranged from 0–100% and results were mixed in response to temperature. Base temperature was below 6 °C, optimal temperature was around 14 °C and the ceiling temperature around 23 °C. For five species, 10 months of storage improved total germination, indicating a dormancy‐breaking effect, but the other species did not respond or had their germination reduced. All species were relatively tolerant to water stress, with base water potential ranging from ?0.8 to ?1.8 MPa.
  • Our results suggest that hydrothermal germination thresholds, rather than physiological dormancy, are the main drivers of germination phenology in annual forbs from Mediterranean semi‐dry environments. The variation in germination responses of these forb species differs from winter annual grasses, but their seeds are all suitable for being stored before restoration.
  相似文献   

14.
Higher biodiversity can stabilize the productivity and functioning of grassland communities when subjected to extreme climatic events. The positive biodiversity–stability relationship emerges via increased resistance and/or recovery to these events. However, invader presence might disrupt this diversity–stability relationship by altering biotic interactions. Investigating such disruptions is important given that invasion by non‐native species and extreme climatic events are expected to increase in the future due to anthropogenic pressure. Here we present one of the first multisite invader × biodiversity × drought manipulation experiment to examine combined effects of biodiversity and invasion on drought resistance and recovery at three semi‐natural grassland sites across Europe. The stability of biomass production to an extreme drought manipulation (100% rainfall reduction; BE: 88 days, BG: 85 days, DE: 76 days) was quantified in field mesocosms with a richness gradient of 1, 3, and 6 species and three invasion treatments (no invader, Lupinus polyphyllus, Senecio inaequidens). Our results suggest that biodiversity stabilized community productivity by increasing the ability of native species to recover from extreme drought events. However, invader presence turned the positive and stabilizing effects of diversity on native species recovery into a neutral relationship. This effect was independent of the two invader's own capacity to recover from an extreme drought event. In summary, we found that invader presence may disrupt how native community interactions lead to stability of ecosystems in response to extreme climatic events. Consequently, the interaction of three global change drivers, climate extremes, diversity decline, and invasive species, may exacerbate their effects on ecosystem functioning.  相似文献   

15.
Summary Seedlings representative of Verbascum thapsus L. populations from thermally diverse habitats were grown under uniform, controlled conditions. The plants were used to obtain temperature response curves for net photosynthesis over a range of 15–40°C. In general, all experimental plants exhibited similar rates of net photosynthesis at 20, 25, 30, and 35°C. Plants representative of cool habitat populations (high-latidude and high-altitude) had greatest rates of net photosynthesis at the lower temperatures and much lower rates at 40°C. Plants representative of warm habitat populations (low-latitude and low-altitude) exhibited rates of net photosynthesis at 40°C which were nearly twice those of plants representative of cool habitat populations. Carbon dioxide transfer resistances are discussed with reference to plant control of photosynthesis at different temperatures. Patterns of photosynthesis and resistance response among plants representative of different habitats suggest ecotypic variation has occurred only to a very limited extent. Therefore, the patterns exhibited by experimental plants suggest that Verbascum thapsus' success in a number of diverse sites is related to the ability of all members of the species to photosynthesize over a broad range of temperatures.  相似文献   

16.
Native plant individuals often persist within communities dominated by exotics but the influence of this exposure on native populations is poorly understood. Selection for traits contributing to competitive ability may lead to native plant populations that are more tolerant of the presence of exotic invaders. In this way, long‐term coexistence with an exotic may confer competitive advantages to remnant (experienced) native populations and be potentially beneficial to restoration. In past studies we have documented genetic differentiation within native grass populations exposed to the exotic invader Russian knapweed (Acroptilon repens). Here, we examine populations of a cool‐season grass, needle‐and‐thread (Hesperostipa comata [Trin. & Rupr.]) and a warm season, alkali sacaton (Sporobolus airoides [Torr.]) collected from Russian knapweed‐invaded sites and adjacent noninvaded sites to assess their relative competitive ability against a novel exotic neighbor, Canada thistle (Cirsium arvense). Experienced S. airoides (from within A. repens invasions) appear to better tolerate (accumulate biomass, leaf nitrogen content, and to initiate new tillers) the presence of a novel competitor (C. arvense). Experienced and inexperienced H. comata genets differ in their response to the presence of C. arvense. Relative neighbor effects of native grasses on C. arvense were generally greater from experienced grasses. The ability to compete with novel neighbors may be driven by general competitive traits rather than species‐specific coevolutionary trajectories. Irrespective of competitive mechanisms, the conservation of native species populations within weed invasions may provide an important restoration tool by retaining unique components of native gene pools selected by competitive interactions with exotics.  相似文献   

17.
  1. Invasive alien species and climate change are two of the most serious global environmental threats. In particular, it is of great interest to understand how changing climates could impact the distribution of invaders that pose serious threats to ecosystems and human activities.
  2. In this study, we developed ensemble species distribution models for predicting the current and future global distribution of the signal crayfish Pacifastacus leniusculus and the red swamp crayfish Procambarus clarkii, two of the most highly problematic invaders of freshwater ecosystems worldwide. We collected occurrence records of the species, from native and alien established ranges worldwide. These records in combination with averaged observations of current climatic conditions were used to calibrate a set of 10 distinct correlative models for estimating the climatic niche of each species. We next projected the estimated niches into the geographical space for the current climate conditions and for the 2050s and 2070s under representative concentration pathway 2.6 and 8.5 scenarios.
  3. Our species distribution models had high predictive abilities and suggest that annual mean temperature is the main driver of the distribution of both species. Model predictions indicated that the two crayfish species have not fully occupied their suitable climates and will respond differently to future climate scenarios in different geographic regions. Suitable climate for P. leniusculus was predicted to shift poleward and to increase in extent in North America and Europe but decrease in Asia. Regions with suitable climate for P. clarkii are predicted to widen in Europe but contract in North America and Asia.
  4. This study highlights that invasive species with different thermal preference are likely to respond differently to future climate changes. Our results provide important information for policy makers to design and implement anticipated measures for the prevention and control of these two problematic species.
  相似文献   

18.
  • The moss Syntrichia caninervis is widely distributed in cool temperate and cold deserts where environmental pressures create a dependence on asexual reproduction (fragment reproduction). However, when compared to sporophyte‐producing mosses, there is a lack of evidence to support the capacity of drought‐tolerant mosses that predominantly fragment and produce protonema to disperse over long distances.
  • We used 20 microsatellite loci to study genetic variation and structure in six populations (five natural populations and one population from a regeneration site) in three contrasting and widely separated regions of China.
  • The genetic diversity and expected heterozygosity were lower in populations from the Tengger Desert than in populations from the other regions. Using PCoA, UPGMA and Structure analysis, the genetic grouping divided the three regions into three distinct groups. This may indicate that in regions where S. caninervis reproduces predominantly asexually, propagules are spread mainly by short‐distance dispersal. The genetic diversity of the population from the regeneration site in the Tengger Desert was slightly higher than that of the nearby, naturally occurring population, and included some input from the Pamir Plateau almost 2,300 km to the west, suggesting long‐distance dispersal of S. caninervis propagules across the region.
  • Predominantly asexually reproducing populations of S. caninervis are mainly dependent on short‐distance dispersal. Long‐distance dispersal of S. caninervis propagules across the region is difficult. Establishment of populations with dominant asexual reproduction will eventually result in genetic differentiation.
  相似文献   

19.
20.
Parasites typically have broader thermal limits than hosts, so large performance gaps between pathogens and their cold‐ and warm‐adapted hosts should occur at relatively warm and cold temperatures, respectively. We tested this thermal mismatch hypothesis by quantifying the temperature‐dependent susceptibility of cold‐ and warm‐adapted amphibian species to the fungal pathogen Batrachochytrium dendrobatidis (Bd) using laboratory experiments and field prevalence estimates from 15 410 individuals in 598 populations. In both the laboratory and field, we found that the greatest susceptibility of cold‐ and warm‐adapted hosts occurred at relatively warm and cool temperatures, respectively, providing support for the thermal mismatch hypothesis. Our results suggest that as climate change shifts hosts away from their optimal temperatures, the probability of increased host susceptibility to infectious disease might increase, but the effect will depend on the host species and the direction of the climate shift. Our findings help explain the tremendous variation in species responses to Bd across climates and spatial, temporal and species‐level variation in disease outbreaks associated with extreme weather events that are becoming more common with climate change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号