首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 670 毫秒
1.
Secondary sexual traits in females are a relatively rare phenomenon. Empirical studies have focused on the role of male mate choice in their evolution; however, recently it has been suggested that secondary sexual traits in females are more likely to be under selection via reproductive competition. We investigated female competition and the influence of female phenotype on fitness in Onthophagus sagittarius, a species of dung beetle that exhibits female-specific horns. We compared reproductive fitness when females were breeding in competition versus breeding alone and found that competition for breeding resources reduced fitness for all females, but that smaller individuals suffered a greater fitness reduction than larger individuals. When females were matched for body size, those with the longest horns gained higher reproductive fitness. The fitness function was positive and linear, favouring increased horn expression. Thus, we present evidence that female body size and horn size in O. sagittarius are under directional selection via competition for reproductive resources. Our study is a rare example of female contest competition selecting for female weaponry.  相似文献   

2.
Typically males bear the products of sexual selection in the form of ornaments and/or weapons used to compete for and attract females. Secondary sexual traits in females have been thought of as the product of correlated responses to sexual selection on males. However, there is increasing phylogenetic evidence that female secondary sexual traits can arise independently of selection on males, and may be subject to sexual selection. Theoretical models of the evolution of female ornamentation via male mate choice have assumed that females suffer a cost of ornament expression via reduced fecundity, and hence female ornaments are less likely to evolve than male ornaments. In the dung beetle Onthophagus sagittarius, there has been an independent evolutionary origin of horns in females that are qualitatively different from the horns produced by males. We use this system as a model to examine the costs of horn expression for females within a life-history context. We identified a longevity cost of reproduction for females that was independent of horn expression. Large females lived longer, and after controlling for lifespan, had a higher lifetime fecundity, and invested more heavily in maternal provisioning than did small females. We found no evidence of a cost to females of investment in horns. Rather, the rate of increase in fecundity and horn expression with body size were equal, so that absolute horn size provides an accurate indicator of body size and maternal quality. The effects we observe were independent of female contest competition and/or male mate choice, which were excluded in our experimental protocol. However, we speculate on the potential functional contributions female horns might make to female fitness.  相似文献   

3.
While all models of sexual selection assume that the development and expression of enlarged secondary sexual traits are costly, males with larger ornaments or weapons generally show greater survival or longevity. These studies have mostly been performed in species with high sexual size dimorphism, subject to intense sexual selection. Here, we examined the relationships between horn growth and several survival metrics in the weakly dimorphic Pyrenean chamois (Rupicapra pyrenaica). In this unhunted population living at high density, males and females were able to grow long horns without any apparent costs in terms of longevity. However, we found a negative relationship between horn growth and survival during prime age in males. This association reduces the potential evolutionary consequences of trophy hunting in male chamois. We also found that females with long horns tended to have lower survival at old ages. Our results illustrate the contrasting conclusions that may be drawn when different survival metrics are used in analyses. The ability to detect trade‐off between the expression of male secondary sexual traits and survival may depend more on environmental conditions experienced by the population than on the strength of sexual selection.  相似文献   

4.
Males and females differ in their phenotypic optima for many traits, and as the majority of genes are expressed in both sexes, some alleles can be beneficial to one sex but harmful to the other (intralocus sexual conflict; ISC). ISC theory has recently been extended to intrasexual dimorphisms, where certain alleles may have opposite effects on the fitness of males of different morphs that employ alternative reproductive tactics (intralocus tactical conflict; ITC). Here, we use a half‐sib breeding design to investigate the genetic basis for ISC and ITC in the dung beetle Onthophagus taurus. We found positive heritabilities and intersexual genetic correlations for almost all traits investigated. Next, we calculated the intrasexual genetic correlation between males of different morphs for horn length, a sexually selected trait, and compared it to intrasexual correlations for naturally selected traits in both sexes. Intrasexual genetic correlations did not differ significantly between the sexes or between naturally and sexually selected traits, failing to support the hypothesis that horns present a reduction of intrasexual genetic correlations due to ITC. We discuss the implications for the idea of developmental reprogramming between male morphs and emphasize the importance of genetic correlations as constraints for the evolution of dimorphisms.  相似文献   

5.
Sexual dimorphism, the difference between the sexes in secondary sexual characters, is in general driven by processes of sexual selection. The horn-headed cricket, Loxoblemmus doenitzi, exhibits sexual dimorphism in head shape. Males have flat heads and triangular horns on both sides of their heads, whereas females have rounded heads and no horns. We hypothesized that male horns have evolved due to intra-sexual selection, in which males use these horns as weapons in aggressive interactions. We tested two predictions of this hypothesis by conducting agonistic trials with field-caught males of L. doenitzi: (1) the horns should be used in agonistic interactions between males, and (2) the asymmetry in horn size or horn use may determine contest outcome. Horn length was significantly correlated with thorax length and hind femur length. During agonistic interactions, males aggressively used their horns by beating the opponent’s horns with their own or by poking the opponent’s body. However, logistic regression analysis revealed that neither horn length nor horn use were significant factors for contest outcome. Instead, body size was significant for determining contest outcome. We discuss possible scenarios for evolution of male horns in L. doenitzi.  相似文献   

6.
Sexual and male horn dimorphism in Copris ochus (Coleoptera: Scarabaeidae)   总被引:1,自引:0,他引:1  
Copris ochus (Coleoptera: Scarabaeidae), an endangered species, is the largest dung beetle in Japan. In C. ochus, males have a long head horn, while females lack this long horn (sexual dimorphism). Very large males of C. ochus have disproportionately longer head horns than small males, suggesting male horn dimorphism, although the dimorphism has not been investigated quantitatively. To clarify sexual and male horn dimorphism in C. ochus quantitatively, we examined the scaling relationship between body size (prothorax width) and head horn length in 94 females and 76 males. These beetles were captured during July 1978 from a natural population on Mt. Aso in southwestern Japan using a light trap. Although the horn length of the females and males scaled with prothorax width, the scaling relationship differed between the sexes, i.e., the relationship was linear in females and nonlinear in males. Statistical tests for dimorphism in male horn length showed a significant discontinuous relationship, thus indicating distinct sexual and male dimorphism in head horns. Long- and short-horned C. ochus males may have different reproductive behaviors, as described in other horned dung beetles.  相似文献   

7.
Field cricket species are ideal model organisms for the study of sexual selection because cricket calling songs, used to attract mating partners, are pronouncedly sexually dimorphic. However, few studies have focused on other sexually dimorphic traits of field crickets. The horn‐headed cricket, Loxoblemmus doenitzi, exhibits exaggerated sexual dimorphism in head shape: males have flat heads with triangular horns, while females lack horns. This study examines the relationship between horn length, male calling efforts and diet quality. Horn length was not found to be significantly correlated with calling efforts. When diet was manipulated for late‐stage nymphs, calling efforts in the group with poor‐quality diet treatment was significantly lower than that of crickets in the group with high‐quality diet treatment. However, horn length was not affected by diet quality. The implication of these results in the context of the evolution of multiple signals and sexual dimorphism is discussed.  相似文献   

8.
Abstract The evolution of sexual dimorphism may occur when natural and sexual selection result in different optimum trait values for males and females. Perhaps the most prominent examples of sexual dimorphism occur in sexually selected traits, for which males usually display exaggerated trait levels, while females may show reduced expression of the trait. In some species, females also exhibit secondary sexual traits that may either be a consequence of a correlated response to sexual selection on males or direct sexual selection for female secondary sexual traits. In this experiment, we simultaneously measure the intersex genetic correlations and the relative strength of sexual selection on males and females for a set of cuticular hydrocarbons in Drosophila serrata . There was significant directional sexual selection on both male and female cuticular hydrocarbons: the strength of sexual selection did not differ among the sexes but males and females preferred different cuticular hydrocarbons. In contrast with many previous studies of sexual dimorphism, intersex genetic correlations were low. The evolution of sexual dimorphism in D. serrata appears to have been achieved by sex-limited expression of traits controlled by genes on the X chromosome and is likely to be in its final stages.  相似文献   

9.
Males are predicted to compete for reproductive opportunities, with sexual selection driving the evolution of large body size and weaponry through the advantage they confer for access to females. Few studies have explored potential trade-offs of investment in secondary sexual traits between different components of fitness or tested for sexually antagonistic selection pressures. These factors may provide explanations for observed polymorphisms in both form and quality of secondary sexual traits. We report here an analysis of selection on horn phenotype in a feral population of Soay sheep (Ovis aries) on the island of Hirta, St. Kilda, Scotland. Soay sheep display a phenotypic polymorphism for horn type with males growing either normal or reduced (scurred) horns, and females growing either normal, scurred, or no (polled) horns; further variation in size exists within horn morphs. We show that horn phenotype and the size of the trait displayed is subject to different selection pressures in males and females, generating sexually antagonistic selection. Furthermore, there was evidence of a trade-off between breeding success and longevity in normal-horned males, with both the normal horn type and larger horn size being associated with greater annual breeding success but reduced longevity. Therefore, selection through lifetime breeding success was not found to act upon horn phenotype in males. In females, a negative association of annual breeding success within the normal-horned phenotype did not result in a significant difference in lifetime fitness when compared to scurred individuals, as no significant difference in longevity was found. However, increased horn size within this group was negatively associated with breeding success and longevity. Females without horns (polled) suffered reduced longevity and thus reduced lifetime breeding success relative the other horn morphs. Our results therefore suggest that trade-offs between different components of fitness and antagonistic selection between the sexes may maintain genetic variation for secondary sexual traits within a population.  相似文献   

10.
The hypothesis that population density can affect sexual selection on male horn size was tested in a three-year study of a fungus beetle, Bolitotherus cornutus. Males of this species have horns that vary greatly in length. These horns are used in fights over females; longer-horned males win the majority of fights, regardless of population density. However, density does affect the relationship between horn length and access to females. In six populations of naturally and experimentally varying densities, longer-horned males gained a greater advantage in access to females in low-density populations than at high density. This increase in access to females causes an increase in the number of females inseminated by longer-horned males; thus, sexual selection for longer horns is stronger at lower densities.  相似文献   

11.
The existence of discrete phenotypic variation within one sex poses interesting questions regarding how such intrasexual polymorphisms are produced and modified during the course of evolution. Approaching these kinds of questions requires insights into the genetic architecture underlying a polymorphism and an understanding of the proximate mechanisms determining phenotype expression. Here we explore the genetic underpinnings and proximate factors influencing the expression of beetle horns – a dramatic sexually selected trait exhibiting intramale dimorphism in many species. Two relatively discrete male morphs are present in natural populations of the dung beetle Onthophagus taurus (Scarabaeidae, Onthophagini). Males exceeding a critical body size develop a pair of long, curved horns on their heads, while those smaller than this critical body size remain essentially hornless. We present results from laboratory breeding experiments designed to assess the relative importance of inherited and environmental factors as determinants of male morphology. Using father–son regressions, our findings demonstrate that horn length and body size of male progeny are not predicted from paternal morphology. Instead, natural variation in an environmental factor, the amount of food available to larvae, determined both the body sizes exhibited by males as adults and the presence or absence of horns. The nonlinear scaling relationship between the body size and horn length of males bred in the laboratory did not differ from the pattern of variation present in natural populations, suggesting that nutritional conditions account for variation in male morphology in natural populations as well. We discuss our results by extending ideas proposed to explain the evolution of conditional expression of alternative phenotypes in physically heterogeneous environments toward incorporating facultative expression of secondary sexual traits. We use this synthesis to begin characterizing the potential origin and subsequent evolution of facultative horn expression in onthophagine beetles.  相似文献   

12.
Reproductive competition generates episodes of both pre‐ and postcopulatory sexual selection. Theoretical models of sperm competition predict that as the fitness gains from expenditure on the weapons of male combat increase, males should increase their expenditure on weapons and decrease their expenditure on traits that contribute to competitive fertilization success. Although traits subject to sexual selection are known to have accelerated evolutionary rates of phenotypic divergence, it is not known whether the competing demands of investment into pre‐ and postcopulatory traits affect their relative rates of evolutionary divergence. We use a comparative approach to estimate the rates of divergence in pre‐ and postcopulatory traits among onthophagine dung beetles. Weapons evolved faster than body size while testes mass and sperm length evolved more slowly than body size, suggesting that precopulatory competition is the stronger episode of sexual selection acting on these beetles. Although horns evolved faster than testes, evolutionary increases in horn length were not associated with evolutionary reductions in testes mass. Our data for onthophagines support the notion that in taxa where males are unable to monopolize paternity, expenditure on both weapons and testes should both be favored.  相似文献   

13.
The development of male secondary sexual characters such as antlers or horns has substantial biological and socio‐economic importance because in many species these traits affect male fitness positively through sexual selection and negatively through trophy hunting. Both environmental conditions and selective hunting can affect horn growth but their relative importance remains unexplored. We first examined how a large‐scale climate index, the Pacific Decadal Oscillation (PDO), local weather and population density influenced both absolute and relative annual horn growth from birth to three years of male bighorn sheep Ovis canadensis over 42 years. We then examined the relative influence of environmental conditions and evolution mainly driven by trophy hunting on male horn length at three years of age. Horn growth was positively influenced by low population density and warm spring temperature, suggesting that ongoing climate change should lead to larger horns. Seasonal values of PDO were highly correlated. Horn growth increased with PDO in spring or summer at low density, but was weak at high density regardless of PDO. The interaction between population density and PDO in spring or summer accounted for a similar proportion of the observed annual variation in horn growth (32% or 37%) as did the additive effects of spring temperature and density (34%). When environmental conditions deteriorated, males allocated relatively more resources to summer mass gain than to horn growth, suggesting a conservative strategy favoring maintenance of condition over allocation to secondary sexual characters. Population density explained 27% of the variation in horn length, while evolutionary effects explained 9% of the variance. Thus, our study underlines the importance of both evolution and phenotypic plasticity on the development of a secondary sexual trait.  相似文献   

14.
Selection on three phenotypic traits was estimated in a natural population of a fungus beetle, Bolitotherus cornutus. Lifetime fitness of a group of males in this population was estimated, and partitioned into five components: lifespan, attendance at the mating area, number of females courted, number of copulations attempted, and number of females inseminated. Three phenotypic characters were measured—elytral length, horn length, and weight; there were strong positive correlations among the three characters. Selection was estimated by regressing each component of fitness on the phenotypic traits. Of the three traits, only horn length was under significant direct selection. This selection was for longer horns and was due mainly to differences in lifespan and access to females. The positive selection on horn length combined with the positive correlations between horn length and the other two characters resulted in positive total selection on all three characters.  相似文献   

15.
When structures compete for shared resources, this may lead to acquisition and allocation trade-offs so that the enlargement of one structure occurs at the expense of another. Among the studies of morphological trade-offs, their importance has been demonstrated primarily through experimental manipulations and comparative analyses. Relatively, a few studies have investigated the underlying genetic basis of phenotypic patterns. Here, we use a half-sibling breeding design to determine the genetic underpinnings of the phenotypic trade-off between head horns and the male copulatory organ or aedeagus that has been found in the dung beetle Onthophagus taurus. Instead of the predicted negative genetic covariance among characters that trade-off, we find positive genetic covariance between absolute horn and aedeagus length and zero genetic covariance between relative horn and aedeagus length. Therefore, although the genetic covariance between absolute horn and aedeagus length would constrain the independent evolution of primary and secondary sexual characters in this population, there was no evidence of a trade-off. We discuss alternative hypotheses for the observed patterns of genetic correlation between traits that compete for resources and the implications that these have for selection and the evolution of such traits.  相似文献   

16.
Secondary sexual traits, such as horns in ungulates, may be good indicators of genetic quality because they are costly to develop. Genetic effects on such traits may be revealed by examining correlations between multilocus heterozygosity (MLH) and trait value. Correlations between MLH and fitness traits, termed heterozygosity-fitness correlations (HFC), may reflect inbreeding depression or associative overdominance of neutral microsatellite loci with loci directly affecting fitness traits. We investigated HFCs for horn growth, body mass and faecal counts of nematode eggs in wild Alpine ibex (Capra ibex). We also tested if individual inbreeding coefficients (f') estimated from microsatellite data were more strongly correlated with fitness traits than MLH. MLH was more strongly associated with trait variation than f'. We found HFC for horn growth but not for body mass or faecal counts of nematode eggs. The effect of MLH on horn growth was age-specific. The slope of the correlation between MLH and yearly horn growth changed from negative to positive as males aged, in accordance with the mutation accumulation theory of the evolution of senescence. Our results suggest that the horns of ibex males are an honest signal of genetic quality.  相似文献   

17.
ABSTRACT In ungulates, big males with large weapons typically outcompete other males over access to estrous females. In many species, rapid early growth leads to large adult mass and weapon size. We compared males in one hunted and one protected population of Alpine chamois (Rupicapra rupicapra) to examine the relationship between horn length and body mass. We assessed whether early development and hunter selectivity affected age-specific patterns of body and horn size and whether sport hunting could be an artificial selection pressure favoring smaller horns. Adult horn length was mostly independent of body mass. For adult males, the coefficient of variation of horn length (0.06) was <50% of that for body mass (0.16), suggesting that horn length presents a lower potential for selection and may be less important for male mating success than is body mass. Surprisingly, early development did not affect adult mass because of apparent compensatory growth. We found few differences in body and horn size between hunted and protected populations, suggesting the absence of strong effects of hunting on male phenotype. If horn length has a limited role in male reproductive success, hunter selectivity for males with longer horns is unlikely to lead to an artificial selective pressure on horn size. These results imply that the potential evolutionary effects of selective hunting depend on how the characteristics selected by hunters affect individual reproductive success.  相似文献   

18.
Sexual conflict at loci influencing traits shared between the sexes occurs when sex-specific selection pressures are antagonistic relative to the genetic correlation between the sexes. To assess whether there is sexual conflict over shared traits, we estimated heritability and intersexual genetic correlations for highly sexually dimorphic traits (horn volume and body mass) in a wild population of bighorn sheep (Ovis canadensis) and quantified sex-specific selection using estimates of longevity and lifetime reproductive success. Body mass and horn volume showed significant additive genetic variance in both sexes, and intersexual genetic correlations were 0.24+/-0.28 for horn volume and 0.63+/-0.30 for body mass. For horn volume, selection coefficients did not significantly differ from zero in either sex. For body weight, selection coefficients were positive in females but did not differ from zero in males. The absence of detectable sexually antagonistic selection suggests that currently there are no sexual conflicts at loci influencing horn volume and body mass.  相似文献   

19.
We examine the condition-dependence of male genitalia in the dung beetle Onthophagus taurus by manipulating the quality of dung provided for larval growth and development. We show that the influence of larval nutrition differed considerably across three different trait classes (sexual, nonsexual and genital). The size of all nonsexual traits varied with dung quality but their allometric slopes remained unchanged. Relative horn length and allometry, but not absolute horn length, showed a high degree of plasticity with differences in dung quality. In contrast, both absolute size and allometry of genitalia were largely unresponsive to changes in dung quality. Male genitalia exhibited intermediate levels of phenotypic variation and lower allometric slopes than both horns and nonsexual traits. Thus, our findings provide little support for good genes hypotheses of genital evolution. We use our findings to discuss a developmental mechanism and selection pressures that may prevent the condition-dependent expression of genitalia.  相似文献   

20.
As a classical example of a sexually selected trait, the horns of male bovids offer a prime opportunity to identify predictors of the intensity of sexual selection. Here I use the comparative method to quantify sexual and natural selection pressures behind interspecific variation in horn length. I show that male horn length depends on factors proposed to affect the mean mate number per mating male, correlating positively with group size and negatively with male territoriality. This suggests that whereas group size increases the opportunity for sexual selection, territoriality reduces it because territorial males are unable to follow and monopolize female groups as effectively as males in nonterritorial species. Sexual body size dimorphism also correlates positively with group size and negatively with territoriality, corroborating these factors as predictors of the intensity of sexual selection on males. Female horn length was unaffected by the factors related to mating system, suggesting that this trait is mainly under natural selection. Using female horn length as a proxy for forces of natural selection revealed a negative effect on male horn length. Thus where natural selection favors female horns, possibly as effective weapons against predators, a similar selection pressure on males might prevent them from evolving too elaborate horns through sexual selection. There was no correlation found between horn length and latitude, thus providing no support for the hypothesis that horns have a thermoregulatory function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号