首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lipid peroxidation and haemoglobin degradation were the two extremes of a spectrum of oxidative damage in red cells exposed to t-butyl hydroperoxide. The exact position in this spectrum depended on the availability of glucose and the ligand state of haemoglobin. In red cells containing oxy- or carbonmono-oxy-haemoglobin, hexose monophosphate-shunt activity was mainly responsible for metabolism of t-butyl hydroperoxide; haem groups were the main scavengers in red cells containing methaemoglobin. Glutathione, via glutathione peroxidase, accounted for nearly all of the hydroperoxide metabolizing activity of the hexose monophosphate shunt. Glucose protection against lipid peroxidation was almost entirely mediated by glutathione, whereas glucose protection of haemoglobin was only partly mediated by glutathione. Physiological concentrations of intracellular or extracellular ascorbate had no effect on consumption of t-butyl hydroperoxide or oxidation of haemoglobin. Ascorbate was mainly involved in scavenging chain-propagating species involved in lipid peroxidation. The protective effect of intracellular ascorbate against lipid peroxidation was about 100% glucose-dependent and about 50% glutathione-dependent. Extracellular ascorbate functioned largely without a requirement for glucose metabolism, although some synergistic effects between extracellular ascorbate and glutathione were observed. Lipid peroxidation was not dependent on the rate or completion of t-butyl hydroperoxide consumption but rather on the route of consumption. Lipid peroxidation appears to depend on the balance between the presence of initiators of lipid peroxidation (oxyhaemoglobin and low concentrations of methaemoglobin) and terminators of lipid peroxidation (glutathione, ascorbate, high concentrations of methaemoglobin).  相似文献   

2.
The role of phospholipase A2 (PlA2) in lipid peroxidation induced with t-butyl hydroperoxide was examined in rat liver microsomes. Exposure of microsomes to t-butyl hydroperoxide was associated with activation of endogenous PlA2. When PlA2 was inhibited with chlorpromazine, mepacrine, or p-bromphenacyl bromide, the accumulation of thiobarbituric acid reactive substances (TBARS) was reduced in a dose dependent manner. In contrast, the accumulation of conjugated dienes was not affected by chlorpromazine, and was slightly increased by mepacrine. When endogenous PlA2 was activated with mellitin prior to induction of peroxidation, accumulation of both TBARS and dienes was reduced. Analogously, pretreatment with exogenous PlA2 reduced both dienes and TBARS. In contrast, addition of mellitin following the induction of peroxidation did not alter either TBARS or dienes.  相似文献   

3.
Oxygen uptake by erythrocytes exposed to t-butyl hydroperoxide (t-BHP) exhibited an induction period. The rate of oxygen consumption can be reduced by antioxidants and blood plasma. The induction time was not appreciably modified by the antioxidants tested, however, plasma increased it by a factor of two. The in vivo pretreatment with diethyl maleate (0.6 g kg-1) produced increased rates of oxygen uptake without changes in the induction period, while vitamin E (12.5 mg kg-1) elicited lower oxygen consumption rates and longer induction times, compared to those observed in cells from control rats upon addition of the hydroperoxide. These results suggest that the antioxidants tested on the t-BHP lipid peroxidation in erythrocyte suspensions act as inhibitors and/or retarders of the process. Furthermore, lipid peroxidation induced in these conditions seems to depend upon the haemoglobin status of the cells as oxygen uptake, malondialdehyde production and chemiluminescence were significantly higher in methaemoglobin-containing cells than in those containing oxyhaemoglobin.  相似文献   

4.
Red blood cells from Wistar rats were exposed to milimolar concentrations of t-butyl hydroperoxide. Extensive hemoglobin oxidation (methemoglobin formation), t-butyl hydroperoxide cleavage (t-butanol formation) and peroxidation (measured by oxygen consumption and thiobarbituric acid reactive substances) was observed. Significant chemiluminescence was emitted by the system. Hemoglobin oxidation and t-butanol production were independent of oxygen pressure and free radical scavengers, however, luminescence was enhanced as oxygen pressure increased and it was reduced by addition of free radical scavengers. The spectral distribution of the light emitted suggests that the luminescence detected is not due to singlet oxygen dimol emission. The results are in agreement with a lipid peroxidative mechanism initiated by t-butoxy radicals produced in the interaction of hemoglobin and t-butyl hydroperoxide.  相似文献   

5.
Lipid peroxidation of microsomes from rat liver and Morris hepatoma 9618A was induced by means of tert-butyl hydroperoxide (t-BuOOH). In rat liver microsomes t-BuOOH stimulated an early formation of lipid hydroperoxides (LOOH) and an increasing accumulation of malondialdehyde; t-BuOOH was completely consumed and cytochrome P-450 was rapidly destroyed. In hepatoma microsomes (60% deficiency of cytochrome P-450) a remarkable inhibition of both malondialdehyde and LOOH was observed; t-BuOOH was consumed only partially and cytochrome P-450 was destroyed slowly. In the presence of aminopyrine, malondialdehyde production was inhibited to the same extent (about 70%) in normal and tumour microsomes. The concentration of t-BuOOH required to achieve half-maximal velocity of malondialdehyde accumulation was comparable in the two microsome types. It is proposed that the deficiency of cytochrome P-450 limits the activation of t-BuOOH to the free radical species which initiate lipid peroxidation. Low cytochrome P-450 content would also affect the LOOH-dependent propagation of lipid peroxidation.  相似文献   

6.
The correlation between the oxidative processes in tert-butyl hydroperoxide (tBHP)-exposed red blood cells and the reactions of oxygen consumption and release were investigated. Red blood cell exposure to tBHP resulted in transient oxygen release followed by oxygen consumption. The oxygen release in red blood cells was associated with intracellular oxyhaemoglobin oxidation. The oxygen consumption proceeded in parallel with free radical generation, as registered by chemiluminescence, but not to membrane lipid peroxidation. The oxygen consumption was also observed in membrane-free haemolyzates. The order of the organic hydroperoxide-induced reaction of oxygen release with respect to the oxidant (tBHP) was estimated to be 0.9 +/- 0.1 and that of the oxygen consumption reaction was determined to be 2.4 +/- 0.2. The apparent activation energy values of the oxygen release and oxygen consumption were found to be 107.5 +/- 18.5 kJ/mol and 71.0 +/- 12.5 kJ/mol, respectively. The apparent pKa value for the functional group(s) regulating the cellular oxyHb interaction with the oxidant in tBHP-treated red blood cells was estimated to be 6.7 +/- 0.2 and corresponded to that of distal histidine protonation in haemoprotein. A strong dependence of tBHP-induced lipid peroxidation on the oxygen concentration in a red blood cell suspension was observed (P50 = 32 +/- 3 mmHg). This dependence correlated with the oxygen dissociation curve of cellular haemoglobin. The order of the membrane lipid peroxidation reaction with respect to oxygen was found to be 0.5 +/- 0.1. We can conclude that the intensity of the biochemical process of membrane lipid peroxidation in tBHP-exposed erythrocytes is controlled by small changes in such physiological parameters as the oxygen pressure and oxygen affinity of cellular haemoglobin. Neither GSH nor oxyhaemoglobin oxidation depended on oxygen pressure.  相似文献   

7.
Temporal changes in the levels of denatured haemoglobin (Heinz bodies) and fluorescent lipid peroxidation products in the red cells of rabbits administered phenylhydrazine have been followed. Heinz bodies were maximal just before the period when most of the cell destruction occurred, whereas lipid peroxidation products were maximum when reticulocyte levels were highest. This implies that lipid peroxidation occurs mainly in immature cells and that haemoglobin denaturation is more likely than lipid peroxidation to be a major contributor to haemolysis.  相似文献   

8.
We investigated the effects of oxygen-based radicals induced by t-butyl hydroperoxide or H2O2/Cu2+ on cultured hepatocytes. Radical exposure caused membrane lesions (blebs), lactate dehydrogenase release and lipid peroxidation (i.e. formation of malondialdehyde) in cells. As expected, radical scavengers (catalase, alpha-tocopherol) strongly inhibited these phenomena. A similar or even superior inhibitory effect was achieved by the protein kinase C (PKC) inhibitors H-7 and phloretin. These agents did not reveal notable radical scavenging properties as assessed by their ability to break down H2O2. The PKC stimulators 4 beta-phorbol-12-myristate-13 and 1-olyeoyl-2-acetyl-sn-glycerol intensified the detrimental actions of the radical-inducing agents. [3H]Phorbol-12,13-dibutyrate-binding studies showed that membrane association of PKC is markedly increased in hepatocytes after exposure to H2O2/Cu2+ or t-butyl hydroperoxide. These results suggest that PKC membrane translocation and activation may be important for mediating membrane damage and lipid peroxidation after cells are exposed to oxygen-based radicals.  相似文献   

9.
Lipid peroxidation in kidney of rats fed with vitamin B-6 deficient diet for a period of 12 weeks was studied with pair-fed controls. The basal lipid peroxide level as well as the degree of susceptibility to lipid peroxidation in presence of promotors such as NADPH, ascorbate, t-butyl hydroperoxide, Fe2+, Cu2+ and oxalate, were increased in vitamin B-6 deficient kidney. The observed increased lipid peroxidation in vitamin B-6 deficient kidney was correlated with high levels of lipids, copper, iron, calcium and oxalate, low levels of antioxidants and antioxidant enzymes and increased levels of hydroperoxides and hydroxyl radicals.  相似文献   

10.
1. The effect of chronic ethanol consumption on the level of the t-butyl hydroperoxide (Bu'OOH)-induced lipid peroxidation in rat liver homogenate and subcellular fractions was measured using chemiluminescence technique and malondialdehyde formation. 2. It was shown that under the action of ethanol the rate of lipid peroxidation was decreased in the whole and "postnuclear" liver homogenates. 3. Ethanol significantly decreased the intensity of lipid peroxidation in microsomes, but did not affect the Bu'OOH-dependent process in mitochondria. 4. The level of lipid peroxidation was reduced after incubation of the total particulate fraction (mitochondria plus microsomes) with the undialysed cytosol from ethanol-treated rat liver. Dialysis of the cytosol prevented depressive effect of ethanol treatment on lipid peroxidation. 5. Reduced glutathione (0.1-1.0 mM) was shown to decrease the rate of lipid peroxidation in rat liver microsomes, but did not affect its level in mitochondria. 6. Pyrazole injections to rats reduced and phenobarbital treatment increased the level of the Bu'OOH-dependent lipid peroxidation in liver microsomes. 7. The data obtained indicate that the Bu'OOH-dependent lipid peroxidation is not an appropriate marker of the ethanol-induced oxidative stress in rat liver cells.  相似文献   

11.
Ellagic acid, a plant polyphenol, showed protective effect on isolated rat hepatocytes against destruction due to lipid peroxide formation induced by t-butyl hydroperoxide in vitro. Ellagic acid inhibited the generation of superoxide anions and hydroxyl radicals both in enzymic and non enzymic systems, thus providing protection against oxidative damage.  相似文献   

12.
t-Butyl hydroperoxide and cumene hydroperoxide, both known to be substrates for glutathione peroxidase, were used to oxidize erythrocyte GSH. Addition of concentrations of hydroperoxides equimolar with respect to GSH in the erythrocytes or whole blood quantitatively oxidizes GSH in the erythrocytes with a half-time of 4.5s at 37 degrees C and about three times as long at 4 degrees C. In the presence of glucose, normal erythrocytes regenerate all the GSH in about 25min. However, glucose 6-phosphate dehydrogenase-deficient erythrocytes failed to regenerate GSH. Treatment of erythrocytes with hydroperoxides does not affect erythrocyte survival in rabbits. Oxidation of erythrocyte GSH with equimolar concentrations of hydroperoxides does not lead to formation of mixed disulphides of haemoglobin and GSH. The hydroperoxides do not affect erythrocyte glycolytic and hexose monophosphate-shunt-pathway enzymes. Previous studies on transport of GSSG from erythrocytes were confirmed by using t-butyl hydroperoxide to oxidize erythrocyte GSH.  相似文献   

13.
Linoleic acid hydroperoxides delivered to Ehrlich ascites tumor cells in vitro in a concentration reaching a threshold one (approximately 10(-5) M) sharply decrease their ionic permeability and the value of membrane capacity. With suprathreshold hydroperoxide concentrations (greater than 10(-5) M), the specific yield of chromosome aberrations and the share of aberrant cells increase while the mitotic index decreases. The correlation between general regularities and the equality of the threshold concentrations, with a reference to membrane and genetic effects of hydroperoxides, is thought to be an indication of a close relationship between membrane lesions caused by the development of induced lipid peroxidation and injury to genetic apparatus of the cell.  相似文献   

14.
The effects of t-butyl hydroperoxide on glutathione and NADPH and the respiratory burst (an NADPH-dependent function) in rat alveolar macrophages was investigated. Alveolar macrophages were exposed for 15 min to t-butyl hydroperoxide in the presence or absence of added glucose. Cells were then assayed for concanavalin A-stimulated O2 production or for NADPH, NADP, reduced glutathione, glutathione disulfide, glutathione released into the medium and glutathione mixed disulfides. Exposure of rat alveolar macrophages to 1 X 10(-5) M t-butyl hydroperoxide causes a loss of concanavalin A-stimulated superoxide production (the respiratory burst) that can be prevented or reversed by added glucose. Cells incubated without glucose had a higher oxidation state of the NADPH/NADP couple than cells incubated with glucose. With t-butyl hydroperoxide, NADP rose to almost 100% of the NADP + NADPH pool; however, addition of glucose prevented this alteration of the NADPH oxidation state. Cells exposed to 1 X 10(-5) M t-butyl hydroperoxide in the absence of glucose showed a significant increase in the percentage GSSG in the GSH + GSSG pool and increased glutathione mixed disulfides. These changes in glutathione distribution could also be prevented or reversed by glucose. With 1 X 10(-4) M t-butyl hydroperoxide, changes in glutathione oxidation were not prevented by glucose and cells were irreversibly damaged. We conclude that drastic alteration of the NADPH/NADP ratio does not itself reflect toxicity and that significant alteration of glutathione distribution can also be tolerated; however, when oxidative stress exceeds the ability of glucose to prevent alterations in oxidation state, irreversible damage to cell function and structure may occur.  相似文献   

15.
A simple and sensitive method for the direct measurement of lipid peroxides in lipoprotein and liposomes is described. The method is based on the principle of the rapid peroxide-mediated oxidation of Fe2+ to Fe3+ under acidic conditions. The latter, in the presence of xylenol orange, forms a Fe(3+)-xylenol orange complex which can be measured spectrophotometrically at 560 nm. Calibration with standard peroxides, such as hydrogen peroxide, linoleic hydroperoxide, t-butyl hydroperoxide, and cumene hydroperoxide gives a mean apparent extinction coefficient of 4.52 x 10(4) M-1 cm-1 consistent with a chain length of approximately 3 for ferrous ion oxidation by hydroperoxides. Endoperoxides are less reactive or unreactive in the assay. The assay has been validated in the study of lipid peroxidation of low density lipoprotein and phosphatidyl choline liposomes. By pretreatment with enzymes known to metabolize peroxides, we have shown that the assay measures lipid hydroperoxides specifically. Other methods for measuring peroxidation, such as the assessment of conjugated diene, thiobarbituric acid reactive substances and an iodometric assay have been compared with the ferrous oxidation-xylenol orange assay.  相似文献   

16.
In vitro exposure of hepatocytes or liver microsomes to t-butyl hydroperoxide resulted in a marked decrease of liver microsomal calcium pump activity. Decreased calcium pump activity was dependent upon both concentration and time. Liver microsomes could be protected from this effect by glutathione or dithiothreitol. In addition to decreased calcium pump activity, exposure of liver microsomes to t-butyl hydroperoxide produced a concentration-dependent aggregation of microsomal membrane protein as determined by polyacrylamide gel electrophoresis. Inhibition of microsomal calcium pump activity was observed when intact hepatocytes were incubated, in vitro, with t-butyl hydroperoxide. However, aggregation of microsomal membrane protein was not observed when hepatocytes were incubated with t-butyl hydroperoxide. The effects produced by exposure of liver microsomes to this compound do not appear to be a complete model of actions of the compound on intact cells.  相似文献   

17.
PGBx, a derivative of prostaglandin B1, stimulated the oxidation of cytochrome c in the presence of H2O2. Although the reaction was nonenzymatic, the apparent activation energies of 12 and 4.9 kcal above and below the transition at 21.5 degrees C were similar to those for oxidation by cytochrome oxidase. Depletion of H2O2 and oxidation of cytochrome c followed similar time courses, suggesting that H2O2 was consumed in the reaction. PGBx was a specific requirement, but organic hydroperoxides (ethyl and T-butyl) could replace H2O2. Low concentrations of ethyl or t-butyl hydroperoxide initially stimulated the oxidation of cytochrome c; this stimulation disappeared before completion of the oxidation, but was restored when the hydroperoxide concentration was renewed, suggesting that these hydroperoxides were probably also consumed in the reaction. The concentration of PGBx (8.9 microM) required for half-maximum stimulation of the oxidation was similar to the apparent Kd for its dissociation from oxidized cytochrome c (6.8 microM). Binding data and CD spectra suggested that a 1:1 complex between cytochrome c and PGBx was formed, altering the conformation of the heme region. This conformational change caused a shift of the Soret absorption peak from 410 to 406 nm and may be responsible for the enhanced oxidizability of the cytochrome c by H2O2. Cytochrome c inhibited lipid peroxidation in microsomes, an effect enhanced by the addition of PGBx. In the absence of lipid peroxidation, cytochrome c and PGBx stimulated NADPH oxidation via NADPH-cytochrome c reductase. Thus the inhibition of lipid peroxidation by cytochrome c and PGBx may involve either the removal of hydroperoxides or deviation of electron transfer away from the pathway for lipid peroxidation.  相似文献   

18.
In a buffer (Mes) and at a pH (6.5) where Fe2+ is very stable, we have studied the peroxidation of liposomes catalyzed by FeCl2. The liposomes studied, prepared by sonolysis, contained either phosphatidylcholine or 1:1 molar ratio of phosphatidylcholine and phosphatidic acid. The presence of the negatively charged phospholipid causes: 1) rapid Fe2+ oxidation and oxygen consumption; 2) increased generation of lipid hydroperoxides; 3) decreased generation of thiobarbituric acid-reactive materials; 4) very low inhibition of Fe2+ oxidation and lipid hydroperoxide generation by BHT; 5) inhibition of the termination phase of lipid peroxidation at high FeCl2 concentrations. A hypothesis is proposed to explain the results obtained.  相似文献   

19.
Diphenyl-1-pyrenylphosphine (DPPP), which reacts with lipid hydroperoxides stoichiometrically to yield fluorescent product DPPP oxide, was used as a fluorescent probe for lipid peroxidation in live cells. DPPP was successfully incorporated into U937 cells. Incorporation of DPPP into the cell membrane was confirmed by fluorescence microscopy. Reaction of DPPP with hydroperoxides was examined by monitoring increase in fluorescence intensity of the cell. It was found that lipid-soluble hydroperoxides such as methyl linoleate hydroperoxide preferably react with DPPP, whereas hydrogen peroxide did not react with DPPP located in the membrane. Linear correlation between increase in fluorescence intensity and the amount of methyl linoleate hydroperoxide applied to the cell was observed. DPPP gave little effect on cell proliferation, cell viability or cell morphology for at least 3 d. DPPP oxide, fluorescent product of DPPP, was quite stable in the membrane of living cells for at least 2 d. Fluorescence of DPPP-labeled cells was measured after treating with diethylmaleate (DEM), or 2,2'-Azobis(2-amidinopropane) dihydrochloride (AAPH), or culturing with low serum content. These reagents and culture condition induced dose- and/or time-dependent increase in fluorescence. Addition of vitamin E effectively suppressed increase in fluorescence. When DPPP-labeled cells and DCFH-DA-labeled cells were treated with NO, H(2)O(2), AAPH, and DEM to compare the formation of hydoperoxides in the membrane and cytosol, distinct patterns of peroxide formation were observed. These results indicate that fluorescent probe DPPP is eligible for estimation of lipid peroxidation proceeding in the membrane of live cells, and use of this probe is especially advantageous in long-term peroxidation of the cell.  相似文献   

20.
The addition of t-butyl hydroperoxide to perfused rat liver elicited a biphasic effect on hepatic respiration. A rapid fall in liver oxygen consumption was initially observed, followed by a recovery phase leading to respiratory rates higher than the initial steady-state values of oxygen uptake. This overshoot in hepatic oxygen uptake was abolished by free-radical scavengers such as (+)-cyanidanol-3 or butylated hydroxyanisole at concentrations that did not alter mitochondrial respiration. (+)-Cyanidanol-3 was also able to facilitate the recovery of respiration, the diminution in the calculated rate of hydroperoxide utilization and the decrease in liver GSH content produced by two consecutive pulses of t-butyl hydroperoxide. It is suggested that the t-butyl hydroperoxide-induced overshoot in liver respiration is related to increased utilization of oxygen for lipid peroxidation as a consequence of free radicals produced in the scission of the hydroperoxide by cellular haemoproteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号