首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.

Key message

Fruit photosynthesis in both hickory and pecan significantly contribute to the carbon requirements of late growth stage (corresponding to seed development).

Abstract

Plant parts other than leaves can perform photosynthesis and contribute to carbon acquisition for fruit development. To determine the role of fruit photosynthesis in fruit carbon acquisition in hickory (Carya cathayensis Sarg.) and pecan (Carya illinoensis K.Koch), we studied changes in dry mass, surface area and CO2 exchange rate in these fruits during fruit development. Fruit development was divided into two phases: phase one involves the rapid increase of fruit size (from 0 to 59 days after pollination (DAP) for hickory; from 0 to 88 DAP for pecan); phase two involves seed development (from 59 to 121 DAP for hickory; from 88 to 155 DAP for pecan). The net photosynthetic rate (P n) in hickory leaves decreased by 48.5 % from 76 to 88 DAP, while the P n in pecan leaves decreased by 32.3 % from 88 to 123 DAP. The gross photosynthetic rate (P g) in hickory fruit was significantly greater than that of the leaf during the late stage (88 to 121 DAP) of fruit development. Pecan fruit had a significantly higher P g than leaves during ontogeny. The contribution of fruit photosynthesis to fruit carbon requirements increased during fruit development, which was estimated by the gross fruit photosynthesis divided by respiration and increased dry mass. The contribution of fruit photosynthesis to pecan carbon requirements was significantly greater than that of hickory. Fruit photosynthesis in both hickory and pecan significantly contribute to the carbon requirements of late growth stage.
  相似文献   

2.

Key message

Stomatal regulation involves beneficial effects of pruning mulch and irrigation on leaf photosynthesis in Prunus yedoensis and Ginkgo biloba under moderate drought. G. biloba showed conservative water use under drought.

Abstract

Leaf photosynthesis is highly sensitive to soil water stress via stomatal and/or biochemical responses, which markedly suppress the growth of landscape trees. Effective irrigation management to maintain leaf photosynthesis and information on species-specific photosynthetic responses to soil water stress are essential for the sustainable management of landscape trees in Japan, in which summer drought often occurs. In order to investigate effective irrigation management, we used plants with moderate soil water stress as controls, and examined the effects of daily irrigation and pruning mulch on leaf photosynthesis in container-grown Ginkgo biloba and Prunus yedoensis, which are the first and second main tall roadside trees in Japan. Stomatal conductance was significantly increased by pruning mulch and daily irrigation, with similar increases in leaf photosynthesis being observed in P. yedoensis and G. biloba. In order to obtain information on species-specific photosynthetic responses to soil water stress, we compared the responses of leaf photosynthesis and leaf water status to reductions in soil water content (SWC) between the two species. G. biloba maintained a constant leaf water potential, leaf water content, maximum carboxylation rate, and electron transport rate with reductions in SWC, whereas reductions were observed in P. yedoensis. We concluded that pruning mulch and irrigation effectively offset the negative impact of moderate water stress on leaf photosynthesis in summer in P. yedoensis and G. biloba via stomatal regulation, and also that G. biloba maintained its photosynthetic biochemistry and leaf water status better than P. yedoensis under severe water stress.
  相似文献   

3.

Key message

Variability in traits of 15, diverse 6-year-old candidate plus trees of Jatropha curcas was determined to identify the best gain heritable traits correlating with oil yield for Jatropha improvement.

Abstract

Study was carried out on 15 6-year-old candidate plus trees of Jatropha curcas adapted on semi-arid wasteland with an objective to assess variation in morphological, physiological and oil quality characters. Heritable and non-heritable components of the total variability of the characters were determined by genotypic (GCV) and phenotypic (PCV) co-efficient of variation, heritability and genetic advance (GA) and the best gain traits for Jatropha improvement through selection and breeding were assessed. Further, association among the traits were assessed and germplasm were separated into different clusters. Significant variation was found among the different genotypes for all the characters. The photosynthetic and transpiration rate correlated with oil content, seed and oil yield. The chlorophyll pigments correlated positively with the photosynthetic rate and oil content. The seed oil content varied considerably from 27.68 % (JCN01) to 37.49 % (JCN14) and had high heritability, but it had low PCV and GCV and moderate GA. The oil yield plant?1 had high genetic variability and varied significantly from 0.07 (JCN15) to 0.47 kg plant?1 (JCN09/IC 565733). Though the different fatty acids differed significantly with different germplasm and also had high heritability, they had low PCV, GCV and GA. Seed weight, fruit weight, seed weight fruit?1 and seed yield plant?1 strongly correlated with oil yield and had moderate to high GCV, PCV, coupled with high heritability and GA. Germplasm were separated into four distinct clusters with a maximum inter distance found between cluster II and IV, and minimum between cluster I and III. The study helped to identify the superior germplasm among diverse genotypes of J. curcas that can serve as parents with desirable characters like high oil yield, low stomatal conductance and high water use efficiency for further breeding purposes.
  相似文献   

4.
Stomatal CO2 responsiveness and photosynthetic capacity vary greatly among plant species, but the factors controlling these physiological leaf traits are often poorly understood. To explore if these traits are linked to taxonomic group identity and/or to other plant functional traits, we investigated the short-term stomatal CO2 responses and the maximum rates of photosynthetic carboxylation (V cmax) and electron transport (J max) in an evolutionary broad range of tropical woody plant species. The study included 21 species representing four major seed plant taxa: gymnosperms, monocots, rosids and asterids. We found that stomatal closure responses to increased CO2 were stronger in angiosperms than in gymnosperms, and in monocots compared to dicots. Stomatal CO2 responsiveness was not significantly related to any of the other functional traits investigated, while a parameter describing the relationship between photosynthesis and stomatal conductance in combined leaf gas exchange models (g 1) was related to leaf area-specific plant hydraulic conductance. For photosynthesis, we found that the interspecific variation in V cmax and J max was related to within leaf nitrogen (N) allocation rather than to area-based total leaf N content. Within-leaf N allocation and water use were strongly co-ordinated (r 2 = 0.67), such that species with high fractional N investments into compounds maximizing photosynthetic capacity also had high stomatal conductance. We conclude that while stomatal CO2 responsiveness of tropical woody species seems poorly related to other plant functional traits, photosynthetic capacity is linked to fractional within-leaf N allocation rather than total leaf N content and is closely co-ordinated with leaf water use.  相似文献   

5.
During the last century, the world soybean yield has been constantly enhancing at a remarkable rate. Factors limiting the soybean yield may be multiple. It is widely acknowledged that changes of root metabolism can influence aboveground characteristics, such as the seed yield and photosynthesis. In this study, we considered root bleeding sap mass (BSM) and root activity (RA) as indicators of the root growth vigour. We used 27 soybean cultivars, spanning from 1923 to 2009, to evaluate the contribution of root characteristic improvement to efficient photosynthesis and dry matter production. The BSM, RA, net photosynthetic rate (PN), and organ biomass were measured at different growth stages, such as the fourth leaf node, flowering, podding, and seed-filling stage. Our results showed that the soybean cultivars increased their biomass and PN thanks to genetic improvement. At the same time, BSM and RA also increased in dependence on a year of cultivar release. However, both PN and biomass were positively correlated with root characteristics only at the podding stage. Our data revealed that the improved root characteristic may have contributed to the enhanced photosynthesis, biomass, and yield of soybean cultivars during last 87 years of genetic improvement. We suggest that BSM and RA could be used as important indexes for further practice in soybean production improvement.  相似文献   

6.
Improvement of photosynthetic traits is a promising strategy to break the yield potential barrier of major food crops. Leaf photosynthetic traits were evaluated in a set of high yielding Oryza sativa, cv. Swarna?×?Oryza nivara backcross introgression lines (BILs) along with recurrent parent Swarna, both in wet (Kharif) and dry (Rabi) seasons in normal irrigated field conditions. Net photosynthesis (PN) ranged from 15.37 to 23.25 µmol (CO2) m?2 s?1 in the BILs. Significant difference in PN was observed across the seasons and genotypes. Six BILs showed high photosynthesis compared with recurrent parent in both seasons. Chlorophyll content showed minimum variation across the seasons for any specific BIL but significant variation was observed among BILs. Significant positive association between photosynthetic traits and yield traits was observed, but this association was not consistent across seasons mainly due to contrasting weather parameters in both seasons. BILs 166s and 248s with high and consistent photosynthetic rate exhibited stable high yield levels in both the seasons compared to the recurrent parent Swarna. There is scope to exploit photosynthetic efficiency of wild and weedy rice to identify genes for improvement of photosynthetic rate in cultivars.  相似文献   

7.
Although plant performance under elevated CO2 (EC) and drought has been extensively studied, little is known about the leaf traits and photosynthetic performance of Stipa bungeana under EC and a water deficiency gradient. In order to investigate the effects of EC, watering, and their combination, S. bungeana seedlings were exposed to two CO2 regimes (ambient, CA: 390 ppm; elevated, EC: 550 ppm) and five levels of watering (?30%, ?15%, control, +15%, +30%) from 1 June to 31 August in 2011, where the control water level was 240 mm. Gas exchange and leaf traits were measured after 90-d treatments. Gas-exchange characteristics, measured at the growth CA, indicated that EC significantly decreased the net photosynthetic rate (P N), water-use efficiency, nitrogen concentration based on mass, chlorophyll and malondialdehyde (MDA) content, while increased stomatal conductance (g s), intercellular CO2 concentration (C i), dark respiration, photorespiration, carbon concentration based on mass, C/N ratio, and leaf water potential. Compared to the effect of EC, watering showed an opposite trend only in case of P N. The combination of both factors showed little influence on these physiological indicators, except for g s, C i, and MDA content. Photosynthetic acclimation to EC was attributed to the N limitation, C sink/source imbalance, and the decline of photosynthetic activity. The watering regulated photosynthesis through both stomatal and nonstomatal mechanisms. Our study also revealed that the effects of EC on photosynthesis were larger than those on respiration and did not compensate for the adverse effects of drought, suggesting that a future warm and dry climate might be unfavorable to S. bungeana. However, the depression of the growth of S. bungeana caused by EC was time-dependent at a smaller temporal scale.  相似文献   

8.
This study was aimed to assess physiological responses of melon (Cucumis melo L.) cultivars to salinity stress under field conditions. Seventeen melon cultivars including 16 widely distributed native and one exotic (‘Galia’) were subjected to 2-year (2014–2015) field salinity stress. Leaf relative water content (RWC), membrane stability index (MSI), pigments [chlorophyll a, b, total chlorophyll (TChl), carotenoid (Car) and their ratios], malondialdehyde (MDA), H2O2 content, proline content (Pro), total soluble sugar content (TSC), salinity tolerance and susceptibility indices as well as yield were evaluated. The results of combined analysis of variance showed significant genotypic variation for all the traits and significant effect of salinity stress on all the traits with the exception of Chla/Chlb and TChl/Car ratios. Overall, field salinity stress caused an increase in leaf MDA, H2O2, Chla, Chlb, TChl, Car, Pro and TSC and caused a reduction in leaf MSI and RWC as well as yield. The results of correlation coefficients showed that accumulation of osmolytes (proline and TSC) led to an increase in RWC and a decrease in MDA contents. In addition, the results of multiple regression analysis showed that leaf MDA, TSC, MSI and Chla contents were the most important predictors of yield justifying 72% total variation of yield under saline conditions. These results may highlight a dynamic interplay among biomarkers for lipid peroxidation (MDA), sugar osmolytes (TSC) and photosynthetic pigment (Chla) to maintain cell viability and cell wall integrity under salinity stress conditions in melon.  相似文献   

9.
Both global change and biological invasions threaten biodiversity worldwide. However, their interactions and related mechanisms are still not well elucidated. To elucidate potential traits contributing to invasiveness and whether ongoing increase in CO2 aggravates invasions, noxious invasive Wedelia trilobata and native Wedelia urticifolia and Wedelia chinensis were compared under ambient and doubled atmospheric CO2 concentrations in terms of growth, biomass allocation, morphology, and physiology. The invader had consistently higher leaf mass fraction (LMF) and specific leaf area than the natives, contributing to a higher leaf area ratio, and therefore to faster growth and invasiveness. The higher LMF of the invader was due to lower root mass fraction and higher fine root percent. On the other hand, the invader allocated a higher fraction of leaf nitrogen (N) to photosynthetic apparatus, which was associated with its higher photosynthetic rate, and resource use efficiency. All these traits collectively contributed to its invasiveness. CO2 enrichment increased growth of all studied species by increasing actual photosynthesis, although it decreased photosynthetic capacities due to decreased leaf and photosynthetic N contents. Responses of the invasive and native plants to elevated CO2 were not significantly different, indicating that the ongoing increase in CO2 may not aggravate biological invasions, inconsistent with the prevailing results in references. Therefore, more comparative studies of related invasive and native plants are needed to elucidate whether CO2 enrichment facilitates invasions.  相似文献   

10.
Cistus salvifolius L. is the most widely spread Cistus species around the Mediterranean basin. It colonizes a wide range of habitats growing from sea level to 1,800 m a.s.l., on silicolous and calcicolous soils, in sun areas as well as in the understory of wooded areas. Nevertheless, this species has been mainly investigated in term of its responsiveness to drought. Our aim was to understand which leaf traits allow C. salvifolius to cope with low-light environments. We questioned if biochemical and physiological leaf trait variations in response to a reduced photosynthetic photon flux density were related to leaf morphological plasticity, expressed by variations of specific leaf area (SLA) and its anatomical components (leaf tissue density and thickness). C. salvifolius shrubs growing along the Latium coast (41°43'N,12°18'E, 14 m a.s.l., Italy) in the open and in the understory of a Pinus pinea forest, were selected and the relationships between anatomical, gas exchange, chlorophyll (Chl) fluorescence, and biochemical parameters with SLA and PPFD variations were tested. The obtained results suggested long-term acclimation of the selected shrubs to contrasting light environments. In high-light conditions, leaf nitrogen and Chl contents per leaf area unit, leaf thickness, and Chl a/b ratio increased, thus maximizing net photosynthesis, while in shade photosynthesis, it was downregulated by a significant reduction in the electron transport rate. Nevertheless, the increased pigment-protein complexes and the decreased Chl a/b in shade drove to an increased light-harvesting capacity (i.e. higher actual quantum efficiency of PSII). Moreover, the measured vitality index highlighted the photosynthetic acclimation of C. salvifolius to contrasting light environments. Overall, our results demonstrated the morphological, anatomical, and physiological acclimation of C. salvifolius to a reduced light environment.  相似文献   

11.
A dependence of the photosynthesis rate on light is characterized by a number of parameters that are often used for comparison between plant species or for finding photosynthesis interconnections with other physiological processes. In order to properly assessed these parameters, we measured the maximum apparent photosynthesis rate (P max), dark respiration rate (R d), light compensation point (LCP), quantum yield corresponding to photosynthetic efficiency (QY), and the light saturation constant (K s), taking into consideration the leaf plastochron index during vegetation of one of the willow species (Salix dasyclados Wimn.). The P max value was the highest in the beginning of the growth season when the leaf reached 65% of its full area; after that P max slowly declined. The most important cardinal value for R d is its plateau reached by the end of leaf growth, i.e., later than the photosynthesis rate maximum. This plateau value also decreased during vegetation. The LCP value changed in the same way as R d but reached its plateau simultaneously with the photosynthesis rate maximum. QY also reached its maximum at the same time with the photosynthesis rate; during vegetation it changed more than twofold. The K s value also changed almost twofold during the season, reaching its maximum together or slightly later than the photosynthesis maximum and then remained constant. Thus, we have found significant changes in the parameters of the photosynthesis light curve during growth season. This shows that they can be used only after a thorough study of leaf development in each particular plant species. Usually performed measuring gas exchange parameters in fully developed leaves does not yield their maximum values and thus does not have any physiological sense.  相似文献   

12.
This study addressed whether competition under different light environments was reflected by changes in leaf absorbed light energy partitioning, photosynthetic efficiency, relative growth rate and biomass allocation in invasive and native competitors. Additionally, a potential allelopathic effect of mulching with invasive Prunus serotina leaves on native Quercus petraea growth and photosynthesis was tested. The effect of light environment on leaf absorbed light energy partitioning and photosynthetic characteristics was more pronounced than the effects of interspecific competition and allelopathy. The quantum yield of PSII of invasive P. serotina increased in the presence of a competitor, indicating a higher plasticity in energy partitioning for the invasive over the native Q. petraea, giving it a competitive advantage. The most striking difference between the two study species was the higher crown-level net CO2 assimilation rates (Acrown) of P. serotina compared with Q. petraea. At the juvenile life stage, higher relative growth rate and higher biomass allocation to foliage allowed P. serotina to absorb and use light energy for photosynthesis more efficiently than Q. petraea. Species-specific strategies of growth, biomass allocation, light energy partitioning and photosynthetic efficiency varied with the light environment and gave an advantage to the invader over its native competitor in competition for light. However, higher biomass allocation to roots in Q. petraea allows for greater belowground competition for water and nutrients as compared to P. serotina. This niche differentiation may compensate for the lower aboveground competitiveness of the native species and explain its ability to co-occur with the invasive competitor in natural forest settings.  相似文献   

13.
Enhancing drought tolerance of crops has been a great challenge in crop improvement. Here, we report the maize phosphoenolpyruvate carboxylase (PEPC) gene was able to confer drought tolerance and increase grain yield in transgenic wheat (Triticum aestivum L.) plants. The improved of drought tolerance was associated with higher levels of proline, soluble sugar, soluble protein, and higher water use efficiency. The transgenic wheat plants had also a more extensive root system as well as increased photosynthetic capacity during stress treatments. The increased grain yield of the transgenic wheat was contributed by improved biomass, larger spike and grain numbers, and heavier 1000-grain weight under drought-stress conditions. Under non-stressed conditions, there were no significant increases in these of the measured traits except for photosynthetic rate when compared with parental wheat. Proteomic research showed that the expression levels of some proteins, including chlorophyll A-B binding protein and pyruvate, phosphate dikinase, which are related to photosynthesis, PAP fibrillin, which is involved in cytoskeleton synthesis, S-adenosylmethionine synthetase, which catalyzes methionine synthesis, were induced in the transgenic wheat under drought stress. Additionally, the expression of glutamine synthetase, which is involved in ammonia assimilation, was induced by drought stress in the wheat. Our study shows that PEPC can improve both stress tolerance and grain yield in wheat, demonstrating the efficacy of PEPC in crop improvement.  相似文献   

14.
The gene actions for yield and its attributes and their inheritance pattern based on five parameter model have been explored in four single crosses (NBIHT-5 × NBIHT-6, NBIHT-5 × NBMHT-1, NBMHT-1 × NBIHT-6 and NBMHT-2 × NBMHT-1) obtained using thebaine rich pure lines of opium poppy (Papaver somniferum L.) for three consecutive generations. All the traits showed nonallelic mode of interaction, however, dominance effect (h) was more pronounced for all the traits except thebaine and papaverine. The dominance × dominance (l) effects were predominant over additive × additive (i) for all traits in all the four crosses except for papaverine. The seed and opium yield, and its contributing traits inherited quantitatively. The fixable gene effects (d) and (i) were lower in magnitude than nonfixable (h) and (l) gene effects. The estimates of heterosis were also higher in comparison to the respective parents which suggested preponderance of dominance gene action for controlling most of the traits. The phenotypic coefficient of variation was marginally higher than those of genotypic coefficient of variation for all the traits. The traits thebaine, narcotine, morphine and opium yield had high heritability coupled with high genetic advance. The leaf number, branches per plant and stem diameter showed positive correlation with opium and seed yields. The selection of plants having large number of leaves, branches and capsules with bigger size would be advantageous to enhance the yield potential.  相似文献   

15.
16.

Key message

Two major loci with functional candidate genes were identified and validated affecting flag leaf size, which offer desirable genes to improve leaf architecture and photosynthetic capacity in rice.

Abstract

Leaf size is a major determinant of plant architecture and yield potential in crops. However, the genetic and molecular mechanisms regulating leaf size remain largely elusive. In this study, quantitative trait loci (QTLs) for flag leaf length and flag leaf width in rice were detected with high-density single nucleotide polymorphism genotyping of a chromosomal segment substitution line (CSSL) population, in which each line carries one or a few chromosomal segments from the japonica cultivar Nipponbare in a common background of the indica variety Zhenshan 97. In total, 14 QTLs for flag leaf length and nine QTLs for flag leaf width were identified in the CSSL population. Among them, qFW4-2 for flag leaf width was mapped to a 37-kb interval, with the most likely candidate gene being the previously characterized NAL1. Another major QTL for both flag leaf width and length was delimited by substitution mapping to a small region of 13.5 kb that contains a single gene, Ghd7.1. Mutants of Ghd7.1 generated using CRISPR/CAS9 approach showed reduced leaf size. Allelic variation analyses also validated Ghd7.1 as a functional candidate gene for leaf size, photosynthetic capacity and other yield-related traits. These results provide useful genetic information for the improvement of leaf size and yield in rice breeding programs.
  相似文献   

17.

Key message

The growth vigor of Populus triploid groups explained by higher photosynthetic rate in the vertical canopy gradient, higher relative chlorophyll content, and larger leaf area, compared to diploid group.

Abstract

Polyploids show vegetative growth superiority compared to diploids, however, the reason remains unclear. Here, we explored this observation based on variations in 12 phenotypic traits including vegetative growth, leaf area, and photosynthesis using 120 genotypes with three allotriploid groups of different heterozygosities (obtained using three types of 2n gametes) and one diploid group obtained from the same parents in Populus. Wide ranges in phenotypic variation (2.70–38.34 %) were detected in all traits within the progeny population. In addition, the vegetative growth traits, net photosynthetic rate (Pn), relative chlorophyll content index (CCI), leaf area (LA), and photosynthetic efficiency of whole leaves (PEw) in the polyploid group were significantly higher than those in the diploid group, indicating that certain polyploid groups had greater advantages in these respects. However, there were also significant differences in vegetative growth, Pn, LA, and PEw among the three allopolyploid groups, which probably resulted from the 2n gametes with different origins transferring different heterozygosities. Furthermore, a higher Pn of vertical canopy gradient photosynthesis was observed in triploid groups compared to the diploid group. In general, the greater vegetative growth advantages in relation to photosynthesis in the triploid groups were explained by three reasons including a higher Pn which probably resulted from a higher CCI, a higher PEw mainly caused by a larger LA, and a lower aging rate of mature leaves.
  相似文献   

18.
Though arbuscular mycorrhizal (AM) fungi are indigenous to agricultural soils, their beneficial effects to host plants could be further improved by inoculation with efficient species. The method of AM propagation described in the present study uses oil cake as a supporting medium for the simultaneous delivery of sesame seeds and AM inoculum to the field. Experiment was conducted in a farmer’s field located at Avoor, Kerala, India where sesame was cultivated as a winter crop in rice fallows. Oil cake entrapped with sesame seeds (var. Tilatara) and AM fungus (Funneliformis dimorphicus) inoculum was prepared by thoroughly mixing sterilized coconut cake and neem cake (5:1 v/v), surface sterilized sesame seeds and sterilized spore sieving of F. dimorphicus from a pot culture in a 10% solution of a polysaccharide gum obtained from the seeds of Strychnos potatorum L. Entire mix was moulded into 2.5 cm cubes (ca. 5g) containing approximately 25–30 seeds and 200–300 spores cube?1 and shade dried before application. The cubes were broadcast @ 600 kg ha?1 in inoculated treatments. In uninoculated treatments, the oil cake cubes devoid of the fungal component was used. Harvested root samples from the inoculated treatments showed a high frequency (%F) and intensity (%M) of colonization by AM fungi as well as frequency of vesicles (%V) and arbuscules (%A) compared to uninoculated control. The growth (root length, shoot length and leaf area) and yield characters (pod number, seed number, seed weight and oil content) of sesame plants were significantly (p=0.05) improved under the present method of AM propagation indicating its viability under field condition.  相似文献   

19.
Comparing with other angiosperms, most members within the family Orchidaceae have lower photosynthetic capacities. However, the underlying mechanisms remain unclear. Cypripedium and Paphiopedilum are closely related phylogenetically in Orchidaceae, but their photosynthetic performances are different. We explored the roles of internal anatomy and diffusional conductance in determining photosynthesis in three Cypripedium and three Paphiopedilum species, and quantitatively analyzed their diffusional and biochemical limitations to photosynthesis. Paphiopedilum species showed lower light-saturated photosynthetic rate (A N), stomatal conductance (g s), and mesophyll conductance (g m) than Cypripedium species. A N was positively correlated with g s and g m. And yet, in both species A N was more strongly limited by g m than by biochemical factors or g s. The greater g s of Cypripedium was mainly affected by larger stomatal apparatus area and smaller pore depth, while the less g m of Paphiopedilum was determined by the reduced surface area of mesophyll cells and chloroplasts exposed to intercellular airspace per unit of leaf area, and much thicker cell wall thickness. These results suggest that leaf anatomical structure is the key factor affecting g m, which is largely responsible for the difference in photosynthetic capacity between those two genera. Our findings provide new insight into the photosynthetic physiology and functional diversification of orchids.  相似文献   

20.
Cytochromes are important components of photosynthetic electron transport chain. Here we report on genetic transformation of Cytochrome c6 (UfCyt c6) gene from Ulva fasciata Delile in tobacco for enhanced photosynthesis and growth. UfCyt c6 cDNA had an open reading frame of 330 bp encoding a polypeptide of 109 amino acids with a predicted molecular mass of 11.65 kDa and an isoelectric point of 5.21. UfCyt c6 gene along with a tobacco petE transit peptide sequence under control of CaMV35S promoter was transformed in tobacco through Agrobacterium mediated genetic transformation. Transgenic tobacco grew normal and exhibited enhanced growth as compared to wild type (WT) and vector control (VC) tobacco. Transgenic tobacco had higher contents of photosynthetic pigments and better ratios of photosynthetic pigments. The tobacco expressing UfCyt c6 gene exhibited higher photosynthetic rate and improved water use efficiency. Further activity of the water-splitting complex, photosystem II quantum yield, photochemical quenching, electron transfer rate, and photosynthetic yield were found comparatively higher in transgenic tobacco as compared to WT and VC tobacco. Alternatively basal quantum yield of non-photochemical processes in PSII and non-photochemical quenching were estimated lower in tobacco expressing UfCyt c6 gene. As a result of improved photosynthetic performance the transgenic tobacco had higher contents of sugar and starch, and exhibited comparatively better growth. To the best of our knowledge this is the first report on expression of UfCyt c6 gene from U. fasciata for improved photosynthesis and growth in tobacco.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号