首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigated the interactions between human monocyte-derived dendritic cells (DCs) and Ag-activated circulating TCR-gammadelta-expressing lymphocytes (Vdelta2). Coculture of immature DCs (iDCs) with peripheral blood Vdelta2 T cells activated with either pyrophosphomonoesters (isopentenyl pyrophosphate; IPP) or aminobiphosphonates (pamidronate; PAM) led to a significant up-modulation of CD86 and MHC class I molecules and to the acquisition of functional features typical of activated DCs. DC activation induced by both IPP- and PAM-stimulated gammadelta T cells was mostly mediated by TNF-alpha and IFN-gamma secreted by activated lymphocytes. However, the effect of PAM-activated gammadelta T cells, but not that of IPP-activated cells, required cell-to-cell contact. Reciprocally, activation of Vdelta2 T cells by PAM, but not by IPP, was dependent on cell contact with iDCs. In fact, when PAM-stimulated DC-gammadelta T cell cocultures were separated by a semipermeable membrane or treated with blocking anti-CD86 Abs, induction of CD25 and CD69 as well as IFN-gamma and TNF-alpha secretion by Vdelta2 cells were strongly reduced. These results demonstrate for the first time a bidirectional activating interaction between iDCs and PAM-stimulated gammadelta T lymphocytes, thus suggesting a potential adjuvant role of this early cross-talk in the therapeutic activity of aminobiphosphonate drugs.  相似文献   

2.
The major subset of human blood gammadelta T lymphocytes expresses the variable-region genes Vgamma9 and Vdelta2. These cells recognize non-peptidic phosphoantigens that are present in some microbial extracts, as well as the beta(2)-microglobulin-deficient Burkitt's lymphoma Daudi. Most cytotoxic human Vgamma9/Vdelta2 T cells express inhibitory natural killer cell receptors for HLA class I that downmodulate the responses of the gammadelta T lymphocytes against HLA class I expressing cells. In this study we show that transfection of the human beta(2)-microglobulin cDNA into Daudi cells markedly inhibits the cytotoxic and proliferative responses of human Vgamma9/Vdelta2 T cells. This provides direct evidence that the "innate" specificity of human Vgamma9/Vdelta2 T-lymphocytes for Daudi cells is uncovered by the loss of beta(2)m by Daudi. However, Daudi cells that express HLA class I in association with mouse beta(2)m at the cell surface are recognized by human Vgamma9/Vdelta2 T cells close to the same degree as the parental HLA class I deficient Daudi cell line. Thus, proper conformation of the HLA class I molecules is required for binding to natural killer cell receptors. Cloning of the HLA class I A, B, and C molecules of Daudi cells and transfer of the individual HLA class I molecules of Daudi cells into the HLA class I deficient recipient cell lines.221 and C1R demonstrate that for some human gammadelta T-cell clones cytolysis can be entirely inhibited by single HLA class I alleles while for other clones single HLA class I alleles only partially inhibit cytotoxicity. Thus, most human Vgamma9/Vdelta2 T cells represent a population of killer cells that evolved like NK cells to destroy target cells that have lost expression of individual HLA class I molecules but with a specificity that is determined by the Vgamma9/Vdelta2 TCR.  相似文献   

3.
In humans, innate immune recognition of mycobacteria, including Mycobacterium tuberculosis and bacillus Calmette-Guérin (BCG), is a feature of cells as dendritic cells (DC) and gammadelta T cells. In this study, we show that BCG infection of human monocyte-derived DC induces a rapid activation of Vgamma9Vdelta2 T cells (the major subset of gammadelta T cell pool in human peripheral blood). Indeed, in the presence of BCG-infected DC, Vgamma9Vdelta2 T cells increase both their expression of CD69 and CD25 and the production of TNF-alpha and IFN-gamma, in contrast to DC treated with Vgamma9Vdelta2 T cell-specific Ags. Without further exogenous stimuli, BCG-infected DC expand a functionally cytotoxic central memory Vgamma9Vdelta2 T cell population. This subset does not display lymph node homing receptors, but express a high amount of perforin. They are highly efficient in the killing of mycobacterial-infected primary monocytes or human monocytic THP-1 cells preserving the viability of cocultured, infected DC. This study provides further evidences about the complex relationship between important players of innate immunity and suggests an immunoregulatory role of Vgamma9Vdelta2 T cells in the control of mycobacterial infection.  相似文献   

4.
There is growing interest in the use of innate immune reactions in the therapy and prophylaxis of various diseases. Natural T (NT) lymphocytes that recognize infected cells or microbial compounds without the classical genetic restriction by polymorphic MHC molecules are crucial components of innate immunity. NT cells bearing the Vgamma9Vdelta2 T-cell receptor (TCR) are broadly reactive against intracellular pathogens, can lyse human immunodeficiency virus (HIV) infected cells, and release cytokines capable of regulating HIV replication. The potent antiviral activities of Vgamma9Vdelta2 T cells may help to contain viral spread during acute HIV infection and/or to prevent the establishment of viral persistence. Substantial changes in the composition and function of circulating gammadelta T-cell pools occur in HIV-infected patients. These changes a) may contribute to the etiopathogenesis of opportunistic infections and neoplasms, and b) are partly reversed by highly active anti-retroviral therapy (HAART). In addition to direct antiviral activities, activated gammadelta T cells influence dendritic cell maturation and the adaptive alphabeta T-cell response. Vgamma9Vdelta2 T cells can be stimulated in vivo and in vitro by various nonpeptidic antigens (NpAgs) and recent animal experimental data suggest that activated Vgamma9Vdelta2 T cells may help to control SIV replication. Currently, NpAgs are being assessed as potential therapeutic agents in AIDS, tuberculosis and certain cancers susceptible to Vgamma9Vdelta2 T-cell effector mechanisms.  相似文献   

5.
Vgamma9Vdelta2 T cells, a major gammadelta PBL subset in human adults, have been previously implicated in dendritic cell (DC) licensing, owing to their high frequency in peripheral tissues and their ability to produce inflammatory cytokines upon recognition of a broad array of conserved Ags. Although these observations implied efficient recognition of Ag-expressing immature DC (iDC) by Vgamma9Vdelta2 T cells, the role played by DC subsets in activation of these lymphocytes has not been carefully studied so far. We show that iDC, and to a lesser extent mature DC, potentiated Th1 and Th2 cytokine, but not cytolytic or proliferative responses, of established Vgamma9Vdelta2 T cell clones and ex vivo memory Vgamma9Vdelta2 PBL stimulated by synthetic agonists. The ability of iDC to potentiate Vgamma9Vdelta2 production of inflammatory cytokines required for their own maturation suggested that Vgamma9Vdelta2 T cells, despite their strong lytic activity, could promote efficient iDC licensing without killing at suboptimal Ag doses. Accordingly Vgamma9Vdelta2 cells induced accelerated maturation of Ag-expressing iDC but not "bystander" DC, even within mixed cell populations comprising both Ag-expressing and nonexpressing iDC. Furthermore Vgamma9Vdelta2 cells induced full differentiation into IL-12-producing cells of iDC infected by Vgamma9Vdelta2-stimulating mycobacteria that were otherwise unable to induce complete DC maturation. In conclusion the ability of iDC to selectively potentiate cytokine response of memory Vgamma9Vdelta2 T cells could underlie the adjuvant effect of these lymphocytes, and possibly other natural memory T cells, on conventional T cell responses.  相似文献   

6.
The Vgamma9Vdelta2 T cell subset, which represents up to 90% of the circulating gammadelta T cells in humans, was shown to be activated, via the T cell receptor (TcR), by non-peptidic phosphorylated small organic molecules. These phosphoantigens, which are not presented by professional antigen-presenting cells, induce production of high amounts of interferon-gamma and tumor necrosis factor (TNF-alpha). To date, the specific signals triggered by these antigens have not been characterized. Here we analyze proximal and later intracellular signals triggered by isopentenyl pyrophosphate (IPP), a mycobacterial antigen that specifically stimulates Vgamma9Vdelta2 T cells, and compare these to signals induced by the non-physiological model using an anti-CD3 antibody. During antigenic stimulation we noticed that, except for the proximal p56(lck) signal, which is triggered early, the signals appear to be delayed and highly sustained. This delay, which likely accounts for the delay observed in TNF-alpha production, is discussed in terms of the ability of the antigen to cross-link and recruit transducing molecules mostly anchored to lipid rafts. Moreover, we demonstrate that, in contrast to anti-CD3 antibody, IPP does not induce down-modulation of the TcR.CD3 complex, which likely results in the highly sustained signaling and release of high levels of TNF-alpha.  相似文献   

7.
Tuberculosis and malaria remain the leading causes of mortality among human infectious diseases in the world. It is estimated that 3 to 5 million people die from tuberculosis and malaria each year. Although it is traditionally believed that CD4 and CD8 alphabeta T lymphocytes are mandatory for protective immune responses against Mycobacterium tuberculosis and Plasmodium falciparum (the ethiologic agents of tuberculosis and the most severe form of malaria, respectively), there is still incomplete understanding of the mechanisms of immune protection and of the causes of its failure in the affected patients. Several studies in humans and animal models have suggested that Vgamma9/Vdelta2 T cells may play an important role in the immune responses against Mycobacterium tuberculosis and Plasmodium falciparum. Vgamma9/Vdelta2 T cells represent about 75% of all circulating gammadelta T cells while they can be greatly expanded during the acute phase of Mycobacterium tuberculosis and Plasmodium falciparum malaria. Vgamma9/Vdelta2 T recognize a new class of antigenic molecules which are nonpeptidic in nature and contain critical phosphate moieties (phosphoantigens). Interestingly, phosphoantigens isolated from Mycobacterium tuberculosis and Plasmodium falciparum share strong structural homology and are probably identical. However, despite a large body of data reported in the literature, it is not yet clear whether Vgamma9/Vdelta2 T cells play a protective or pathogenic role in immune responses against Mycobacterium tuberculosis and Plasmodium falciparum. In this review we summarize our current knowledge of the biology of Vgamma9/Vdelta2 T cells in response to the two pathogens, Mycobacterium tuberculosis and Plasmodium falciparum, and provide evidence suggesting definition of a novel and important protective role through which Vgamma9/Vdelta2 T cells can contribute to the killing of microorganisms residing in intracellular compartments.  相似文献   

8.
Vgamma9Vdelta2 cells, a major peripheral blood gammadelta T cell subset in adults, recognize non-peptidic phosphorylated metabolites referred to as phosphoantigens (phosphoAg), which are produced by a broad array of prokaryotic and eukaryotic organisms. We will review here the biosynthetic pathways leading to production of phosphoAg and our current understanding of the mode of activation of Vgamma9Vdelta2 cells by these compounds. We will also discuss the physiological relevance of this immune recognition process and show how it can enable discrimination by Vgamma9Vdelta2 lymphocytes of infected and/or transformed cells.  相似文献   

9.
10.
BACKGROUND: The recognition of phosphorylated nonpeptidic microbial metabolites by Vgamma9Vdelta2 T cells does not appear to require the presence of MHC molecules or antigen processing, permitting rapid responses against microbial pathogens. These may constitute an important area of natural anti-infectious immunity. To provide evidence of their involvement in immune reactivities against mycobacteria, we measured the responsiveness of peripheral blood Vgamma9Vdelta2 T cells in children with primary Mycobacterium tuberculosis (MTB) infections. MATERIALS AND METHODS: Peripheral blood mononuclear cells from 22 children with MTB infections and 16 positivity of tuberculin (PPD)-negative healthy children were exposed to nonpeptidic antigens in vitro and the reactivity of the Vgamma9Vdelta2 T cell subset with these antigens was determined using proliferation and cytokine assays. Also, responses of gammadelta T cells from rhesus monkeys stimulated with phosphoantigens in vivo were measured. RESULTS: The Vgamma9Vdelta2 T cell responses were highly increased in infected children in comparison with age-matched controls. This augmented Vgamma9Vdelta2 T cell reactivity subsided after successful antibiotic chemotherapy, suggesting that persistent exposure to mycobacterial antigens is required for the maintenance of gammadelta T cell activation in vivo. The in vivo reactivity of Vgamma9Vdelta2 T cells to phosphoantigens was also analyzed in a rhesus monkey model system. Intravenous injections of phosphoantigens induced an activated state of simian Vgamma9Vdelta2 T cells which decreased after 2 months, i.e., with a time course similar to that seen in MTB-infected children. CONCLUSIONS: The increased reactivity of Vgamma9Vdelta2 T cells to phosphoantigens appears to be dependent on constant antigenic exposure. Consequently, the assessment of Vgamma9Vdelta2 responses may be useful for monitoring the efficacy of antimycobacterial therapies.  相似文献   

11.
Metastatic renal cell carcinoma, inherently resistant to conventional treatments, is considered immunogenic. Indeed, partial responses are obtained after treatment with cytokines such as IL-2 or IFN-alpha, suggesting that the immune system may control the tumor growth. In this study, we have investigated the ability of the main subset of peripheral gammadelta lymphocytes, the Vgamma9Vdelta2-TCR T lymphocytes, to induce an effective cytotoxic response against autologous primary renal cell carcinoma lines. These gammadelta T cells were expanded ex vivo using a Vgamma9Vdelta2 agonist, a synthetic phosphoantigen called Phosphostim. From 11 of 15 patients, the peripheral Vgamma9Vdelta2 T cells were amplified in vitro by stimulating PBMCs with IL-2 and Phosphostim molecule. These expanded Vgamma9Vdelta2 T cells express activation markers and exhibit an effector/memory phenotype. They display a selective lytic potential toward autologous primary renal tumor cells and not against renal NC. The lytic activity involves the perforin-granzyme pathway and is mainly TCR and NKG2D receptor dependent. Furthermore, an increased expression of MHC class I-related molecule A or B proteins, known ligands of NKG2D, are detected on primary renal tumor cells. Interestingly, from 2 of the 11 positive cultures in response to Phosphostim, expanded-Vgamma9Vdelta2 T cells present an expression of killer cell Ig-like receptors, suggesting their prior recruitment in vivo. Unexpectedly, on serial frozen sections from three tumors, we observe a gammadelta lymphocyte infiltrate that was mainly composed of Vgamma9Vdelta2 T cells. These results outline that Vgamma9Vdelta2-TCR effectors may represent a promising approach for the treatment of metastatic renal cell carcinoma.  相似文献   

12.
There are two major subsets of gammadelta T cell in humans. Vgamma2Vdelta2 T cells predominate in the circulation and significantly expand in vivo during a variety of infectious diseases. Ags identified for the Vdelta2 T cells are nonpeptide phosphate, amine, and aminobisphosphonate compounds. In contrast, Vdelta1-encoded TCRs account for the vast majority of gammadelta T cells in tissues such as intestine and spleen. Some of these T cells recognize CD1c and MHC class I-related chain (MICA/B) molecules [correction]. These T cells are cytotoxic and use both perforin- and Fas-mediated cytotoxicity. A fundamental question is how these gammadelta T cells are activated during microbial exposure to carry out effector functions. In this study, we provide evidence for a mechanism by which Vdelta1 gammadelta T cells are activated by inflammatory cytokines in the context of the Vdelta1 TCR. Dendritic cells are necessary as accessory cells for microbial Ag-mediated Vdelta1 gammadelta T cell activation. Cytokine (IL-12), adhesion (LFA3/CD2, LFA1/ICAM1) and costimulatory (MHC class I-related chain (MICA/B) molecules/NK-activating receptor G2D) molecules play a significant role along with Vdelta1 TCR in this activation.  相似文献   

13.
Human Vgamma9Vdelta2 T cells recognize nonpeptidic Ags generated by the 1-deoxy-d-xylulose 5-phosphate (many eubacteria, algae, plants, and Apicomplexa) and mevalonate (eukaryotes, archaebacteria, and certain eubacteria) pathways of isoprenoid synthesis. The potent Vgamma9Vdelta2 T cell reactivity 1) against certain cancer cells or 2) induced by infectious agents indicates that therapeutic augmentations of Vgamma9Vdelta2 T cell activities may be clinically beneficial. The functional characteristics of Vgamma9Vdelta2 T cells from Macaca fascicularis (cynomolgus monkey) are very similar to those from Homo sapiens. We have found that the i.v. administration of nitrogen-containing bisphosphonate or pyrophosphomonoester drugs into cynomolgus monkeys combined with s.c. low-dose (6 x 10(5) U/animal) IL-2 induces a large pool of CD27+ and CD27- effector/memory T cells in the peripheral blood of treated animals. The administration of these drugs in the absence of IL-2 is substantially less effective, indicating the importance of additional exogenous costimuli. Shortly after the costimulatory IL-2 treatment, only gammadelta (but not alphabeta) T cells expressed the CD69 activation marker, indicating that Vgamma9Vdelta2 T lymphocytes are more responsive to low-dose IL-2 than alphabeta T cells. Up to 100-fold increases in the numbers of peripheral blood Vgamma9Vdelta2 T cells were observed in animals receiving the gammadelta stimulatory drug plus IL-2. Moreover, the expanded Vgamma9Vdelta2 T cells were potent Th1 effectors capable of releasing large amounts of IFN-gamma. These results may be relevant for designing novel (or modifying current) immunotherapeutic trials with nitrogen-containing bisphosphonate or pyrophosphomonoester drugs.  相似文献   

14.
Human lymphocytes expressing the gammadelta TCR represent a minor T cell subpopulation found in blood. The majority of these cells express Vgamma9Vdelta2 determinants and respond to nonpeptidic phosphoantigens. Several studies have shown that, in vivo, the percentage of Vgamma9Vdelta2 T cells dramatically increases during pathological infection, leading to the hypothesis that they play an important role in the defense against pathogens. However, the specific mechanisms involved in this response remain poorly understood. It has been established that Vgamma9Vdelta2 T cells display potent cytotoxic activity against virus-infected and tumor cells, thereby resembling NK cells. In this study, we show that, upon stimulation by nonpeptidic Ags, Vgamma9Vdelta2 T cells express FcgammaRIIIA (CD16), a receptor that is constitutively expressed on NK cells. CD16 appears to be an activation Ag for Vgamma9Vdelta2 T cells. Indeed, ligation of CD16 on Vgamma9Vdelta2 T cells leads to TNF-alpha production. This TNF-alpha production, which is dependent (like that induced via the TCR-CD3 complex) on the activation of the p38 and extracellular signal-regulated kinase-2 mitogen-activated protein kinases, can be modulated by CD94 NK receptors. Therefore, it appears that Vgamma9Vdelta2 T cells can be physiologically activated by two sequential steps via two different cell surface Ags: the TCR-CD3 complex and the FcgammaRIIIA receptor, which are specific cell surface Ags for T lymphocytes and NK cells, respectively. This strongly suggests that, in the general scheme of the immune response, Vgamma9Vdelta2 T cells represent an important subpopulation of cells that play a key role in the defense against invading pathogens.  相似文献   

15.
Activation of V gamma 9V delta 2 T cells by NKG2D   总被引:5,自引:0,他引:5  
Human Vgamma9 Vdelta2 T cells recognize phosphorylated nonpeptide Ags (so called phosphoantigens), certain tumor cells, and cells treated with aminobisphosphonates. NKG2D, an activating receptor for NK cells, has been described as a potent costimulatory receptor in the Ag-specific activation of gammadelta and CD8 T cells. This study provides evidence that Vgamma9 Vdelta2 T cells may also be directly activated by NKG2D. Culture of PBMC with immobilized NKG2D-specific mAb or NKG2D ligand MHC class I related protein A (MICA) induces the up-regulation of CD69 and CD25 in NK and Vgamma9 Vdelta2 but not in CD8 T cells. Furthermore, NKG2D triggers the production of TNF-alpha but not of IFN-gamma, as well as the release of cytolytic granules by Vgamma9 Vdelta2 T cells. Purified Vgamma9 Vdelta2 T cells kill MICA-transfected RMA mouse cells but not control cells. Finally, DAP10, which mediates NKG2D signaling in human NK cells, was detected in resting and activated Vgamma9 Vdelta2 T cells. These remarkable similarities in NKG2D function in NK and Vgamma9 Vdelta2 T cells may open new perspectives for Vgamma9 Vdelta2 T cell-based immunotherapy, e.g., by Ag-independent killing of NKG2D ligand-expressing tumors.  相似文献   

16.
Gammadelta T cells are implicated to play crucial roles during early immune responses to pathogens. A subset of human gammadelta T cells carrying the Vgamma9Vdelta2 TCR recognize small, phosphorylated nonpeptidic Ags. However, the precise role of these cells and the ligands recognized in human immune responses against pathogens remains unclear because of the lack of suitable animal models. We have analyzed the reactivity of spleen cells of the New World monkey Aotus nancymaae against isopentenyl pyrophosphate (IPP), a phosphorylated microbial metabolite selectively activating Vgamma9Vdelta2 T cells. Spleen cells were stimulated by IPP and the expanding cell population expressed the Vgamma9 TCR. TRGV-J and TRDV-D-J rearrangements expressed by IPP-stimulated cells of Aotus were analyzed by RT-PCR and DNA sequencing. The TRGV-J and TRDV-D-J rearrangements expressed by IPP-stimulated Aotus and human gammadelta T cells were similar with respect to 1) TCR gene segment usage, 2) a high degree of germline sequence homology of the TCR gene segments used, and 3) the diversity of the CDR3 regions. Phylogenetic analysis of human, Pan troglodytes, and A. nancymaae TRGV gene segments showed that the interspecies differences are smaller than the intraspecies differences with TRGV9 gene segments located on a distinct clade of the phylogenetic tree. The structural and functional conservation of Vgamma9Vdelta2 T cells in A. nancymaae and humans implicates a functionally important and evolutionary conserved mechanism of recognition of phosphorylated microbial metabolites.  相似文献   

17.
We have previously found that monkey Vgamma2Vdelta2(+) T cells mount adaptive immune responses in response to Mycobacterium bovis bacillus Calmette-Guérin infections. We have now analyzed rhesus monkey gammadelta T cell responses to nonpeptide Ags and superantigens. Like human Vgamma2Vdelta2(+) T cells, rhesus monkey gammadelta T cells are stimulated when exposed to prenyl pyrophosphate, bisphosphonate, and alkylamine Ags. Responsiveness was limited to gammadelta T cells expressing Vgamma2Vdelta2 TCRs. Rhesus monkey Vgamma2Vdelta2(+) T cells also responded to the superantigen, staphyloccocal enterotoxin A. Sequencing of the rhesus monkey Vgamma2Vdelta2 TCR revealed a strong sequence homology to human Vgamma2Vdelta2 TCR that preserves important sequence motifs. Moreover, chimeric TCRs that pair human Vgamma2 with monkey Vdelta2 and monkey Vgamma2 with human Vdelta2 retain reactivity to nonpeptide Ags and B cell lymphomas. A molecular model of the rhesus monkey Vgamma2Vdelta2 TCR has a basic region in the complementarity-determining region 3 binding groove that is similar to that seen in the human Vgamma2Vdelta2 TCR and preserves the topology of the complementarity-determining region loops. Thus, recognition of nonpeptide prenyl pyrophosphate, bisphosphonate, and alkylamine Ags is conserved in primates suggesting that primates can provide an animal model for human gammadelta T cell Ag responses.  相似文献   

18.
Tumor necrosis factor-alpha (TNF-alpha) plays a crucial role in the early defense against pathogens. This cytokine is produced by several cell types including T lymphocytes expressing the alphabeta as well as the gammadelta T cell receptor (TcR). In human, the circulating gammadelta T cells, which mostly express Vgamma9Vdelta2 TcR, have been strongly suggested to play an important protective role against infectious agents. These activated cells early produce high amounts of TNF-alpha, which induce a determinant beneficial effect against development of intracellular pathogens; however, sustained production of this cytokine can result in immunopathological diseases. The signals that regulate TNF-alpha production in Vgamma9Vdelta2 T cells are totally unknown. In primary alphabeta T cells, TNF-alpha production was shown to necessitate engagement of the TcR and CD28, and to be independent of the p38 mitogen activated protein kinase pathway. We demonstrate herein that, in contrast to alphabeta T cells, TNF-alpha production in Vgamma9Vdelta2 T lymphocytes is independent of CD28 costimulation and highly dependent on TcR-induced p38 kinase and extracellular signal-regulated kinase 2 pathway activation for optimal cytokine release. Moreover, we bring elements supporting the idea that the "activation threshold" of gammadelta T cells leading to cytokine production is lower than that of alphabeta T cells.  相似文献   

19.
Gammadelta T cells have a direct role in resolving the host immune response to infection by eliminating populations of activated macrophages. Macrophage reactivity resides within the Vgamma1/Vdelta6.3 subset of gammadelta T cells, which have the ability to kill activated macrophages following infection with Listeria monocytogenes (Lm). However, it is not known how gammadelta T cell macrophage cytocidal activity is regulated, or what effector mechanisms gammadelta T cells use to kill activated macrophages. Using a macrophage-T cell coculture system in which peritoneal macrophages from naive or Lm-infected TCRdelta-/- mice were incubated with splenocytes from wild-type and Fas ligand (FasL)-deficient mice (gld), the ability of Vgamma1 T cells to bind macrophages was shown to be dependent upon Fas-FasL interactions. Combinations of anti-TCR and FasL Abs completely abolished binding to and killing of activated macrophages by Vgamma1 T cells. In addition, confocal microscopy showed that Fas and the TCR colocalized on Vgamma1 T cells at points of contact with macrophages. Collectively, these studies identify an accessory or coreceptor-like function for Fas-FasL that is essential for the interaction of Vgamma1 T cells with activated macrophages and their elimination during the resolution stage of pathogen-induced immune responses.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号