首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
An amphipatic liposaccharide, β16, has been synthesized by condensation of the glycoamino acid β of ovomucoid with the palmitic acid to serve as a model on which the properties of the saccharide chains can be studied. This paper reports the ternary system β16/dipalmitoylphosphatidylcholine (DPPC)/water. Using X-ray diffraction and freeze-fracture electron microscopy, it was shown that the ternary system exhibits mesomorphic structures in the temperature range over which the aliphatic chains of the DPPC are in a liquid-like conformation. A phase diagram of the system was drawn at 75°C in terms of the water concentration and of the β16 content. As the molar fraction in β16 increases from about 0.08 to 1, the ternary system displays successively two lamellar structures analogous to that exhibited by the system DPPC/H2O, then a hexagonal structure similar to that exhibited by the system β16/H2O. The two types of lamellar structure were shown to differ by the T or Y conformation adopted by their saccharide chains.  相似文献   

2.
Combining controlled radical polymerizations and a controlled polypeptide synthetic technique, such as N-carboxyanhydride (NCA) ring-opening polymerization, enables the generation of well-defined block copolymers to be easily accessible. Here we combine NCA polymerization with the nitroxide-mediated radical polymerization of poly(n-butyl acrylate) (PBA) and polystyrene (PS), using a TIPNO and SG1-based bifunctional initiator to create a hybrid block copolymer. The polypeptide block consists of (block) copolymers of poly(L-glutamic acid) embedded with various quantities of L-alanine. The formed superstructures (vesicles and micelles) of the block copolymers possessed varying degrees of enzyme responsiveness when exposed to elastase and thermolysin, resulting in controlled enzymatic degradation dictated by the polypeptide composition. The PBA containing block copolymers possessing 50% L-alanine in the polypeptide block showed a high degradation response compared to polymers containing lower L-alanine quantities. The particles stabilized by copolypeptides with L-alanine near the hydrophobic block showed full degradation within 4 days. Particles containing polystyrene blocks revealed no appreciable degradation under the same conditions, highlighting the specificity of the system and the importance of synthetic polymer selection. However, when the degradation temperature was increased to 70 °C, degradation could be achieved due to the higher block copolymer exchange between the particle and the solution. A number of novel biohybrid structures are disclosed that show promise as enzyme-responsive materials with potential use as payload release vehicles, following their controlled degradation by specific, target, enzymes.  相似文献   

3.
Poly(methyl methacrylate) and polystyrene having terminal amino groups were synthesized by the radical polymerization of those monomers in the presence of 2-mercaptoethylammonium chloride as a chain-transfer agent. By the terminal group analysis and the molecular weight determination of the polymers, 0.5–1.3 amino groups were found in a chain of poly(methyl methacrylate) and 0.5–2.5 amino groups in a chain of polystyrene. Using these polymers having a terminal amino group as an initiator, the block polymerization of α-amino acid N-carboxyanhydride (NCA) was carried out. In the polymerizations of Glu(OBzl) NCA and Lys(Z) NCA by the poly(methyl methacrylate) initiator, the terminal amino group underwent a nucleophilic addition reaction to NCA and initiated the polymerization, yielding A-B-type block copolymers in a high yield. The same was observed in the polymerizations of Gly(OBzl) NCA and Lys(Z) NCA by the polystyrene initiator. By eliminating the protecting groups of the side chains of the polypeptide segment, the block copolymers poly(methyl methacrylate)-poly(Glu), poly(methyl methacrylate)-poly(Lys), polystyrene-poly(Glu) and polystyrene-poly(Lys) were synthesized with little side reactions. The side chain amino groups of poly(Lys) segment in the poly(methyl methacrylate)-poly(Lys) block copolymers were sulphonated or stearoylated successfully.  相似文献   

4.
Two different series of polyethylenimine (PEI) block copolymers grafted with linear poly(ethylene glycol) (PEG) were investigated as delivery systems for oligodeoxynucleotides (ODN) and ribozymes. The resulting interpolyelectrolyte complexes were characterized with respect to their physicochemical properties, protection efficiency against enzymatic degradation, complement activation, and biological activity under in vitro conditions. The effect of PEG molecular weight and the graft density of PEG blocks on complex characteristics was studied with two different series of block copolymers. The resulting ODN complexes were characterized by photon correlation spectroscopy (PCS) and laser Doppler anemometry (LDA) to determine complex size and zeta potential. Electrophoresis was performed to study the protective effects of the different block copolymers against enzymatic degradation of ODN. Intact ODN was quantified via densitometric analysis. Ribozymes, a particularly unstable type of oligonucleotides, were used to examine the influence of block copolymer structure on biological activity. The stabilization of ribozymes was also characterized in a cell culture model. Within the first series of block copolymers, the grafted PEG chains (5 kDa) had marginal influence on the complex size. Two grafted PEG chains were sufficient to achieve a neutral zeta potential. Within the second series, size and zeta potential increased with an increasing number of PEG chains. A high number of short PEG chains resulted in a decrease in complex size to values comparable to that of the homopolymer PEI 25 kDa and a neutral zeta potential, indicating a complete shielding of the charges. Complement activation decreased with an increasing number of short PEG 550 Da chains. Ribozyme complexes with PEG-PEI block copolymers achieved a 50% down-regulation of the target mRNA. This effect demonstrated an efficient stabilization and biological activity of the ribozyme, which was comparable to that of PEI 25 kDa. PEGylated PEI block copolymers represent a promising new class of drug delivery systems for ODN and ribozymes with increased biocompatibility and physical stability.  相似文献   

5.
The transformation of polypeptide chains from their globular native structure to fibrillar aggregates has been a matter of great concern because of the involvement of these aggregates in the onset of several degenerative diseases. These aggregates exhibit highly ordered cross β sheet structures and are known as ‘amyloids’. Formation of amyloids in the body is associated with cytotoxicity due to direct interaction of the aggregated species with the cell membrane leading to cellular permeability or due to loss of functionality of the proteins involved in the amyloid formation. The preference of polypeptide chains to remain in their native conformation or to aggregate into amyloids is guided by several factors such as its conformation at specific condition, concentration, physicochemical properties of the amino acid sequence and so on. In the current review, we have reviewed the different factors that guide the transition of proteins from their natively folded state to the amyloidogenic state. Understanding the critical determinants of amyloidogenesis is vital towards deciphering the molecular mechanism of amyloidogenesis and for the development of effective therapeutics against amyloidosis. Copyright © 2013 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

6.
The self-assembly in aqueous solution of hybrid block copolymers consisting of amphiphilic beta-strand peptide sequences flanked by one or two PEG chains was investigated by means of circular dichroism spectroscopy, small-angle X-ray scattering, and transmission electron microscopy. In comparison with the native peptide sequence, it was found that the peptide secondary structure was stabilized against pH variation in the di- and tri-block copolymers with PEG. Small-angle X-ray scattering indicated the presence of fibrillar structures, the dimensions of which are comparable to the estimated width of a beta-strand (with terminal PEG chains in the case of the copolymers). Transmission electron microscopy on selectively stained and dried specimens shows directly the presence of fibrils. It is proposed that these fibrils result from the hierarchical self-assembly of peptide beta-strands into helical tapes, which then stack into fibrils.  相似文献   

7.
This paper shows that backbone amide proton titration shifts in polypeptide chains are a very sensitive manifestation of intramolecular hydrogen bonding between carboxylate groups and backbone amide protons. The population of specific hydrogen-bonded structures in the ensemble of species that constitutes the conformation of a flexible nonglobular linear peptide can be determined from the extent of the titration shifts. As an illustration, an investigation of the molecular conformation of the linear peptide H-Gly-Gly-L -Glu-L -Ala-OH is described. The proposed use of amide proton titration shifts for investigating polypeptide conformation is based on 360-MHz 1H-nmr studies of selected linear oligopeptides in H2O solutions. It was found that only a very limited number of amide protons in a polypeptide chain show sizable intrinsic intration shifts arising from through-bond interactions with ionizable groups. These are the amide proton of the C-terminal amino acid residue, the amide protons of Asp and the residues following Asp, and possibly the amide proton of the residue next to the N-terminus. Since the intrinsic titration shifts are upfield, the downfield titration shifts arising from conformation-dependent through-space interactions, in particular hydrogen bonding between the amide protons and carboxylate groups, can readily be identified.  相似文献   

8.
The relationship between the molecular architecture of a series of poly(ethylene oxide)-b-poly(propylene oxide) (PEO-PPO) diblock copolymers and the nature of their interactions with lipid bilayers has been studied using small- and wide-angle X-ray scattering (SAXS and WAXS) and differential scanning calorimetry (DSC). The number of molecular repeat units in the hydrophobic PPO block has been found to be a critical determinant of the nature of diblock copolymer-lipid bilayer association. For dimyristoyl-sn-glycero-3-phosphocholine (DMPC)-based biomembrane structures, polymers whose PPO chain length approximates that of the acyl chains of the lipid bilayer yield highly ordered, expanded lamellar structures consistent with well-integrated (into the lipid bilayer) PPO blocks. Shorter diblock copolymers produce mixed lamellar and nonlamellar mesophases. The thermotropic phase behavior of the polymer-doped membrane systems is highly influenced by the presence and molecular architecture of the diblock copolymer, as evidenced by shifting of the main phase transition to higher temperatures, broadening of the main transition, and the appearance of other features. Studies of temperature-induced changes in the mesophase structure for compositions prepared with well-integrated PEO-PPO polymers indicate that they undergo reversible changes to a nonlamellar structure as the temperature is lowered. Increasing either the number of repeat units in the PEO block or the polymer concentration promotes a greater degree of structural ordering.  相似文献   

9.
The helix-sense inversions of poly(β-phenethyl l -aspartate) (2P) and diblock copolymers (2P-3P), with 2P and poly(β-phenylpropyl l -aspartate) (3P) blocks, were studied in their solid states using synchrotron wide-angle X-ray diffraction and small-angle X-ray scattering. The characteristic parameters of the π-helix structure of 2P were directly determined in situ after the helix transition at a high temperature. In the 2P-3P block copolymers, the main chains of the 3P blocks initially convert from right- to left-handed α-helices, and then the 2P blocks convert irreversibly from right-handed α-helices to left-handed π-helices. The chemical structures of the side chains of poly(l -aspartic acid ester)s significantly affect their helix transition behaviors.  相似文献   

10.
The compatibility of six kinds of designed poly(ethylene oxide)-block-poly(methyl methacrylate) (PEO-b-PMMA) copolymers was studied at 270, 298 and 400 K via mesoscopic modeling. The values of the order parameters depended on both the structures of the block copolymers and the simulation temperature, while the values of the order parameters of the long chains were higher than those of the short ones; temperature had a more obvious effect on long chains than on the short ones. Plain copolymers doped with poly(ethylene oxide) (PEO) or poly(methyl methacrylate) (PMMA) homopolymer showed different order parameter values. When a triblock copolymer had the same component at both ends and was doped with one of its component polymers as a homopolymer (such as A5B6A5 doped with B6 or A5 homopolymer), the value of its order parameter depended on the simulation temperature. The highest order parameter values were observed for A5B6A5 doped with B6 at 400 K and for A5B6A5 doped with A5 at 270 K. A study of copolymers doped with nanoparticles showed that the mesoscopic phase was influenced by not only the properties of the nanoparticles, such as the size and density, but also the compositions of the copolymers. Increasing the size of the nanoparticles used as a dopant had the most significant effect on the phase morphologies of the copolymers.  相似文献   

11.
The amino poly(trimethylene carbonate)-NHt-Boc (PTMC-NHt-Boc) and poly(epsilon-caprolactone)-NH -Boc (PCL-NHt-Boc) were synthesized by ring-opening polymerization (ROP) of TMC or CL and subsequently deprotected into the corresponding PTMC-NH2 and PCL-NH2. These functional homopolymers were used as macroinitiators for the ROP of gamma-benzyl-L-glutamate N-carboxyanhydride (BLG), consequently, giving the respective diblock copolymers PTMC-b-PBLG and PCL-b-PBLG in almost quantitative yields. The (co)polymers have been characterized by NMR and SEC analyses. DSC and IR studies confirmed the block structure of the copolymers and highlighted a phase separation between the rigid peptide (alpha-helix conformation) and the more flexible polyester segments. The self-assembly and the degradation behaviors of the copolymers depended on the nature of the polyester block and on the copolymer composition. Nanoparticles obtained from PBLG block copolymers were twice smaller ( RH < 100 nm) than those formed from PTMC and PCL homopolymers. Finally, their enzymatic degradation revealed that PTMC nanoparticles degraded faster than those made of PCL.  相似文献   

12.
The conformations of 2,3-diformylglycerol, a model compound of the diacylglycerol portion of phospholipids, were analyzed both by the classical potential function method and by the INDO molecular orbital method. The results suggest that in membranes, the conformation of the diacylglycerol portion of phospholipids is such that the two ester planes of the β- and γ-hydrocarbon chains stack in an antiparallel way with the dihedral angles β′{C(3)C(2)O(21)C(21)} ? 270° and γ1{C(2)C(3)O(31)C(31)} ? 270°.  相似文献   

13.
Four well-defined heparan sulfate (HS) block copolymers containing S-domains (high sulfo group content) placed adjacent to N-domains (low sulfo group content) were chemoenzymatically synthesized and characterized. The domain lengths in these HS block co-polymers were ∼40 saccharide units. Microtiter 96-well and three-dimensional cell-based microarray assays utilizing murine immortalized bone marrow (BaF3) cells were developed to evaluate the activity of these HS block co-polymers. Each recombinant BaF3 cell line expresses only a single type of fibroblast growth factor receptor (FGFR) but produces neither HS nor fibroblast growth factors (FGFs). In the presence of different FGFs, BaF3 cell proliferation showed clear differences for the four HS block co-polymers examined. These data were used to examine the two proposed signaling models, the symmetric FGF2-HS2-FGFR2 ternary complex model and the asymmetric FGF2-HS1-FGFR2 ternary complex model. In the symmetric FGF2-HS2-FGFR2 model, two acidic HS chains bind in a basic canyon located on the top face of the FGF2-FGFR2 protein complex. In this model the S-domains at the non-reducing ends of the two HS proteoglycan chains are proposed to interact with the FGF2-FGFR2 protein complex. In contrast, in the asymmetric FGF2-HS1-FGFR2 model, a single HS chain interacts with the FGF2-FGFR2 protein complex through a single S-domain that can be located at any position within an HS chain. Our data comparing a series of synthetically prepared HS block copolymers support a preference for the symmetric FGF2-HS2-FGFR2 ternary complex model.  相似文献   

14.
At least two different class II histocompatibility antigens, I-A and I-E, are encoded by the murine major histocompatibility complex. Both types of class II antigens are composed of polypeptide chains called alpha and beta. Class II antigens display extensive genetic polymorphism, the main part of which resides in the NH2-terminal domains of the A alpha, A beta and E beta chains. Recently it was shown that the mutant gene Abm 12 beta differed from the wild-type gene Ab beta by three nucleotide substitutions, which all occur within a stretch of 14 nucleotides. Multiple substitutions of the type found in the Abm 12 beta gene suggest that the mutant arose by a gene conversion-like event. To examine whether the Eb beta gene may have served as the donor gene in the generation of the Abm 12 beta gene, we have isolated and sequenced a cDNA clone corresponding to the Eb beta gene. Comparisons of the Eb beta, the Ab beta and the Abm 12 beta nucleotide sequences revealed that the Eb beta sequence is identical to that of Abm 12 beta in the positions where the latter differs from the Ab beta sequence. This observation is consistent with the notion that the Abm 12 beta mutant gene arose by a gene conversion-like event involving the Eb beta gene.  相似文献   

15.
The terminal amino groups of polysarcosine, poly(γ-benzyl l-glutamate), and poly(ε-benzyloxycarbonyl-l-lysine) were haloacetylated. The mixture of the terminally haloacetylated poly(α-amino acid) and styrene or methyl methacrylate was photoirradiated in the presence of Mn2(CO)10, or heated with Mo(CO)6, yielding A-B-A-type block copolymers consisting of poly(α-amino acid) (the A component) and vinyl polymer (the B component). The block copolymers were characterized, and the present investigation revealed that the thermally initiated polymerization of vinyl compounds by the trichloroacetyl poly(α-amino acid)/Mo(CO)6 system was the most suitable for the synthesis of the α-amino acid/vinyl compound block copolymers. The A-B-A type block copolymers showed higher antithrombogenicity than the corresponding homopolymers. In particular, a film of the A-B-A-type block copolymer of poly[Glu(OBzl)] and polystyrene possessed a microphase-separated structure and did not induce a conformational change of fibrinogen adsorbed, leading to a high antithrombogenicity.  相似文献   

16.
Self-assembly of reactive amphiphilic block copolymers is used to prepare nanostructured hydrogels with exceptional permeability properties, vesicular structures and planar, freestanding membranes in aqueous solution. Although the underlying block copolymer membranes are two-three-fold thicker than conventional lipid bilayers, they can be regarded as mimetic of biological membranes and can be used as a matrix for membrane-spanning proteins. Surprisingly, the proteins remain functional, despite the extreme thickness of the membranes and even after polymerization of the reactive block copolymers. The unique combination of block copolymers with membrane proteins allows the preparation of mechanically stable, defect-free membranes and nanocapsules that have highly selective permeability and/or specific recognition sites. This is documented by some representative examples.  相似文献   

17.
A chiroptical method of conformational analysis is applied to linear (1 → 3)-β-D -glucans and the dimeric analogues β- and α-laminaribioside. The method is based on a recently developed semiempirical calculational model for saccharide optical activity. We conclude that disaccharide conformational energy maps in the literature represent the effective potential energy surface in aqueous solution well. The positive optical rotation observed with long chains in dilute alkaline solution is not characteristic of any single–chain conformation, and must reflect chain association.  相似文献   

18.
Yu L  Zhang Z  Ding J 《Biomacromolecules》2011,12(4):1290-1297
This paper reports the influence of sequence structures of block copolymers composed of poly(lactic acid-co-glycolic acid) (PLGA) and poly(ethylene glycol) (PEG) on their thermogelling aqueous behaviors. A series of thermogelling PLGA-PEG-PLGA triblock copolymers with similar chemical compositions and block lengths but different sequences of D,L-lactide (LA) and glycolide (GA) in the PLGA block were synthesized. The difference of sequence structures arises from the different reactivities of LA and GA during the copolymerization and the transesterification after polymerization. The sol-gel transition temperature and height of gel window were found to be regulated by the sequence structure. Our study reveals that the macromolecular sequence structure influences the hydrophobic/hydrophilic balance of this kind of amphiphilic copolymers and thus alters mesoscopic micellization and the forthcoming macroscopic physical gelation in water. This finding might be helpful to guide the molecular design of the underlying thermogelling systems as injectable hydrogels.  相似文献   

19.
Water-soluble block copolymers of the type (A)m-(B)n-(A)p, where (A)m,p was either poly(D ,L -lysine-α,β,β,γ,γ,δ,δ-d7) or poly(D ,L -lysine) and (B)n was either poly(L -alanine) or poly(L -phenylalanine), were synthesized for conformational studies by proton magnetic resonance spectroscopy. Analytical determination of the amount of the initiator fragment (n-hexylamine) at the C-terminus of the copolymers was used to obtain the number-average degrees of polymerization, DP n, and thereby, together with the amino acid composition, to establish the covalent structures of the polymers. The values of DP n were found to be much lower than those deduced from sedimentation equilibrium or form viscosity measurements. These deviations, which also are thought to have arisen in similar studies reported in the literature, are attributable to intermolecular aggregation; the relation of such aggregation to covalent structure (and its effect on the polymerization reaction) is discussed in terms of the conditions and mechanism of synthesis of block copolymers of amino acids.  相似文献   

20.
In this work, dissipative particle dynamics simulations were performed to study the self-assembly morphologies of rod–coil block copolymer polystyrene-b-poly(ethylene glycol) (PS-b-PEG) in aqueous solution under different variables. Effect of time evolution on the self-assembly morphology of PS-b-PEG was observed first. Besides, spherical, cylindrical and lamellar structures were obtained at a range of concentrations. In addition, their self-assembly morphologies could also be regulated by the PS chain length. Our simulation results can provide deeper insight into the microstructure of rod–coil block copolymers in aqueous solution, which can be useful to guide the molecular design and experimental preparation of novel rod–coil block copolymers with controlled structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号