首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Addition of Ca2+ to primary cultures of female pituitary cells incubated in serum-free medium lacking added Ca2+ yielded no effects on levels of prolactin or growth hormone mRNA, assayed by cytoplasmic dot hybridization. However, incubation of the cells in serum-free medium containing sufficient ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid to reduce medium Ca2+ levels below the 10-40 microM present as a trace contaminant yielded a decrease in the levels of both mRNAs. The decrease was dose-dependent at extracellular Ca2+ concentrations below 1.0 microM, had an apparent half-maximum at about 0.3 microM, and did not appear to plateau with increasing incubation times. Following 2-3-day incubations of cells in low Ca2+, a reduction of prolactin mRNA (23-70-fold) consistently greater than the reduction of growth hormone mRNA (9-15-fold) was observed. Similar effects of reduced extracellular Ca2+ were obtained with primary cultures of male pituitary cells. The specificity of these effects of lowered extracellular Ca2+ was demonstrated by the following observations. The decreases in these mRNAs were substantially reversible by readdition of Ca2+ to the incubation medium. Reduction of extracellular Ca2+ led to no detectable changes in cellular ribosomal RNA levels or over-all RNA synthesis. In male pituitary cells, the level of another metal-regulated mRNA, that for metallothionein, was not decreased by a reduction of extracellular Ca2+ that caused a 40-fold decrease in levels of prolactin and growth hormone mRNA. Hence, Ca2+ exhibits specificity in its regulation of pituitary prolactin and growth hormone gene expression.  相似文献   

2.
The involvement of Na+ and Ca2+ channels in the stimulatory effect of nicotine and cAMP upon proenkephalin A mRNA (mRNA ENK) levels in primary cultures of bovine adrenal chromaffin cells was analyzed. Nicotine (10 microM) caused about a 2-3-fold increase in mRNA ENK which was abolished by the nicotinic receptor antagonist tubocurarine (4 X 10(-7) M), inhibited by the Ca2+ channel antagonist nifedipine (100 nM) abolished by the Ca2+ channel blocker D600 (10 microM), and augmented by the Ca2+ channel agonist BayK 8644 (100 nM). In contrast, blockade of the Na+ channel by tetrodotoxin (1 microM) did not modulate the nicotine-induced increase in mRNA ENK. Incubation of the cells with forskolin (25 microM) and 8-bromo-cAMP (1 mM) also resulted in an increase in mRNA ENK levels that was inhibited by the Ca2+ channel blocker verapamil (50 microM) and nifedipine (100 nM), whereas it was enhanced by BayK 8644 (100 nM). In addition, the effect of forskolin and 8-bromo-cAMP was decreased by the Na+ channel blocker tetrodotoxin (1 microM). These results suggest that the induction of proenkephalin A gene expression by cAMP and nicotine involves the modulation of ion channels. It appears that changes in Ca2+ flux are involved in mediating this induction. The dihydropyridines nifedipine and BayK 8644 and the Ca2+ channel blockers verapamil and D600 all modulate 45Ca uptake. In addition, we show that incubation of the cells with A23187 (10(-7) M), a Ca2+ ionophore, resulted in an increase in mRNA ENK, indicating that changes in intracellular Ca2+ levels may indeed modulate proenkephalin A gene expression. Although it appears that an elevation of mRNA ENK upon nicotinic receptor activation occurs rapidly (an increase could be detected after 2 h incubation), the findings that the rise in mRNA ENK could be abolished by the Ca2+ channel blocker D600 but not affected by tetrodotoxin (1 microM), and that agents such as KCl (20 mM) and veratridine (5 microM) that increase mRNA ENK by activation of voltage-dependent Ca2+ channels do not result in an increase in intracellular cAMP, provide no evidence for a major role of the adenylate cyclase system in the inducing effect of nicotine upon proenkephalin A gene expression.  相似文献   

3.
Using flow cytometric analysis and potential-sensitive fluorescent dye TMRM Ca2+ -induced changes of membrane potential of isolated smooth muscle mitochondria were studied. It was shown, that Ca2+ (100 microM) addition to the incubation medium induced mitochondrial membrane depolarization that probably could be explained by Ca2+/H+ -exchanger activation which functioning lead to membrane potential dissipation. In the case of ruthenium red (10 microM) preliminary presence in incubation medium, Ca2+ (100 microM) addition did not lead to membrane potential dissipation. Hence, membrane potential dissipation was caused by an increase of matrix Ca2+ concentration. In the presence of Mg2+ (3 mM) and ATP (3 mM), Ca2+ addition did not cause depolarization. It was supposed that in this case ATP synthase acted in the opposite direction as H+ -pump and prevented from mitochondrial membrane potential dissipation. Thus, the flow cytometry method allows to register membrane potential of isolated smooth muscle mitochondria and also to test the effectors, capable to modulate this parameter.  相似文献   

4.
The effect of the carcinogen safrole on intracellular Ca2+ movement in renal tubular cells has not been explored previously. The present study examined whether safrole could alter Ca2+ handling in Madin-Darby canine kidney (MDCK) cells. Cytosolic free Ca2+ levels ([Ca2+]i) in populations of cells were measured using fura-2 as a fluorescent Ca2+ probe. Safrole at concentrations above 33 microM increased [Ca2+]i in a concentration-dependent manner with an EC50 value of 400 microM. The Ca2+ signal was reduced by 90% by removing extracellular Ca2+, but was not affected by nifedipine, verapamil, or diltiazem. Addition of Ca2+ after safrole had depleted intracellular Ca(2+)-induced dramatic Ca2+ influx, suggesting that safrole caused store-operated Ca2+ entry. In Ca(2+)-free medium, after pretreatment with 650 microM safrole, 1 microM thapsigargin (an endoplasmic reticulum Ca2+ pump inhibitor) failed to release more Ca 2+. Inhibition of phospholipase C with 2 microM U73122 did not affect safrole-induced Ca2+ release. Trypan blue exclusion assays revealed that incubation with 650 microM safrole for 30 min did not kill cells, but killed 70% of cells after incubation for 60 min. Collectively, the data suggest that in MDCK cells, safrole induced a [Ca2+] increase by causing Ca2+ release from the endoplasmic reticulum in a phospholipase C-independent fashion, and by inducing Ca2+ influx via store-operated Ca2+ entry. Furthermore, safrole can cause acute toxicity to MDCK cells.  相似文献   

5.
The change in cytoplasmic free calcium, [Ca2+]i in isolated bovine adrenal medullary cells during stimulation by acetylcholine (ACh) in Ca2+-free incubation medium was measured using the fluorescent Ca2+ indicator quin2. ACh (1-100 microM) caused an increase in [Ca2+]i by mobilization of Ca2+ from the intracellular pool. Nicotine (10 microM) did not increase [Ca2+]i in the absence of extracellular Ca2+. Pretreatment of the cells with atropine (10 microM) completely inhibited ACh-induced increase in [Ca2+]i, whereas pretreatment with hexamethonium (100 microM) did not. The intracellular Ca2+ antagonist 8-(N,N-diethylamino)octyl-3,4,5-trimethoxybenzoate (TMB-8), inhibited ACh-induced increase in [Ca2+]i. The activator of protein kinase C 12-O-tetradecanoylphorbol-13-acetate (TPA), but not its 'inactive' analog 4 alpha-phorbol-12,13-didecanoate (PDD), also inhibited ACh-induced increase in [Ca2+]i. These findings suggest that in bovine adrenal medullary cells, stimulation of muscarinic ACh receptor causes an increase in [Ca2+]i by mobilizing Ca2+ from the intracellular pool and that protein kinase C is involved in 'termination' or 'down regulation' of this response.  相似文献   

6.
Uptake and release of 45Ca by Myxicola axoplasm   总被引:1,自引:0,他引:1       下载免费PDF全文
The binding and release of 45Ca by axoplasm isolated from Myxicola giant axons were examined. Two distinct components of binding were observed, one requiring ATP and one not requiring ATP. The ATP- dependent binding was largely prevented by the addition of mitochondrial inhibitors, whereas the ATP-independent component was unaffected by these inhibitors. The ATP-independent binding accounted for roughly two-thirds of the total 45Ca uptake in solutions containing an ionized [Ca2+] = 0.54 microM and was the major focus of this investigation. This fraction of bound 45Ca was released from the axoplasm at a rate that increased with increasing concentrations of Ca2+ in the incubation fluid. The ions Cd2+ and Mn2+ were also able to increase 45Ca efflux from the sample, but Co2+, Ni2+, Mg2+, and Ba2+ had no effect. The concentration-response curves relating the 45Ca efflux rate coefficients to the concentration of Ca2+, Cd2+, and Mn2+ in the bathing solution were S-shaped. The maximum rate of efflux elicited by one of these divalent ions could not be exceeded by adding a saturating concentration of a second ion. Increasing EGTA concentration in the bath medium from 100 to 200 microM did not increase 45Ca efflux; yet increasing the concentration of the EGTA buffer in the uptake medium from 100 to 200 microM and keeping ionized Ca2+ constant caused more 45Ca to be bound by the axoplasm. These results suggest the existence of high-affinity, ATP-independent binding sites for 45Ca in Myxicola axoplasm that compete favorably with 100 microM EGTA. The 45Ca efflux results are interpreted in terms of endogenous sites that interact with Ca2+, Cd2+, or Mn2+.  相似文献   

7.
Effects of Ca2+ on phytoalexin induction by fungal elicitor in soybean cells   总被引:11,自引:0,他引:11  
A glucan elicitor from the cell walls of the fungus Phytophthora megasperma f.sp. glycinea caused increases in the activities of the phytoalexin biosynthetic enzymes, phenylalanine ammonia-lyase and chalcone synthase, and induced the production of the phytoalexin, glyceollin, in soybean (Glycine max) cell suspension cultures when tested in culture medium containing 1.2 mmol/liter Ca2+. Removal of extracellular Ca2+ by treatment with ethylene glycol bis(beta-aminoethyl ether)-N, N'-tetraacetic acid followed by washing the cells with Ca2+-free culture medium abolished the elicitor-mediated phytoalexin response. This suppression was largely reversed on readdition of Ca2+. Elicitor-mediated enhancement of biosynthetic enzyme activities and accumulation of glyceollin was strongly inhibited by La3+; effective concentrations for 50% inhibition were (mumol/liter) 40 for phenylalanine ammonia-lyase, 100 for chalcone synthase, and 30 for glyceollin. Verapamil caused similar effects only at concentrations higher than 0.1 mmol/liter, whereas trifluoperazine and 8-(diethylamino)-octyl-3,4,5-trimethoxybenzoate did not affect enzyme induction by the elicitor in the concentration range tested. Uptake of alpha-amino isobutyric acid into soybean cells, which was rapidly inhibited in the presence of the glucan elicitor, was not affected by La3+ nor was uptake inhibition by the elicitor relieved by La3+. The Ca2+ ionophore, A23187, enhanced phytoalexin biosynthetic enzyme activities and glyceollin accumulation in a dose-dependent manner, with 50% stimulation (relative to the elicitor) occurring at about 5 mumol/liter. The results suggest that the glucan elicitor causes changes in metabolite fluxes across the plasma membrane of soybean cells, among which changes in Ca2+ fluxes appear to be important for the stimulation of the phytoalexin response.  相似文献   

8.
Huang JK  Jan CR 《Life sciences》2001,68(9):997-1004
Linoleamide is an endogenous lipid that has been shown to induce sleep in cats, rats and humans. However, its physiological function remains unclear. In this study the effect of linoleamide on cytosolic free Ca2+ concentrations ([Ca2+]i) in Madin Darby canine kidney (MDCK) tubular cells was examined, by using fura-2 as a Ca2+ probe. In a concentration-dependent manner, linoleamide induced increases in [Ca2+]i between 10-500 microM with an EC50 of 20 microM. The signal comprised a slow rise and a persistent phase, and was a result of internal Ca2+ release and external Ca2+ influx because it was partly inhibited by external Ca2+ removal. In Ca2+-free medium, depletion of the endoplasmic reticulum Ca2+ store with 1 microM thapsigargin abolished 100 microM linoleamide-induced internal Ca2+ release, and conversely, pretreatment with linoleamide prevented thapsigargin from releasing internal Ca2+. This demonstrates that the internal source of linoleamide-induced [Ca2+]i increase is located in the endoplasmic reticulum. This discharge of internal Ca2+ caused capacitative Ca2+ entry because after incubation with 100 microM linoleamide in Ca2+-free medium for 8 min readmission of 3 mM CaCl2 induced increases in [Ca2+]i. After the formation of inositol-1,4,5-trisphosphate (IP3) was blocked by the phospholipase C inhibitor U73122 (1 microM), linoleamide still induced an increase in [Ca2+]i but the shape of the increase was altered. Similar results were found for another sleep-inducing lipid 9,10-octadecenoamide. Together, the present study shows that the endogenous sleep-inducing lipid linoleamide was able to cause significant increases in [Ca2+]i in renal tubular cells, by releasing the endoplasmic reticulum Ca2+ store and triggering capacitative Ca2+ entry in a manner independent of IP3.  相似文献   

9.
The plasma membranes of chick or rat skeletal muscles, grown in cell culture, were made permeable with saponin in a solution lacking calcium. The cells were then supplied with a medium resembling the cytosol and the ATP-dependent Ca2+ sequestration was performed. Based on the low concentration of free Ca2+ in the medium (below 5 microM), the presence of mitochondrial inhibitors and the effect of drugs that interfere with sarcoplasmic reticulum (SR) function, we assume that the measured Ca2+ accumulation expresses SR function on the saponin-treated myotubes. The development of the SR in muscle cultures is augmented as myogenesis proceeds and depends on its occurrence. Whereas creatine kinase activity is elevated immediately following cell fusion, there is a delay of at least 1 day between myoblast fusion and the increase in Ca2+ accumulation in the SR. Thyroxine or triiodothyronine caused an inhibition of Ca2+ accumulation in rat or chick muscle cultures. This inhibition could explain some of the muscle abnormalities caused by excess of thyroid hormones. A comparison was made between a white-type (fast) and heterogeneous muscle, differentiated in cell culture. There was no significant difference in SR function, indicating the important role of innervation in specifying the properties of muscle fiber types.  相似文献   

10.
Phorbol 12-myristate 13-acetate, 1-20 nM, induced the synthesis in HeLa cells of a 65 200 Mr tissue-type plasminogen activator, and of prostaglandin E2. Omission of Ca2+ from the incubation medium inhibited the induction of plasminogen activator synthesis by 40-60% and abolished the induction of prostaglandin E2 synthesis. Maximal plasminogen activator synthesis could be maintained at extracellular Ca2+ concentrations of approx. 0.1 mM, while maximal prostaglandin synthesis required at least 0.45-0.9 mM Ca2+. The induction of each factor was inhibited by 10-100 microM 8-(N,N-diethylamino)octyl-3,4,5-trimethoxybenzoate (TMB-8), an inhibitor of intracellular C2+ mobilization. Prostaglandin synthesis, but not plasminogen activator synthesis, was also inhibited by 10-100 microM verapamil and nifedipine, which inhibit intracellular Ca2+ uptake via the so-called 'slow-channels' and by 0.5-10 microM trifluoperazine, an inhibitor of calmodulin. Neither plasminogen activator synthesis nor prostaglandin synthesis were stimulated by 5-50 microM 1-oleoyl-2-acetylglycerol or 1-250 microM 1,2-dioctanoylglycerol, alone and in combination with 50 nM-1 microM ionophore A23187. These results indicate that the synthesis of plasminogen activator and prostaglandins in HeLa cells is Ca2+-dependent, and that the Ca2+ requirements for each process are not identical. Thus, Ca2+ regulation of the production of tissue plasminogen activator and prostaglandin E2 occurs at multiple points in their biosynthetic pathways.  相似文献   

11.
Digitonin permeabilizes the plasma membranes of bovine chromaffin cells to Ca2+, ATP, and proteins and allows micromolar Ca2+ in the medium to stimulate directly catecholamine secretion. In the present study the effects of digitonin (20 microM) on the plasma membrane and on intracellular chromaffin granules were further characterized. Cells with surface membrane labeled with [3H]galactosyl moieties retained label during incubation with digitonin. The inability of digitonin-treated cells to shrink in hyperosmotic solutions of various compositions indicated that tetrasaccharides and smaller molecules freely entered the cells. ATP stimulated [3H]norepinephrine uptake into digitonin-treated chromaffin cells fivefold. The stimulated [3H]norepinephrine uptake was inhibited by 1 microM reserpine, 30 microM NH4+, or 1 microM carbonyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP). The data indicate that [3H]norepinephrine was taken up into the intracellular storage granules by the ATP-induced H+ electrochemical gradient across the granule membrane. Reduction of the medium osmolality from 310 mOs to 100 mOs was required to release approximately 50% of the catecholamine from chromaffin granules with digitonin-treated chromaffin cells which indicates a similar osmotic stability to that in intact cells. Chromaffin granules in vitro lost catecholamine when the digitonin concentration was 3 microM or greater. Catecholamine released into the medium by micromolar Ca2+ from digitonin-treated chromaffin cells that had subsequently been washed free of digitonin could not be pelleted in the centrifuge and was not accompanied by release of membrane-bound dopamine-beta-hydroxylase. The studies demonstrate that 20 microM of digitonin caused profound changes in the chromaffin cell plasma membrane permeability but had little effect on intracellular chromaffin granule stability and function. It is likely that the intracellular chromaffin granules were not directly exposed to significant concentrations of digitonin. Furthermore, the data indicate that during catecholamine release induced by micromolar Ca2+, the granule membrane was retained by the cells and that catecholamine release did not result from release of intact granules into the extracellular medium.  相似文献   

12.
Jan CR  Tseng CJ  Chen WC 《Life sciences》2000,66(11):1053-1062
The effect of fendiline, a documented inhibitor of L-type Ca2+ channels and calmodulin, on Ca2+ signaling in Madin Darby canine kidney (MDCK) cells was investigated using fura-2 as a Ca2+ probe. Fendiline at 5-100 microM significantly increased [Ca2+]i concentration-dependently. The [Ca2+]i rise consisted of an initial rise and a slow decay. External Ca2+ removal partly inhibited the Ca2+ signals induced by 25-100 microM fendiline by reducing both the initial rise and the decay phase. This suggests that fendiline triggered external Ca2+ influx and internal Ca2+ release. In Ca(2+)-free medium, pretreatment with 50 microM fendiline nearly abolished the [Ca2+]i rise induced by 1 microM thapsigargin, an endoplasmic reticulum Ca2+ pump inhibitor, and vice versa, pretreatment with thapsigargin prevented fendiline from releasing internal Ca2+. This indicates that the internal Ca2+ source for fendiline overlaps with that for thapsigargin. At a concentration of 50 microM, fendiline caused Mn2+ quench of fura-2 fluorescence at the 360 nm excitation wavelenghth, which was inhibited by 0.1 mM La3+ by 50%, implying that fendiline-induced Ca2+ influx has two components separable by La3+. Consistently, 0.1 mM La3+ pretreatment suppressed fendiline-induced [Ca2+]i rise, and adding La3+ during the rising phase immediately inhibited the signal. Addition of 3 mM Ca2+ increased [Ca2+]i after preincubation with 50-100 microM fendiline in Ca(2+)-free medium. However, 50-100 microM fendiline inhibited 1 microM thapsigargin-induced capacitative Ca2+ entry. Pretreatment with 40 microM aristolochic acid to inhibit phospholipase A2 inhibited 50 microM fendiline-induced internal Ca2+ release by 48%, but inhibition of phospholipase C with 2 microM U73122 or inhibition of phospholipase D with 0.1 mM propranolol had no effect. Collectively, we have found that fendiline increased [Ca2+]i in MDCK cells by releasing internal Ca2+ in a manner independent of inositol-1,4,5-trisphosphate (IP3), followed by external Ca2+ influx.  相似文献   

13.
HeLa cells had their normal medium replaced by an isosmotic medium containing 80 mM K+, 70 mM Na+ and 100 microM ouabain. The cellular contents of K+ first increased and then decreased to the original values, that is, the cells showed a regulatory decrease (RVD) in size. The initial increase was not inhibited by various agents except by substitution of medium Cl- with gluconate. In contrast, the regulatory decrease was inhibited strongly by addition of either 1 mM quinine, 10 microM BAPTA-AM without medium Ca2+, or 0.5 mM DIDS, and partly by either 1 mM EGTA without medium Ca2+, 10 microM trifluoperazine, or substitution of medium Cl- with NO3-. Addition of DIDS to the NO3(-)-substituted medium further suppressed the K+ loss but the effect was incomplete. Intracellular Ca2+ showed a transient increase after the medium replacement. These results suggest that the initial increase in cell K+ is a phenomenon related to osmotic water movement toward Donnan equilibrium, whereas the regulatory K+ decrease is caused by K+ efflux through Ca(2+)-dependent K+ channels. The K+ decrease induced a decrease in cellular water, i.e., RVD. The K+ efflux may be more selectively associated with Cl- efflux through DIDS-sensitive channels than the efflux of other anions.  相似文献   

14.
Upon stimulation with 10(-6) -10(-3) M ATP, A-431 human epidermoidal carcinoma cells incorporated radioactive calcium from their medium in a temperature-dependent manner. The rate of incorporation of 45Ca2+ was rapid for the initial 5 min, but decreased immediately thereafter. The preincubation of cells for 2 h in medium depleted of both Ca2+ and Mg2+ abolished the ATP-dependent 45Ca2+ incorporation, irrespective of whether or not the subsequent incubation medium contained Mg2+ ions. ATP-dependent 45Ca2+ incorporation could be restored by a second preincubation (1 h) in medium containing 1 mM Mg2+, but no Ca2+. The Mg2+ ions in the second preincubation medium could be replaced by Ca2+, Co2+, or Cu2+ for restoration of such activity. Elevation of inositol trisphosphate (InsP3) was observed in cells depleted of either Ca2+ or Mg2+, but not in cells depleted of both ions. A parallel effect was observed in changes in [Ca2+]i. Since the concentration of cytosolic calcium ions does not change by incubation of cells in medium depleted of and (or) restored with calcium ions, we conclude that either calcium or magnesium ions associated with some cellular component(s) are responsible for production of InsP3, which then supposedly mobilizes Ca2+ and provokes 45Ca2+ influx.  相似文献   

15.
The role of calcium in the preparation and the acid secretory activity of parietal cells was studied using cells isolated from rabbit gastric mucosa. The preparation of isolated cells was performed by enzymatic dissociation (collagenase) in the presence of EDTA; without EDTA, only isolated gastric glands were obtained. The acid secretory activity of parietal cells was determined by the 14C-aminopyrine accumulation method; the stimulation induced by histamine or isobutylmethylxanthine (IBMX) was not significantly affected by a reduction of extracellular Ca2+ level (20% diminution in a Ca2+-free medium). The carbachol induced stimulation was highly dependent upon the concentration of extracellular Ca2+: incubation of parietal cells in a Ca2+-free medium reduced the response to 100 microM carbachol by about 60%.  相似文献   

16.
The cytochemical reaction for surface-bound horseradish peroxidase (HRP) on cultured HeLa cells, GH3 cells, and isolated rat liver cells was suppressed by 30 microM monosialoganglioside, by 30 microM trisialoganglioside, or by 5 mM CMP-neuraminic acid. The reaction was also suppressed by 10 mM chitotriose or by 10 mM UDP-galactose, a galactose acceptor and donor, respectively, for galactosyl-transferase. The addition of 2 mM Mn2+ to the incubation medium with HRP suppressed the reaction for surface-bound HRP, and the addition of 10-20 mM Ca2+ intensified the reaction. The addition of 2 mM Zn2+ caused less inhibition than that of 2 mM Mn2+, and the addition of 2 mM Co2+ caused either a slight inhibition, or no inhibition. These observations support the hypothesis that HRP may be bound to a glycosyltransferase at the cell surface.  相似文献   

17.
The effect of nordihydroguaiaretic acid (NDGA) on Ca(2+) signaling in C6 glioma cells has been investigated. NDGA (5-100 microM) increased [Ca(2+)]i concentration-dependently. The [Ca(2+)]i increase comprised an initial rise and an elevated phase over a time period of 4 min. Removal of extracellular Ca(2+) reduced NDGA-induced [Ca(2+)]i signals by 52+/-2%. After incubation of cells with NDGA in Ca(2+)-free medium for 4 min, addition of 3 mM CaCl2 induced a concentration-dependent increase in [Ca(2+)]i. NDGA (100 microM)-induced [Ca(2+)]i increases in Ca(2+)-containing medium was not changed by pretreatment with 10 microM nifedipine or verapamil. In Ca(2+)-free medium, pretreatment with the endoplasmic reticulum Ca(2+) pump inhibitor thapsigargin (1 microM) abolished 100 microM NDGA-induced [Ca(2+)]i increases. Inhibition of phospholipase C with 2 microM U73122 had little effect on 100 microM NDGA-induced Ca(2+) release. Several other lipoxygenase inhibitors had no effect on basal [Ca(2+)]i. Collectively, the results suggest that NDGA increased [Ca(2+)]i in glioma cells in a lipoxygenase-independent manner, by releasing Ca(2+) from the endoplasmic reticulum in a manner independent of phospholipase C activity and by causing Ca(2+) influx.  相似文献   

18.
In Madin-Darby canine kidney (MDCK) cells, the effect of nortriptyline, an antidepressant, on intracellular Ca2+ concentration ([Ca2+]i) was measured by using fura-2. Nortriptyline (> 10 microM) caused a rapid increase of [Ca2+]i in a concentration-dependent manner (EC50 = 75 microM). Nortriptyline-induced [Ca2+]i increase was prevented by 40% by removal of extracellular Ca2+ but was not altered by voltage-gated Ca2+ channel blockers. In Ca(2+)-free medium, thapsigargin, an inhibitor of the endoplasmic reticulum Ca(2+)-ATPase, caused a monophasic [Ca2+]i, increase, after which the increasing effect of nortriptyline on [Ca2+], was abolished; also, pretreatment with nortriptyline reduced a large portion of thapsigargin-induced [Ca2+]i increase. U73122, an inhibitor of phospholipase C, abolished ATP (but not nortriptyline)-induced [Ca2+]i increase. Overnight incubation with 10 microM nortriptyline decreased cell viability by 16%, and 50 microM nortriptyline killed all cells. Prechelation of cytosolic Ca2+ with BAPTA did not alter nortriptyline-induced cell death. These findings suggest that nortriptyline rapidly increased [Ca2+]i in renal tubular cells by stimulating both extracellular Ca2+ influx and intracellular Ca2+ release, and was cytotoxic at higher concentrations in a Ca(2+)-dissociated manner.  相似文献   

19.
Lysophosphatidic acid (LPA) is a phospholipid growth mediator found in serum at 2-20 microM. In many cell types, including human airway smooth muscle (HASM) cells, LPA-induced proliferation occurs at 10-100 microM LPA. At these concentrations LPA forms Ca2+ precipitates. The potential involvement of Ca2+ and Ca2+ LPA precipitates in LPA-induced HASM cell mitogenesis was investigated. In the absence of extracellular Ca2+, 10 and 30 microM LPA stimulated HASM cell mitogenesis. However, with 100 microM LPA in the absence of extracellular Ca2+, HASM cells exhibited a profound shape change and loss of viability, determined to be apoptosis by both DNA staining and assessment of cytosolic nucleosomal reactivity. A bioassay based on the adenosine 3':5'-cyclic monophosphate response of C62B rat glioma cells was used to measure the bioactivity of LPA solutions prepared in Ca2+ free and Ca2+ containing medium. After 24 h, a 100 microM LPA solution in Ca2+ free medium contained markedly greater bioactivity than a 100 microM LPA solution made in Ca2+ containing medium. In summary, formation of Ca2+ LPA precipitates decreases the amount of biologically active LPA in solution, and high concentrations of bioactive LPA achieved in Ca2+ free but not in Ca2+ containing medium induce apoptosis of HASM cells.  相似文献   

20.
The effects of divalent cations, in particular Ca2+ and Mg2+, on glucose uptake by rat isolated fat cells in the presence and absence of insulin have been studied. EDTA (disodium salt) was used to deplete the bovine serum albumin present in the incubation medium of endogenous divalent cations prior to incubation with the cells, but was not present in the incubation medium during the incubation of the cells. The removal of Ca2+ and Mg2+ from the incubation medium did not affect the basal glucose uptake, but abolished the ability of insulin to stimulate glucose uptake by the cells. Addition of 25 microM MgCl2 or CaCl2 to the incubation medium restored a significant insulin stimulation, and this stimulation was maximal when 0.1 mM MgCl2 or CaCl2 had been added. SrCl2 and BaCl2 were also effective in restoring the insulin stimulation, but did not substitute fully for Ca2+ and Mg2+ in the incubation medium. Possible explanation for these observations are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号