首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 247 毫秒
1.
2.
The temporal control or timing of the life cycle of annual plants is presumed to provide adaptive strategies to escape harsh environments for survival and reproduction. This is mainly determined by the timing of germination, which is controlled by the level of seed dormancy, and of flowering initiation. However, the environmental factors driving the evolution of plant life cycles remain largely unknown. To address this question we have analysed nine quantitative life history traits, in a native regional collection of 300 wild accessions of Arabidopsis thaliana. Seed dormancy and flowering time were negatively correlated, indicating that these traits have coevolved. In addition, environmental–phenotypic analyses detected strong altitudinal and climatic clines for most life history traits. Overall, accessions showing life cycles with early flowering, small seeds, high seed dormancy and slow germination rate were associated with locations exposed to high temperature, low summer precipitation and high radiation. Furthermore, we analysed the expression level of the positive regulator of seed dormancy DELAY OF GERMINATION 1 (DOG1), finding similar but weaker altitudinal and climatic patterns than seed dormancy. Therefore, DOG1 regulatory mutations are likely to provide a quantitative molecular mechanism for the adaptation of A. thaliana life cycle to altitude and climate.  相似文献   

3.
When studying selection during adaptation to novel environments, researchers have often paid little attention to an organism’s earliest developmental stages. Despite this lack of attention, early life history traits may be under strong selection during colonization, as the expression of adaptive phenotypes at later points is contingent upon early survival. Moreover, the timing of early developmental transitions can constrain the timing of later transitions, with potentially large effects on fitness. In this issue, Huang et al. (2010) underscore the importance of early life history traits in the adaptation of Arabidopsis thaliana to old‐field sites in North America. Using a new population of mapped recombinant inbred lines, the authors examined germination timing and total lifetime fitness of A. thaliana while varying site latitude, dispersal season, and maternal photoperiod. Huang et al. (2010) discovered several Quantitative Trait Loci (QTL) with large effects on fitness that colocalized with QTL for field germination timing and seed dormancy—demonstrating that fitness is genetically associated with these early life history traits, and that these loci are likely under strong selection during adaptation to novel environments. In the epistatic interactions of some loci, recombinant genotypes outperformed parental genotypes, supporting the potentially adaptive role of recombination. This study provides elegant evidence that traits expressed early in an organism’s development can play an important role during adaptive evolution.  相似文献   

4.
5.
The relief of dormancy and the promotion of seed germination are of extreme importance for a successful seedling establishment. Although alternating temperatures and light are signals promoting the relief of seed dormancy, the underlying mechanisms of their interaction in seeds are scarcely known. By exposing imbibed Arabidopsis thaliana dormant seeds to two‐day temperature cycles previous of a red light pulse, we demonstrate that the germination mediated by phytochrome B requires the presence of functional PSEUDO‐RESPONSE REGULATOR 7 (PRR7) and TIMING OF CAB EXPRESSION 1 (TOC1) alleles. In addition, daily cycles of alternating temperatures in darkness reduce the protein levels of DELAY OF GERMINATION 1 (DOG1), allowing the expression of TOC1 to induce seed germination. Our results suggest a functional role for some components of the circadian clock related with the action of DOG1 for the integration of alternating temperatures and light signals in the relief of seed dormancy. The synchronization of germination by the synergic action of light and temperature through the activity of circadian clock might have ecological and adaptive consequences.  相似文献   

6.
Local adaptation provides an opportunity to study the genetic basis of adaptation and investigate the allelic architecture of adaptive genes. We study delay of germination 1 (DOG1), a gene controlling natural variation in seed dormancy in Arabidopsis thaliana and investigate evolution of dormancy in 41 populations distributed in four regions separated by natural barriers. Using F(ST) and Q(ST) comparisons, we compare variation at DOG1 with neutral markers and quantitative variation in seed dormancy. Patterns of genetic differentiation among populations suggest that the gene DOG1 contributes to local adaptation. Although Q(ST) for seed dormancy is not different from F(ST) for neutral markers, a correlation with variation in summer precipitation supports that seed dormancy is adaptive. We characterize dormancy variation in several F(2) -populations and show that a series of functionally distinct alleles segregate at the DOG1 locus. Theoretical models have shown that the number and effect of alleles segregatin at quantitative trait loci (QTL) have important consequences for adaptation. Our results provide support to models postulating a large number of alleles at quantitative trait loci involved in adaptation.  相似文献   

7.
Seasonal germination timing of Arabidopsis thaliana strongly influences overall life history expression and is the target of intense natural selection. This seasonal germination timing depends strongly on the interaction between genetics and seasonal environments both before and after seed dispersal. DELAY OF GERMINATION 1 (DOG1) is the first gene that has been identified to be associated with natural variation in primary dormancy in A. thaliana. Here, we report interaccession variation in DOG1 expression and document that DOG1 expression is associated with seed‐maturation temperature effects on germination; DOG1 expression increased when seeds were matured at low temperature, and this increased expression was associated with increased dormancy of those seeds. Variation in DOG1 expression suggests a geographical structure such that southern accessions, which are more dormant, tend to initiate DOG1 expression earlier during seed maturation and achieved higher expression levels at the end of silique development than did northern accessions. Although elimination of the synthesis of phytohormone abscisic acid (ABA) results in the elimination of maternal temperature effects on dormancy, DOG1 expression predicted dormancy better than expression of genes involved in ABA metabolism.  相似文献   

8.
Barley is used for food and feed, and brewing. Nondormant seeds are required for malting, but the lack of dormancy can lead to preharvest sprouting (PHS), which is also undesired. Here, we report several new loci that modulate barley seed dormancy and PHS. Using genome‐wide association mapping of 184 spring barley genotypes, we identified four new, highly significant associations on chromosomes 1H, 3H, and 5H previously not associated with barley seed dormancy or PHS. A total of 71 responsible genes were found mostly related to flowering time and hormone signalling. A homolog of the well‐known Arabidopsis Delay of Germination 1 (DOG1) gene was annotated on the barley chromosome 3H. Unexpectedly, DOG1 appears to play only a minor role in barley seed dormancy. However, the gibberellin oxidase gene HvGA20ox1 contributed to dormancy alleviation, and another seven important loci changed significantly during after‐ripening. Furthermore, nitric oxide release correlated negatively with dormancy and shared 27 associations. Origin and growth environment affected seed dormancy and PHS more than did agronomic traits. Days to anthesis and maturity were shorter when seeds were produced under drier conditions, seeds were less dormant, and PHS increased, with a heritability of 0.57–0.80. The results are expected to be useful for crop improvement.  相似文献   

9.
10.
11.
In the wild, organismal life cycles occur within seasonal cycles, so shifts in the timing of developmental transitions can alter the seasonal environment experienced subsequently. Effects of genes that control the timing of prior developmental events can therefore be magnified in the wild because they determine seasonal conditions experienced by subsequent life stages, which can influence subsequent phenotypic expression. We examined such environmentally induced pleiotropy of developmental‐timing genes in a field experiment with Arabidopsis thaliana. When studied in the field under natural seasonal variation, an A. thaliana seed‐dormancy gene, Delay Of Germination 1 (DOG1), was found to influence not only germination, but also flowering time, overall life history, and fitness. Flowering time of the previous generation, in turn, imposed maternal effects that altered germination, the effects of DOG1 alleles, and the direction of natural selection on these alleles. Thus under natural conditions, germination genes act as flowering genes and potentially vice versa. These results illustrate how seasonal environmental variation can alter pleiotropic effects of developmental‐timing genes, such that effects of genes that regulate prior life stages ramify to influence subsequent life stages. In this case, one gene acting at the seed stage impacted the entire life cycle.  相似文献   

12.
Arabidopsis accessions differ largely in their seed dormancy behavior. To understand the genetic basis of this intraspecific variation we analyzed two accessions: the laboratory strain Landsberg erecta (Ler) with low dormancy and the strong-dormancy accession Cape Verde Islands (Cvi). We used a quantitative trait loci (QTL) mapping approach to identify loci affecting the after-ripening requirement measured as the number of days of seed dry storage required to reach 50% germination. Thus, seven QTL were identified and named delay of germination (DOG) 1-7. To confirm and characterize these loci, we developed 12 near-isogenic lines carrying single and double Cvi introgression fragments in a Ler genetic background. The analysis of these lines for germination in water confirmed four QTL (DOG1, DOG2, DOG3, and DOG6) as showing large additive effects in Ler background. In addition, it was found that DOG1 and DOG3 genetically interact, the strong dormancy determined by DOG1-Cvi alleles depending on DOG3-Ler alleles. These genotypes were further characterized for seed dormancy/germination behavior in five other test conditions, including seed coat removal, gibberellins, and an abscisic acid biosynthesis inhibitor. The role of the Ler/Cvi allelic variation in affecting dormancy is discussed in the context of current knowledge of Arabidopsis germination.  相似文献   

13.
We employed path analysis to analyse natural selection through two major fitness components in each of three contrasting environments. Using a randomized block design, 188 Recombinant Inbred Lines (RILs) derived from a cross between contrasting ecotypes of Avena barbata were planted in common gardens in the greenhouse, and in two field sites typical of each ecotype’s native habitat. Individuals were monitored for germination phenology, early growth, survival, final size, flowering phenology, reproductive allocation, fecundity and lifetime reproductive success. The variance/covariance matrix of the RIL (genotype) means was fit to a path model in which total fitness was made up of survival and fecundity (of survivors) components. In the greenhouse, all fitness variation was determined by fecundity variation (with no mortality), which was itself primarily determined by reproductive allocation mediated by date of first flowering. By contrast, in the field, early growth was the major determinant of survival, and final size was the major determinant of fecundity. Both components of fitness affected lifetime reproductive success equally in the field. Thus the major difference between greenhouse and field seems to be a shift from selection on allocation patterns in adults, to selection on resource acquisition, especially at earlier life stages. The pattern of selection was similar in the two field sites, despite the contrasting environments.  相似文献   

14.
15.
In this study, a rice population of recombinant inbred lines (RILs) was used to determine the genetic characteristics of seed dormancy (SD) at 4 (early), 5 (middle) and 6 (late) weeks after heading stages. Dynamic analysis showed that the indica IR28 variety tended to have deeper dormancy than the japonica Daguandao at the middle and late development stages. The level of SD decreased with the process of seed development. The significant interaction between heading date (HD) and SD occurred only in those seeds collected at the early development stage. A total of nine additive quantitative trait loci (QTLs) and eight epistatic QTLs for SD were identified at three seed development stages. Of them, one additive and four epistatic QTLs were identified for the early stage, six additive and one epistatic QTL for the middle stage and two additive and three epistatic QTLs for the late stage. The phenotypic variation explained by each additive and epistatic QTL ranged from 5.8 to 30.6 % and from 3.8 to 13.1 %, respectively. Compared with the additive QTLs, epistatic interactions were much more important for SD at the early and late development stages. Two major additive QTLs, qSD3.1 and qSD4.1, were identified; each QTL could explain more than 20 % of the total phenotypic variance and each dormancy-enhancing allele could decrease the germination percentage by about 10 %. By comparing the chromosomal positions of these additive QTLs with those previously identified, five additive QTLs, qSD1.2, qSD2.1, qSD3.2, qSD4.1 and qSD9.1, might represent novel genes. One QTL identified here, qHD1, and nine QTLs identified in previous studies for HD were co-located with our QTLs for SD, which indicated that the significant correlation between SD and HD might be due to the linkage of QTLs for SD and HD. Four RILs with deep dormancy at development stages but non-dormancy after post-ripening under different germination conditions were selected. Using the selected RILs, three cross combinations of SD for the development of RIL populations were predicted. The selected RILs and the identified QTLs might be applicable for the improvement of pre-harvest sprouting tolerance by marker-assisted selection in rice.  相似文献   

16.
Preharvest sprouting (PHS) can be a problem in barley (Hordeum vulgare L.) especially malting barley, since rapid, uniform, and complete germination are critical. Information has been gained by studying the genetics of dormancy (measured as germination percentage, GP). The objective of this study was to determine if the quantitative trait loci (QTLs) discovered in previous research on dormancy are related to PHS. PHS was measured as sprout score (SSc) based on visual sprouting in mist chamber-treated spikes and as alpha-amylase activity (AA) in kernels taken from mist chamber-treated spikes that showed little or no visible sprouting. GP was also measured. All traits were measured at 0 and 14 days after physiological maturity. Evaluation of the spring six-row cross, Steptoe (dormant)/Morex (non-dormant) doubled haploid mapping population grown in greenhouse and field environments revealed QTL regions for SSc, AA, and GP on five, four, and six of the seven barley chromosomes, respectively. In total, seven and eight regions on five and six chromosomes had effects ranging from 4 to 31% and 3 to 39% on PHS and dormancy, respectively. One chromosome 3H and three chromosome 5H QTLs had the greatest effects. All PHS QTLs coincide with known dormancy QTLs, but some QTLs appear to be more important for PHS than for dormancy. Key QTLs identified should benefit breeding of barley for a suitable balance between PHS and dormancy.  相似文献   

17.
The genetic basis of seed dormancy, a key life history trait important for adaptive evolution in plant populations, has yet been studied only using seeds produced under controlled conditions in greenhouse environments. However, dormancy is strongly affected by maternal environmental conditions, and interactions between seed genotype and maternal environment have been reported. Consequently, the genetic basis of dormancy of seeds produced under natural field conditions remains unclear. We examined the effect of maternal environment on the genetic architecture of seed dormancy using a recombinant inbred line (RIL) population derived from a cross between two locally adapted populations of Arabidopsis thaliana from Italy and Sweden. We mapped quantitative trait loci (QTL) for dormancy of seeds produced in the greenhouse and at the native field sites of the parental genotypes. The Italian genotype produced seeds with stronger dormancy at fruit maturation than did the Swedish genotype in all three environments, and the maternal field environments induced higher dormancy levels compared to the greenhouse environment in both genotypes. Across the three maternal environments, a total of nine dormancy QTL were detected, three of which were only detected among seeds matured in the field, and six of which showed significant QTL × maternal environment interactions. One QTL had a large effect on dormancy across all three environments and colocalized with the candidate gene DOG1. Our results demonstrate the importance of studying the genetic basis of putatively adaptive traits under relevant conditions.  相似文献   

18.
19.
Enhancing the knowledge on the genetic basis of germination and heterotrophic growth at extreme temperatures is of major importance for improving crop establishment. A quantitative trait loci (QTL) analysis was carried out at sub- and supra-optimal temperatures at these early stages in the model Legume Medicago truncatula. On the basis of an ecophysiological model framework, two populations of recombinant inbred lines were chosen for the contrasting behaviours of parental lines: LR5 at sub-optimal temperatures (5 or 10°C) and LR4 at a supra-optimal temperature (20°C). Seed masses were measured in all lines. For LR5, germination rates and hypocotyl growth were measured by hand, whereas for LR4, imbibition and germination rates as well as early embryonic axis growth were measured using an automated image capture and analysis device. QTLs were found for all traits. The phenotyping framework we defined for measuring variables, distinguished stages and enabled identification of distinct QTLs for seed mass (chromosomes 1, 5, 7 and 8), imbibition (chromosome 4), germination (chromosomes 3, 5, 7 and 8) and heterotrophic growth (chromosomes 1, 2, 3 and 8). The three QTL identified for hypocotyl length at sub-optimal temperature explained the largest part of the phenotypic variation (60% together). One digenic interaction was found for hypocotyl width at sub-optimal temperature and the loci involved were linked to additive QTLs for hypocotyl elongation at low temperature. Together with working on a model plant, this approach facilitated the identification of genes specific to each stage that could provide reliable markers for assisting selection and improving crop establishment. With this aim in view, an initial set of putative candidate genes was identified in the light of the role of abscissic acid/gibberellin balance in regulating germination at high temperatures (e.g. ABI4, ABI5), the molecular cascade in response to cold stress (e.g. CBF1, ICE1) and hypotheses on changes in cell elongation (e.g. GASA1, AtEXPA11) with changes in temperatures based on studies at the whole plant scale.  相似文献   

20.
Seed germination is a key life history transition for annual plants and partly determines lifetime performance and fitness. Germination speed, the elapsed time for a nondormant seed to germinate, is a poorly understood trait important for plants’ competitiveness and fitness in fluctuating environments. Germination speed varied by 30% among 18 Arabidopsis thaliana populations measured, and exhibited weak negative correlation with flowering time and seed weight, with significant genotype effect (P < 0.005). To dissect the genetic architecture of germination speed, we developed the extreme QTL (X‐QTL) mapping method in A. thaliana. The method has been shown in yeast to increase QTL mapping power by integrating selective screening and bulk‐segregant analysis in a very large mapping population. By pooled genotyping of top 5% of rapid germinants from ~100 000 F3 individuals, three X‐QTL regions were identified on chromosomes 1, 3 and 4. All regions were confirmed as QTL regions by sequencing 192 rapid germinants from an independent F3 selection experiment. Positional overlaps were found between X‐QTLs and previously identified seed, life history and fitness QTLs. Our method provides a rapid mapping platform in A. thaliana with potentially greater power. One can also relate identified X‐QTLs to the A. thaliana physical map, facilitating candidate gene identification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号