首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 312 毫秒
1.
Methods for the direct determination of nucleotide sequences in DNA have been developed and used to determine the complete primary structure of a fragment of bacteriophage φX174 DNA which is 48 residues in length. This fragment was liberated from φX DNA by digestion at low temperature and high ionic strength with the T4 phage-induced endonuclease IV. The fragment was redigested with endonuclease IV under vigorous conditions and the products fractionated two-dimensionally providing a characteristic endonuclease IV “fingerprint” of the fragment. The Burton (Burton &; Petersen, 1960) depurination reaction was used to characterize the redigestion products and identify the pyrimidine residues at their 5′ and 3′ termini. These oligonucleotide products were then fully sequenced by partial exonuclease digestion with spleen and snake venom phosphodiesterase and analysis of the fractionated digests by base composition, depurination, and 5′ end-group analysis using exonuclease I. Rules for the interpretation of two-dimensional fingerprints of partial exonuclease digests, which rapidly provide sequence information by simple inspection, were also deduced. To derive the complete structure of the fragment, the fully sequenced oligonucleotides were ordered by characterizing large, overlapping, partial endonuclease IV digestion products by means of the depurination reaction. The sequencing methods described are general and may be used for the direct determination of the primary structures of other fragments of DNA.  相似文献   

2.
Human DNA apurinic/apyrimidinic (AP-) endonuclease 1 (APE1) is involved in the base excision repair (BER) pathway. The enzyme hydrolyzes DNA from the 5 side of the AP site. In addition to endonuclease activity, APE1 also possesses other slight activities including 3 -5 exonuclease activity. The latter is preferentially exhibited towards mispaired (non-canonical) nucleotides, this being the reason why APE1 is considered as a proofreading enzyme correcting the misincorporations introduced by DNA polymerase beta. We have studied 3 -5 exonuclease activity of APE1 towards dCMP and dTMP residues and modified dCMP analogs with photoreactive groups at the 3 end of the nicked DNA. Photoreactive dNMP residues were incorporated at the 3 end of the lesion using DNA polymerase beta and photoreactive dNTPs. The dependence of exonuclease activity on the "canonicity" of the base pair formed by dNMP flanking the nick at the 3 end, on the nature of the group flanking the nick at the 5 end, and on the reaction conditions has been determined. Optimal reaction conditions for the 3 -5 exonuclease hydrolysis reaction catalyzed by APE1 in vitro have been established, and conditions when photoreactive residues are not removed by APE1 have been chosen. These reaction conditions are suitable for using photoreactive nicked DNAs bearing 3 -photoreactive dNMP residues for photoaffinity labeling of proteins in cellular/nuclear extracts and model APE1-containing systems. We recommend using FAPdCTP for photoaffinity modification in APE1-containing systems because the FAPdCMP residue is less prone to exonuclease degradation, in contrast to FABOdCTP, which is not recommended.  相似文献   

3.
Mechanism of action of Micrococcus luteus gamma-endonuclease   总被引:5,自引:0,他引:5  
Micrococcus luteus extracts contain gamma-endonuclease, a Mg2+-independent endonuclease that cleaves gamma-irradiated DNA. This enzyme has been purified approximately 1000-fold, and the purified enzyme was used to study its substrate specificity and mechanism of action. gamma-Endonuclease cleaves DNA containing either thymine glycols, urea residues, or apurinic sites but not undamaged DNA or DNA containing reduced apurinic sites. The enzyme has both N-glycosylase activity that releases thymine glycol residues from OsO4-treated DNA and an associated apurinic endonuclease activity. The location and nature of the cleavage site produced has been determined with DNA sequencing techniques. gamma-Endonuclease cleaves DNA containing thymine glycols or apurinic sites immediately 3' to the damaged or missing base. Cleavage results in a 5'-phosphate terminus and a 3' baseless sugar residue. Cleavage sites can be converted to primers for DNA polymerase I by subsequent treatment with Escherichia coli exonuclease III. The mechanism of action of gamma-endonuclease and its substrate specificity are very similar to those identified for E. coli endonuclease III.  相似文献   

4.
A new site-specific class-II restriction endonuclease, MamI, has been discovered in the nonsporulating Gram+ Microbacterium ammoniaphilum. MamI recognition sequence and cleavage positions were deduced using experimental and computer-assisted mapping and sequencing approaches. MamI cleavage specificity corresponds to: [formula: see text] The novel 43-kD enzyme recognizes a palindromic hexanucleotide interrupted by four ambiguous nucleotides. MamI cleavage positions are located in the center of the recognition sequence resulting in blunt-ended fragments after cleavage in the presence of Mg2+ ions. MamI is inhibited by N6-methyladenine residues. In case of overlapping sequences of MamI and Escherichia coli-coded DNA modification methyltransferase M.EcodamI (5'-[formula: see text]-3'), cleavage of DNA isolated from E. coli wild-type cells will be inhibited. By applying incubation conditions forcing star activity, relaxing of MamI sequence specificity is observed (MamI*).  相似文献   

5.
Mechanism of action of Escherichia coli exonuclease III   总被引:2,自引:0,他引:2  
Y W Kow 《Biochemistry》1989,28(8):3280-3287
Exonuclease III is the major apurinic/apyrimidinic (AP) endonuclease of Escherichia coli, accounting for more than 80% of the total cellular AP endonuclease activity. We have shown earlier that the endonucleolytic activity of exonuclease III is able to hydrolyze the phosphodiester bond 5' to the urea N-glycoside in a duplex DNA [Kow, Y. W., & Wallace, S. S. (1985) Proc. Natl. Acad. Sci. U.S.A. 82, 8354-8358]. Therefore, we were interested in studying the mechanism of action of the endonucleolytic activity of exonuclease III by preparing DNA containing different base lesions as well as chemically modified AP sites. When AP sites were converted to O-alkylhydroxylamine residues, exonuclease III was able to hydrolyze the phosphodiester bond 5' to O-alkylhydroxylamine residues. The apparent Km for different O-alkylhydroxylamine residues was not affected by the particular O-alkylhydroxylamine residue substituted; however, the apparent Vmax decreased as the size of the residue increased. On the basis of a study of the substrate specificity of exonuclease III, a modification of the Weiss model for the mechanism of action of exonuclease III is presented. Furthermore, a temperature study of exonucleolytic activity of exonuclease III in the presence of Mg2+ showed discontinuity in the Arrhenius plot. However, no discontinuity was observed when the reaction was performed in the presence of Ca2+. Similarly, no discontinuity was observed for the endonucleolytic activity of exonuclease III, in the presence of either Ca2+ or Mg2+. These data suggest that, in the presence of Mg2+, exonuclease III, in the presence of either Ca2+ or Mg2+.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
7.
Previous characterization of Escherichia coli endonuclease IV has shown that the enzyme specifically cleaves the DNA backbone at apurinic/apyrimidinic sites and removes 3' DNA blocking groups. By contrast, and unlike the major apurinic/apyrimidinic endonuclease exonuclease III, negligible exonuclease activity has been associated with endonuclease IV. Here we report that endonuclease IV does possess an intrinsic 3'-5' exonuclease activity. The activity was detected in purified preparations of the endonuclease IV protein from E. coli and from the distantly related thermophile Thermotoga maritima; it co-eluted with both enzymes under different chromatographic conditions. Induction of either endonuclease IV in an E. coli overexpression system resulted in induction of the exonuclease activity, and the E. coli exonuclease activity had similar heat stability to the endonuclease IV AP endonuclease activity. Characterization of the exonuclease activity showed that its progression on substrate is sensitive to ionic strength, metal ions, EDTA, and reducing conditions. Substrates with 3' recessed ends were preferred substrates for the 3'-5' exonuclease activity. Comparison of the relative apurinic/apyrimidinic endonuclease and exonuclease activity of endonuclease IV shows that the relative exonuclease activity is high and is likely to be significant in vivo.  相似文献   

8.
9.
10.
A new type II sequence-specific endonuclease, RsaI, has been identified from Rhodopseudomonas sphaeroides strain 28/5. An RsaI purification scheme that yields enzyme which is free of contaminating exonuclease and phosphatase activities after a single column fractionation has been developed. The enzyme recognized the tetranucleotide sequence 5'-GTAC-3' and cleaved between the T and A, thereby generating flush ends. RsaI should be extremely useful in deoxyribonucleic acid sequencing experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号