首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
The uplift of the Tibetan Plateau caused significant ecogeographical changes that had a major impact on the exchange and isolation of regional fauna and flora. Furthermore, Pleistocene glacial oscillations were linked to temporal large‐scale landmass and drainage system reconfigurations near the Hengduan Mountain Region and might have facilitated speciation and promoted biodiversity in southwestern China. However, strong biotic evidence supporting this role is lacking. Here, we use the Euchiloglanis fish species complex as a model to demonstrate the compound effects of the Tibetan Plateau uplift and Pleistocene glacial oscillations on species formation in this region. The genetic structure and geographical differentiation of the Euchiloglanis complex in four river systems within the Hengduan Mountain Region were deduced using the cytochrome b (cyt b) gene and 10 microsatellite loci from 360 to 192 individuals, respectively. The results indicated that the populations were divided into four independently evolving lineages, in which the populations from the Qingyi River and Jinsha River formed two sub‐lineages. Phylogenetic relationships were structured by geographical isolation, especially near drainage systems. Divergence time estimation analyses showed that the Euchiloglanis complex diverged from its sister clade Pareuchiloglanis sinensis at around 1.3 Million years ago (Ma). Within the Euchiloglanis complex, the divergence time between the Dadu–Yalong and Jinsha–Qingyi River populations occurred at 1.0 Ma. This divergence time was in concordance with recent geological events, including the Kun‐Huang Movement (1.2–0.6 Ma) and the lag time (<2.0 Ma) of river incision in the Hengduan Mountain Region. Population expansion signals were detected from mismatched distribution analyses, and the expansion times were concurrent with Pleistocene glacier fluctuations. Therefore, current phylogeographic patterns of the Euchiloglanis fish complex in the Hengduan Mountain Region were influenced by the uplift event of the Tibetan Plateau and were subsequently altered by paleo‐river transitions during the late Pleistocene glacial oscillations.  相似文献   

2.
The schizothoracine fishes, members of the Teleost order Cypriniformes, are one of the most diverse group of cyprinids in the Qinghai–Tibetan Plateau and surrounding regions. However, taxonomy and phylogeny of these species remain unclear. In this study, we determined the complete mitochondrial genome of Schizopygopsis malacanthus. We also used the newly obtained sequence, together with 31 published schizothoracine mitochondrial genomes that represent eight schizothoracine genera and six outgroup taxa to reconstruct the phylogenetic relationships of the subfamily Schizothoracinae by different partitioned maximum likelihood and partitioned Bayesian inference at nucleotide and amino acid levels. The schizothoracine fishes sampled form a strongly supported monophyletic group that is the sister taxon to Barbus barbus. A sister group relationship between the primitive schizothoracine group and the specialized schizothoracine group + the highly specialized schizothoracine group was supported. Moreover, members of the specialized schizothoracine group and the genera Schizothorax, Schizopygopsis, and Gymnocypris were found to be paraphyletic.  相似文献   

3.
Schizopygopsis stoliczkai (Cyprinidae, subfamily Schizothoracinae) is one of the major freshwater fishes endemic to the northwestern margin of the Tibetan Plateau. In the current study, we used mitochondrial DNA markers cytochrome b (Cyt b) and 16S rRNA (16S), as well as the nuclear marker, the second intron of the nuclear beta‐actin gene (Act2), to uncover the phylogeography of S. stoliczkai. In total, we obtained 74 haplotypes from 403 mitochondrial concatenated sequences. The mtDNA markers depict the phylogenetic structures of S. stoliczkai, which consist of clade North and clade South. The split time of the two clades is dated back to 4.27 Mya (95% HPD = 1.96–8.20 Mya). The estimated split time is earlier than the beginning of the ice age of Pleistocene (2.60 Mya), suggesting that the northwestern area of the Tibetan Plateau probably contain at least two glacial refugia for S. stoliczkai. SAMOVA supports the formation of four groups: (i) the Karakash River group; (ii) The Lake Pangong group; (iii) the Shiquan River group; (iv) the Southern Basin group. Clade North included Karakash River, Lake Pangong, and Shiquan River groups, while seven populations of clade South share the haplotypes. Genetic diversity, star‐like network, BSP analysis, as well as negative neutrality tests indicate recent expansions events of S. stoliczkai. Conclusively, our results illustrate the phylogeography of S. stoliczkai, implying the Shiquan River is presumably the main refuge for S. stoliczkai.  相似文献   

4.
We evaluated the phylogeography and historical demography of the cyprinid fish Gymnodiptychus dybowskii (subfamily Schizothoracinae) across three northern Qinghai‐Tibetan Plateau (QTP) river systems in the Tien Shan range: the Kaidu River, Ili River and Junggar Basin. Results from both mtDNA (16S rRNA and Cyt b) and nuDNA (RAG‐2) resolved three reciprocally monophyletic clades, one in each of the three river basins. Estimated divergence times (highest posterior density (HPD) 2.4–3.7 Mya) are consistent with the hypothesis that these three clades are products of vicariance resulting from the intensive uplift of QTP and Tien Shan, and resulting expansion of the Taklimakan and Gurbantunggut deserts. Several lines of evidence indicate dynamic demographic histories for the three clades, with late Quaternary population bottlenecks and expansions in the Kaidu and Ili rivers and, possibly, a Holocene decline in the Junggar Basin. For conservation purposes, the three clades should be treated as species or minimally, as evolutionarily significant units (ESUs). They have experienced decades of anthropogenic disturbance and preservation of the three species/ESUs will require more sustainable management of the aquatic resources.  相似文献   

5.
The mitochondrial DNA cytochrome b sequences of 36 Schizothorax species from 51 localities in the Yunnan–Guizhou Plateau (YGP) and its adjacent areas were analysed. Maximum parsimony, Maximum likelihood and Bayesian phylogenetic analyses were performed to examine the relationships of Schizothorax species. A hypothesis of the phylogenetic relationships of the species is given. A relaxed molecular clock based on Bayesian evolutionary analysis was used to tentatively calculate the divergence times of Schizothorax. Samples from the YGP were tentatively grouped into three geographically distributed clades: the Tsangpo‐Irrawaddy, the Mekong‐Salween and the Trans‐Jinsha River (including Jinsha, Red, Nanpan and Beipan Rivers). Calibration of the molecular clock revealed that two geological periods, the late Miocene about 10 million years before present (Myr BP) and the Pliocene (4.0 Myr BP), were important times in the vicariant speciation of Schizothorax. The phylogenetic history of the species is congruent with events caused by the uplift of the Tibetan Plateau and the YGP. The divergence of Schizothorax species in YGP began in the Pliocene. Our phylogenetic trees did not support the hypothesis that the paleo Jinsha River was drained through the Yangtze River‐Jianchuan Lake‐Erhai Lake to the Red River. Schizothorax in the Beipan River were derived from the Jinsha River.  相似文献   

6.
With 38 described species or subspecies, Gnaptorina Reitter is the second‐most species‐rich genus in the darkling beetle subtribe Gnaptorinina (Tenebrionidae: Tenebrioninae). In this study, we reconstructed a phylogeny of the genus based on one nuclear and three mitochondrial genes and used this phylogeny to explore the historical biography and diversification of Gnaptorina species. We implemented multiple molecular species delimitation approaches to reassess the status of Gnaptorina species and taxonomic subdivisions of the genus. Dating and historical biogeography analyses suggest an early Eocene origin of the genus, with the southeastern regions of the Tibetan Plateau most likely as areas of origin. Based on these results, we propose a new classification for Gnaptorina with three major clades identified. Consequently, the monotypic subgenus Boreoptorina is newly synonymized with the more species‐rich subgenus Hesperoptorina, and G. dongdashanensis Shi is transferred from Hesperoptorina to the subgenus Gnaptorina. In addition, G. minxiana Medvedev, formerly treated as a subspecies of G. potanini Reitter, is elevated to species. Results of molecular species delimitation analyses are largely congruent and confirm the status of most morphological species.  相似文献   

7.
Recent advances in the understanding of the evolution of the Asian continent challenge the long‐held belief of a faunal immigration into the Himalaya. Spiny frogs of the genus Nanorana are a characteristic faunal group of the Himalaya–Tibet orogen (HTO). We examine the phylogeny of these frogs to explore alternative biogeographic scenarios for their origin in the Greater Himalaya, namely, immigration, South Tibetan origin, strict vicariance. We sequenced 150 Nanorana samples from 62 localities for three mitochondrial (1,524 bp) and three nuclear markers (2,043 bp) and complemented the data with sequence data available from GenBank. We reconstructed a gene tree, phylogenetic networks, and ancestral areas. Based on the nuDNA, we also generated a time‐calibrated species tree. The results revealed two major clades (Nanorana and Quasipaa), which originated in the Lower Miocene from eastern China and subsequently spread into the HTO (Nanorana). Five well‐supported subclades are found within Nanorana: from the East, Central, and Northwest Himalaya, the Tibetan Plateau, and the southeastern Plateau margin. The latter subclade represents the most basal group (subgenus Chaparana), the Plateau group (Nanorana) represents the sister clade to all species of the Greater Himalaya (Paa). We found no evidence for an east–west range expansion of Paa along the Himalaya, nor clear support for a strict vicariance model. Diversification in each of the three Himalayan subclades has probably occurred in distinct areas. Specimens from the NW Himalaya are placed basally relative to the highly diverse Central Himalayan group, while the lineage from the Tibetan Plateau is placed within a more terminal clade. Our data indicate a Tibetan origin of Himalayan Nanorana and support a previous hypothesis, which implies that a significant part of the Himalayan biodiversity results from primary diversification of the species groups in South Tibet before this part of the HTO was uplifted to its recent heights.  相似文献   

8.
The genus Glauconycteris Dobson, 1875 currently contains 12 species of butterfly bats, all endemic to sub‐Saharan Africa. Most species are rarely recorded, with half of the species known from less than six geographic localities. The taxonomic status of several species remains problematic. Here, we studied the systematics of butterfly bats using both morphological and molecular approaches. We examined 45 adult specimens for external anatomy and skull morphology, and investigated the phylogeny of Glauconycteris using DNA sequences from three mitochondrial genes and 116 individuals, which in addition to outgroup taxa, included nine of the twelve butterfly bat species currently recognized. Four additional nuclear genes were sequenced on a reduced sample of 69 individuals, covering the outgroup and Glauconycteris species. Our molecular results show that the genus Glauconycteris is monophyletic, and that it is the sister‐group of the Asian genus Hesperoptenus. Molecular dating estimates based on either Cytb or RAG2 data sets suggest that the ancestor of Glauconycteris migrated into Africa from Asia during the Tortonian age of the Late Miocene (11.6–7.2 Mya), while the basal diversification of the crown group occurred in Africa at around 6 ± 2 Mya. The species G. superba is found to be the sister‐group of G. variegata, questioning its placement in the recently described genus Niumbaha. The small species living in tropical rainforests constitute a robust clade, which contains three divergent lineages: (i) the “poensis” group, which is composed of G. poensis, G. alboguttata, G. argentata, and G. egeria; (ii) the “beatrix” group, which contains G. beatrix and G. curryae; and (iii) the “humeralis” group, which includes G. humeralis and a new species described herein. In the “poensis” group, G. egeria is found to be monophyletic in the nuclear tree, but polyphyletic in the mitochondrial tree. The reasons for this mito‐nuclear discordance are discussed.  相似文献   

9.
1. Complete sequences of 1140 base pair of the cytochrome b gene from 133 specimens were obtained from nine localities including the inflow drainage system, isolated lakes and outflow drainage system in Qinghai–Tibetan Plateau to assess genetic diversity and to infer population histories of the freshwater fish Schizopygopsis pylzovi. 2. Nucleotide diversities (π) were moderate (0.0024–0.0045) in populations from the outflow drainage system and Tuosuo Lake, but low (0.0018–0.0021) in populations from Qiadam Basin. It is probable that the low intra‐population variability is related with the paleoenvironmental fluctuation in Qiadam Basin, suggesting that the populations from Qiadam Basin have experienced severe bottleneck events in history. 3. Phylogenetic tree topologies indicate that the individuals from different populations did not form reciprocal monophyly, but the populations from the adjacent drainages cluster geographically. Most population pairwise FST tests were significant, with non‐significant pairwise tests between Tuosu Lake and Tuosuo Lake in the north‐west of the Qinghai–Tibetan Plateau. Analysis of molecular variance (amova ) indicates that the significant genetic variation was explained at the levels of catchments within and among, not among specific boundaries or inflow and outflow drainage systems. 4. The nested clade phylogeographical analysis indicates that historical processes are very important in the observed geographical structuring of S. pylzovi, and the contemporary population structure and differentiation of S. pylzovi may be consistent with the historical tectonic events occurred in the course of uplifts of the Qinghai–Tibetan Plateau. Fluctuations of the ecogeographical environment and major hydrographic formation might have promoted contiguous range expansion of freshwater fish populations, whereas the geological barriers among drainages have resulted in the fragmentation of population and restricted the gene flow among populations. 5. The significantly large negative Fs‐value (−24.91, P < 0.01) of Fu's Fs‐test and the unimodal mismatch distribution indicate that the species S. pylzovi underwent a sudden population expansion after the historical tectonic event of the Gonghe Movement. 6. The results of this study indicate that each population from the Qinghai–Tibetan Plateau should be managed and conserved separately and that efforts should be directed towards preserving the genetic integrity of each group.  相似文献   

10.
Aim To test a vicariant speciation hypothesis derived from geological evidence of large‐scale changes in drainage patterns in the late Miocene that affected the drainages in the south‐eastern Tibetan Plateau. Location The Tibetan Plateau and adjacent areas. Methods The cytochrome b DNA sequences of 30 species of the genus Schizothorax from nine different river systems were analysed. These DNA sequences were analysed using parsimony, maximum likelihood and Bayesian methods. The approximately unbiased and Shimodaira–Hasegawa tests were applied to evaluate the statistical significance of the shortest trees relative to alternative hypotheses. Dates of divergences between lineages were estimated using the nonparametric rate smoothing method, and confidence intervals of dates were obtained by parametric bootstrapping. Results The phylogenetic relationships recovered from molecular data were inconsistent with traditional taxonomy, but apparently reflected geographical associations with rivers. Within the genus Schizothorax, we observed a divergence between the lineages from the Irrawaddy–Lhuit and Tsangpo–Parlung rivers, and tentatively dated this vicariant event back to the late Miocene (7.3–6.8 Ma). We also observed approximately simultaneous geographical splits within drainages of the south‐eastern Tibetan Plateau, the Irrawaddy, the Yangtze and the Mekong–Salween rivers in the late Miocene (7.1–6.2 Ma). Main conclusions Our molecular evidence tentatively highlights the importance of palaeoriver connections and the uplift of the Tibetan Plateau in understanding the evolution of the genus Schizothorax. Molecular estimates of divergence times allowed us to date these vicariant scenarios back to the late Miocene, which agrees with geological suggestions for the separation of these drainages caused by tectonic uplift in south‐eastern Tibet. Our results indicated the substantial role of vicariant‐based speciation in shaping the current distribution pattern of the genus Schizothorax.  相似文献   

11.
Although they are a valuable source of specimens, insect natural history collections continue to be under‐utilized in molecular systematics, mostly due to difficulties in obtaining DNA sequences. Old specimens or specimens stored under suboptimal conditions are intractable for traditional Sanger sequencing. In this study we use an inexpensive hybrid capture with in‐house generated baits to retrieve commonly utilized ribosomal and mitochondrial loci from old museum specimens and combine them with a Sanger‐generated dataset comprising recently collected material. We focus on the Corixidea genus group (Schizopteridae), which comprises rarely collected, small (1–2 mm) and primarily tropical insects of which only c. 10–20% of the species have been described. A molecular phylogeny is needed to resolve relationships and revise the genus‐level classification to correctly place the c. 150 yet to be described species. Applying this approach, we constructed a dataset, containing 101 taxa, 11 of which were preserved in low‐percentage ethanol, 48 are dry and point‐mounted, and 40 are > 20 years old at DNA extraction. The obtained data proved sufficient for reconstructing a well‐supported phylogeny with c. 50% of the predicted diversity, and for the oldest successfully sequenced specimen (95 years) to be unambiguously placed in that phylogeny. We confirmed monophyly of the Corixidea genus group, showed paraphyly of the genus Corixidea, and recovered nine well‐supported clades within the group. Ancestral character states of selected morphological features were inferred and used to re‐examine primary homology hypotheses and inform an upcoming taxonomic revision.  相似文献   

12.
13.
Partial gyrB sequences (>1 kb) were obtained from 34 type strains of the genus Amycolatopsis. Phylogenetic trees were constructed to determine the effectiveness of using this gene to predict taxonomic relationships within the genus. The use of gyrB sequence analysis as an alternative to DNA–DNA hybridization was also assessed for distinguishing closely related species. The gyrB based phylogeny mostly confirmed the conventional 16S rRNA gene-based phylogeny and thus provides additional support for certain of these 16S rRNA gene-based phylogenetic groupings. Although pairwise gyrB sequence similarity cannot be used to predict the DNA relatedness between type strains, the gyrB genetic distance can be used as a means to assess quickly whether an isolate is likely to represent a new species in the genus Amycolatopsis. In particular a genetic distance of >0.02 between two Amycolatopsis strains (based on a 315 bp variable region of the gyrB gene) is proposed to provide a good indication that they belong to different species (and that polyphasic taxonomic characterization of the unknown strain is worth undertaking). Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. The GenBank accession numbers for the gyrB gene sequences obtained in this study are shown in Table 1.  相似文献   

14.
Cardiospermum L. belongs to the Paullinieae tribe (Sapindaceae) and comprises 16 species. Of these, 12 species are present in South America and all occur in Brazil. Cardiospermum shows the most variable chromosome number of the tribe. Phylogenetic relationships within the genus Cardiospermum, especially with other species of the tribe, are poorly understood. This research focuses on characterisation of the karyotypic features of Cardiospermum using conventional cytogenetic methods, CMA/DAPI chromosome banding and fluorescence in situ hybridisation (FISH). To elucidate the phylogeny of the genus, the nuclear markers ITS1 and ITS2 were sequenced and analysed using maximum parsimony and Bayesian inference. Cardiospermum shows important diversity in basic numbers, with x = 7, 9, 10, 11 and 12. All species studied have metacentric and submetacentric chromosomes, some species have subtelocentric chromosomes, while telocentric chromosomes are absent. The interphase nuclei differentiate the Cardiospermum species into two groups. The CMA3/DAPI chromosome banding revealed the presence of an AT‐rich terminal region in C. corindum, C. grandiflorum and C. urvilleoides, whereas GC‐rich regions were found in C. grandiflorum, C. halicacabum var. halicacabum, C. halicacabum var. microcarpum, C. heringeri and C. integerrimum. FISH revealed syntenic and non‐syntenic distribution of the 18‐5.8‐26S and 5S rDNA. The syntenic distribution always occurred in the short arms of the same chromosome in all of the species. The phylogenetic relationships reveal, in part, the taxonomic arrangement of the genus Cardiospermum.  相似文献   

15.
Springtails (Collembola) are a group of arthropods that are found in terrestrial ecosystems throughout the world. Two species complexes, Tomocerus ocreatus and T. nigrus complexes, are widely distributed in the southern and northern parts of eastern China, respectively. There is a poor understanding of the species diversity within these complexes and of the factors affecting their diversification and dispersal. Species delimitation using a general mixed Yule coalescent model and a Bayesian multilocus approach recognized 22 DNA‐based species. This supports the presence of extensive cryptic diversity in species that are geographically widespread. In addition to genetic differences, we discovered corresponding morphological differences in jumping organs among the major clades. Analyses of divergence times and historical biogeographical processes revealed that ocreatus and nigrus complexes originated in southern and northern China, respectively. We estimated their divergence at 27.8–44.9 Mya during the Eocene–Oligocene, at the time when the transmeridional Qinling–Dabie Mountains uplifted and formed the north–south geographical boundary of eastern China. Diversification analyses suggest that the subsequent orogenesis of the Qinghai–Tibetan Plateau in western China had little impact on divergences within the two species complexes so that they maintained their geographical patterns from the Paleogene to the present day. Our findings also point to a potentially important influence of the Qinling–Dabie Mountains on patterns of animal speciation and distribution in China.  相似文献   

16.
The genus Schizothorax (Cyprinidae), one of the most diverse genera of ichthyofauna of the Qinghai‐Tibetan Plateau (QTP), is a good candidate for investigating patterns of genetic variation and evolutionary mechanisms. In this study, sequences from the mitochondrial control region, the cytochrome b gene, and two nuclear genes were used to re‐examine the genetic diversity and investigate the evolutionary history of the Schizothorax species complex inhabiting the Lancang River. Three maternal clades were detected in the Schizothorax species complex, but frequent nuclear allele sharing also occurred among the three maternal clades. A discrepancy between topologies of mitochondrial and nuclear loci might result from introgression or/and incomplete lineage sorting. The divergence of the clades of the Schizothorax species complex was closely related to the Late Pliocene and Early Pleistocene orogenesis of the QTP and Southwest Mountains of China. Demographic analyses indicated that the species complex subsequently persisted in situ with stable populations during Pleistocene glacial cycling, which suggested that Pleistocene climate changes did not exert a remarkable influence on the species complex. Our study provides a comprehensive analysis of the genetic diversity and evolutionary history of the Schizothorax species complex in the Lancang River.  相似文献   

17.
Ecological opportunity is often proposed as a driver of accelerated diversification, but evidence has been largely derived from either contemporary island radiations or the fossil record. Here, we investigate the potential influence of ecological opportunity on a transcontinental radiation of South American freshwater fishes. We generate a species‐dense, time‐calibrated molecular phylogeny for the suckermouth armored catfish subfamily Hypostominae, with a focus on the species‐rich and geographically widespread genus Hypostomus. We use the resulting chronogram to estimate ancestral geographical ranges, infer historical rates of cladogenesis and diversification in habitat and body size and shape, and test the hypothesis that invasions of previously unoccupied river drainages accelerated evolution and contributed to adaptive radiation. Both the subfamily Hypostominae and the included genus Hypostomus originated in the Amazon/Orinoco ecoregion. Hypostomus subsequently dispersed throughout tropical South America east of the Andes Mountains. Consequent to invasion of the peripheral, low‐diversity Paraná River basin in southeastern Brazil approximately 12.5 Mya, Paraná lineages of Hypostomus, experienced increased rates of cladogenesis and ecological and morphological diversification. Contemporary lineages of Paraná Hypostomus are less species rich but more phenotypically diverse than their congeners elsewhere. Accelerated speciation and morphological diversification rates within Paraná basin Hypostomus are consistent with adaptive radiation. The geographical remoteness of the Paraná River basin, its recent history of marine incursion, and its continuing exclusion of many species that are widespread in other tropical South American rivers suggest that ecological opportunity played an important role in facilitating the observed accelerations in diversification.  相似文献   

18.
The coastal plain of the south‐eastern United States shows multiple biogeographic patterns of plant and animal dispersal; however, few freshwater fish taxa span these biogeographic barriers. Percina nigrofasciata, the Blackbanded Darter (Teleostomi: Percidae), is a small, benthic, freshwater fish species with an extensive range in the south‐eastern United States. Recently, two species have been elevated from within P. nigrofasciata: P. crypta and P. westfalli, but their ranges have not been established. We broadly sampled across the south‐eastern United States, encompassing the range of P. nigrofasciata sensu lato. We reconstruct the phylogeny of Percina using both mitochondrial and nuclear markers. Eighty‐four specimens of Percina nigrofasciata were sampled for the mitochondrial gene cytochrome b (1,119 bp) to form a base phylogeny. The nuclear marker S7‐I1 was subsampled across populations to detect instances of hybridization. Phylogenetic relationships with other members of the genus Percina were assessed through Bayesian inference. Our results suggest that Percina nigrofasciata sensu stricto occurs from the Lake Pontchartrain Basin in Louisiana to the rivers of the Mobile Basin with little genetic structuring throughout its range. Percina westfalli occurs from the Apalachicola River drainages to the Atlantic Slope from the Savannah River to the St. Johns River. We find that P. crypta is not genetically distinct from P. westfalli in the Chattahoochee and Flint Rivers. Possible ancestral hybridization occurred between the P. nigrofasciata and P. westfalli in the panhandle of Florida between Mobile Bay and the Apalachicola River.  相似文献   

19.
Triplophysa is an endemic fish genus of the Tibetan Plateau in China. Triplophysa tibetana, which lives at a recorded altitude of ~4,000 m and plays an important role in the highland aquatic ecosystem, serves as an excellent model for investigating high‐altitude environmental adaptation. However, evolutionary and conservation studies of T. tibetana have been limited by scarce genomic resources for the genus Triplophysa. In the present study, we applied PacBio sequencing and the Hi‐C technique to assemble the T. tibetana genome. A 652‐Mb genome with 1,325 contigs with an N50 length of 3.1 Mb was obtained. The 1,137 contigs were further assembled into 25 chromosomes, representing 98.7% and 80.47% of all contigs at the base and sequence number level, respectively. Approximately 260 Mb of sequence, accounting for ~39.8% of the genome, was identified as repetitive elements. DNA transposons (16.3%), long interspersed nuclear elements (12.4%) and long terminal repeats (11.0%) were the most repetitive types. In total, 24,372 protein‐coding genes were predicted in the genome, and ~95% of the genes were functionally annotated via a search in public databases. Using whole genome sequence information, we found that T. tibetana diverged from its common ancestor with Danio rerio ~121.4 million years ago. The high‐quality genome assembled in this work not only provides a valuable genomic resource for future population and conservation studies of T. tibetana, but it also lays a solid foundation for further investigation into the mechanisms of environmental adaptation of endemic fishes in the Tibetan Plateau.  相似文献   

20.
The genus Homonota was described by Gray (1845) and currently includes 10 species: Homonota andicola, H. borellii, H. darwinii, H. fasciata, H. rupicola, H. taragui, H. underwoodi, H. uruguayensis, H. williamsii & H. whitii and one subspecies of H. darwinii (H. darwinii macrocephala). It is distributed from 15° latitude south in southern Brazil, through much of Bolivia, Paraguay, Uruguay and Argentina to 54° south in Patagonia and across multiple different habitats. Several morphological taxonomic studies on a subset of these species have been published, but no molecular phylogenetic hypotheses are available for the genus. The objective of this study is to present a molecular phylogenetic hypothesis for all the described species in the genus. We sequenced two mitochondrial genes (cyt‐b & 12S: 1745 bp), seven nuclear protein coding (RBMX, DMLX, NKTR, PLRL, SINCAIP, MXRA5, ACA4: 5804 bp) and two anonymous nuclear loci (30Hb, 19Hb: 1306 bp) and implemented traditional concatenated analyses (MP, ML, BI) as well as species‐tree (*beast ) approaches. All methods recovered almost the same topology. We recovered the genus Homonota as monophyletic with strong statistical support. Within Homonota, there are three strongly supported clades (whitii, borellii and fasciata), which differ from those previously proposed based on scale shape, osteology, myology and quantitative characters. Detailed morphological analyses based on this highly resolved and well‐supported phylogeny will provide a framework for understanding morphological evolution and historical biogeography of this phenotypically conservative genus. We hypothesize that extensive marine transgressions during Middle and Late Miocene most probably isolated the ancestors of the three main clades in eastern Uruguay (borellii group), north‐western Argentina‐southern Bolivia (fasciata group), and central‐western Argentina (whitii group). Phylogeographic and morphological/morphometric analyses coupled with paleo‐niche modelling are needed to better understand its biogeographical history.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号