首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present five case studies among articulate (rhynchonelliform) brachiopods, i.e. of Rhynchonellida, Cancellothyridoidea, Terebratuloidea, Dyscolioidea, Laqueoidea, and various terebratulids with modified long‐loops, in an attempt to illustrate and better understand congruence and conflict between morpho‐classification and rDNA‐based molecular clade structure, having been prompted to address these issues by difficulties encountered when describing the newly collected brachiopod, E biscothyris bellonensis gen. et sp. nov. The five studies reveal dramatic conflict in the Rhynchonellida and Terebratuloidea/Dyscolioidea, good congruence in the Cancellothyridoidea and Laqueoidea, and fair congruence (albeit with weak phylogenetic signal) in the long‐looped terebratulids. We suggest that the leading cause of the observed conflict lies in the use of inadequately specific morphological characters and morpho‐classification. Phylogenetic systematic (cladistic) analyses of Rhynchonellida also conflict markedly with the rDNA gene tree, leading us to recognize that such analyses are not only conceptually circular (using morphological characters to assess a morphological classification) but also to propose that they are biased by the act of classification that necessarily precedes the identification of putatively homologous characters; when the prior classification does not reflect evolutionary history, phylogenetic analysis will do likewise. In addition, we propose that the brachiopod community has overlooked the significance of two sources of morphological homoplasy affecting brachiopod systematics: (1) the loss of co‐adapted genomic complexes caused by mass extinctions at the end of the Permian; and (2) the pervasive consequences of developmental integration and constraint resulting from the integrated roles of the outer mantle epithelium in shell deposition and growth that underly the determination of form and the shell‐based classification. © 2015 The Linnean Society of London  相似文献   

2.
Echinocereus is a morphologically diverse genus that includes 64 species grouped into eight taxonomic sections based on morphological traits. In previous molecular phylogenetic analyses, the relationships amongst Echinocereus species were not entirely revealed and useful characters to recognize clades were not provided. The inclusion of several sources of evidence in a phylogenetic analysis is likely to produce more supported hypotheses. Therefore, we performed a combined phylogenetic analysis with a set of 44 morphological characters and six chloroplast DNA sequences. Topologies from parsimony and Bayesian analyses were mostly congruent. However, the relationships of E. poselgeri were not consistent between analyses. A second Bayesian analysis using a long-branch extraction test resulted in a topology with the morphological position of E. poselgeri congruent with that in parsimony analysis. Parsimony and Bayesian analyses corroborated the monophyly of Echinocereus, which included eight monophyletic groups. The combined phylogeny integrated into different clades those taxa that were not determined in previous analyses and changed the relationships of some recognized clades. The clades did not recover the recent infrageneric classification. In the present study, a new sectional classification for Echinocereus is proposed based on the eight recovered clades, which is supported by a combination of morphological and molecular characters. An identification key for sections in the genus is included.  相似文献   

3.
The phylogenetic relationships among the Japanese members of the genus Eubrianax (Coleoptera: Psephenidae) were examined using the mitochondrial cytochrome oxidase subunit I (COI) gene and nuclear 28S rRNA gene sequences. Based on the molecular phylogeny as well as morphological features, the species status of Eubrianax brunneicornis Nakane, 1952 was proposed. The phylogenetic analyses recovered monophyly of the previously proposed pellucidus species group with four Japanese species, whereas a single Japanese species of the granicollis group was included in the lineage of the ramicornis group with five Japanese species. The divergence times of the species were estimated by dating the phylogenetic tree against the fossil record and a molecular clock based on the COI gene. The divergence of the Japanese species was inferred to have occurred during the Pliocene epoch.  相似文献   

4.
The intrasubfamilial classification of Microdontinae Rondani (Diptera: Syrphidae) has been a challenge: until recently more than 300 out of more than 400 valid species names were classified in Microdon Meigen. We present phylogenetic analyses of molecular and morphological characters (both separate and combined) of Microdontinae. The morphological dataset contains 174 characters, scored for 189 taxa (9 outgroup), representing all 43 presently recognized genera and several subgenera and species groups. The molecular dataset, representing 90 ingroup species of 28 genera, comprises sequences of five partitions in total from the mitochondrial gene COI and the nuclear ribosomal genes 18S and 28S. We test the sister‐group relationship of Spheginobaccha with the other Microdontinae, attempt to elucidate phylogenetic relationships within the Microdontinae and discuss uncertainties in the classification of Microdontinae. Trees based on molecular characters alone are poorly resolved, but combined data are better resolved. Support for many deeper nodes is low, and placement of such nodes differs between parsimony and Bayesian analyses. However, Spheginobaccha is recovered as highly supported sister group in both. Both analyses agree on the early branching of Mixogaster, Schizoceratomyia, Afromicrodon and Paramicrodon. The taxonomical rank in relation to the other Syrphidae is discussed briefly. An additional analysis based on morphological characters only, including all 189 taxa, used implied weighting. A range of weighting strengths (k‐values) is applied, chosen such that values of character fit of the resulting trees are divided into regular intervals. Results of this analysis are used for discussing the phylogenetic relationships of genera unrepresented in the molecular dataset.  相似文献   

5.
Impatiens L. is one of the largest angiosperm genera, containing over 1000 species, and is notorious for its taxonomic difficulty. Here, we present, to our knowledge, the most comprehensive phylogenetic analysis of the genus to date based on a total evidence approach. Forty‐six morphological characters, mainly obtained from our own investigations, are combined with sequence data from three genetic regions, including nuclear ribosomal ITS and plastid atpB‐rbcL and trnL‐F. We include 150 Impatiens species representing all clades recovered by previous phylogenetic analyses as well as three outgroups. Maximum‐parsimony and Bayesian inference methods were used to infer phylogenetic relationships. Our analyses concur with previous studies, but in most cases provide stronger support. Impatiens splits into two major clades. For the first time, we report that species with three‐colpate pollen and four carpels form a monophyletic group (clade I). Within clade II, seven well‐supported subclades are recognized. Within this phylogenetic framework, character evolution is reconstructed, and diagnostic morphological characters for different clades and subclades are identified and discussed. Based on both morphological and molecular evidence, a new classification outline is presented, in which Impatiens is divided into two subgenera, subgen. Clavicarpa and subgen. Impatiens; the latter is further subdivided into seven sections.  相似文献   

6.
The invasive quarantine pest fly, Atherigona (Acritochaeta) orientalis Schiner, is observed for the first time in tomato greenhouses in Gyeongsangbuk‐do, Korea. The genus Atherigona Rondani is also newly added to Korean fauna. Allium tuberosum is listed as a new host crop for this species. Some morphological characteristics for accurate identification and host lists are given to provide plant quarantine information for pest management.  相似文献   

7.
Molecular systematic studies have changed the face of algal taxonomy. Particularly at the species level, molecular phylogenetic research has revealed the inaccuracy of morphology‐based taxonomy: Cryptic and pseudo‐cryptic species were shown to exist within many morphologically conceived species. This study focused on section Rhipsalis of the green algal genus Halimeda. This section was known to contain cryptic diversity and to comprise species with overlapping morphological boundaries. In the present study, species diversity within the section and identity of individual specimens were assessed using ITS1–5.8S–ITS2 (nrDNA) and rps3 (cpDNA) sequence data. The sequences grouped in a number of clear‐cut genotypic clusters that were considered species. The same specimens were subjected to morphometric analysis of external morphological and anatomical structures. Morphological differences between the genotypic cluster species were assessed using discriminant analysis. It was shown that significant morphological differences exist between genetically delineated species and that allocation of specimens to species on the basis of morphometric variables is nearly perfect. Anatomical characters yielded better results than external morphological characters. Two approaches were offered to allow future morphological identifications: a probabilistic approach based on classification functions of discriminant analyses and the classical approach of an identification key.  相似文献   

8.
9.
The Rhynchocinetidae (‘hinge‐beak’ shrimps) is a family of marine caridean decapods with considerable variation in sexual dimorphism, male weaponry, mating tactics, and sexual systems. Thus, this group is an excellent model with which to analyse the evolution of these important characteristics, which are of interest not only in shrimps specifically but also in animal taxa in general. Yet, there exists no phylogenetic hypothesis, either molecular or morphological, for this taxon against which to test either the evolution of behavioural traits within the Rhynchocinetidae or its genealogical relationships with other caridean taxa. In this study, we tested (1) hypotheses on the phylogenetic relationships of rhynchocinetid shrimps, and (2) the efficacy of different (one‐, two‐, and three‐phase) methods to generate a reliable phylogeny. Total genomic DNA was extracted from tissue samples taken from 17 species of Rhynchocinetidae and five other species currently or previously assigned to the same superfamily (Nematocarcinoidea); six species from other superfamilies were used as outgroups. Sequences from two nuclear genes (H3 and Enolase) and one mitochondrial gene (12S) were used to construct phylogenies. One‐phase phylogenetic analyses (SATé‐II) and classical two‐ and three‐phase phylogenetic analyses were employed, using both maximum likelihood and Bayesian inference methods. Both a two‐gene data set (H3 and Enolase) and a three‐gene data set (H3, Enolase, 12S) were utilized to explore the relationships amongst the targeted species. These analyses showed that the superfamily Nematocarcinoidea, as currently accepted, is polyphyletic. Furthermore, the two major clades recognized by the SATé‐II analysis are clearly concordant with the genera Rhynchocinetes and Cinetorhynchus, which are currently recognized in the morphological‐based classification (implicit phylogeny) as composing the family Rhynchocinetidae. The SATé‐II method is considered superior to the other phylogenetic analyses employed, which failed to recognize these two major clades. Studies using more genes and a more complete species data set are needed to test yet unresolved inter‐ and intrafamilial systematic and evolutionary questions about this remarkable clade of caridean shrimps. © 2014 The Linnean Society of London  相似文献   

10.
Aim We investigated patterns of genetic diversity among invasive populations of Ampithoe valida and Jassa marmorata from the Pacific North American coast to assess the accuracy of morphological identification and determine whether or not cryptic diversity and multiple introductions contribute to the contemporary distribution of these species in the region. Location Native range: Atlantic North American coast; Invaded range: Pacific North American coast. Methods We assessed indices of genetic diversity based on DNA sequence data from the mitochondrial cytochrome c oxidase subunit I (COI) gene, determined the distribution of COI haplotypes among populations in both the invasive and putative native ranges of A. valida and J. marmorata and reconstructed phylogenetic relationships among COI haplotypes using both maximum parsimony and Bayesian approaches. Results Phylogenetic inference indicates that inaccurate species‐level identifications by morphological criteria are common among Jassa specimens. In addition, our data reveal the presence of three well supported but previously unrecognized clades of A. valida among specimens in the north‐eastern Pacific. Different species of Jassa and different genetic lineages of Ampithoe exhibit striking disparity in geographic distribution across the region as well as substantial differences in genetic diversity indices. Main conclusions Molecular genetic methods greatly improve the accuracy and resolution of identifications for invasive benthic marine amphipods at the species level and below. Our data suggest that multiple cryptic introductions of Ampithoe have occurred in the north‐eastern Pacific and highlight uncertainty regarding the origin and invasion histories of both Jassa and Ampithoe species. Additional morphological and genetic analyses are necessary to clarify the taxonomy and native biogeography of both amphipod genera.  相似文献   

11.
The eastern Asian (EA)–eastern North American (ENA) floristic disjunction represents a major pattern of phytogeography of the Northern Hemisphere. Despite 20 years of studies dedicated to identification of taxa that display this disjunct pattern, its origin and evolution remain an open question, especially regarding post‐isolation evolution. The blue‐ or white‐fruited dogwoods (BW) are the most species‐rich among the four major clades of Cornus L., consisting of ~35 species divided into three subgenera (subg. Yinquania, subg. Mesomora, and subg. Kraniopsis). The BW group provides an excellent example of the EA–ENA floristic disjunction for biogeographic study due to its diversity distribution centered in eastern Asia and eastern North America, yet its species relationships and delineation have remained poorly understood. In this study, we combined genome‐wide markers from RAD‐seq, morphology, fossils, and climate data to understand species relationships, biogeographic history, and ecological niche and morphological evolution. Our phylogenomic analyses with RAxML and MrBayes recovered a strongly supported and well‐resolved phylogeny of the BW group with three intercontinental disjunct clades in EA and ENA or Eurasia and North America, of which two are newly identified within subg. Kraniopsis. These analyses also recovered a potential new species but failed to resolve relationships within the C. hemsleyiC. schindleri complex. In an effort to develop an approach to reduce computation time, analysis of different nodal age settings in treePL suggests setting a node's minimum age constraint to the lower bound of a fossil's age range to obtain similar ages to that of BEAST. Divergence time analyses with BEAST and treePL dated the BW stem back to the very Late Cretaceous and the divergence of the three subgenera in the Paleogene. By integrating fossil ages and morphology, a total evidence‐based dating approach was used in conjunction with time‐slice probabilities of dispersal under a DEC model to resolve ancestral ranges of each disjunct in the Miocene: Eurasia and ENA (disjunct 1), EA and western North America (disjunct 2), and EA (disjunct 3). The dated biogeographic history supports dispersal via the North Atlantic Land Bridge in the late Paleogene in disjunct 1 and dispersal via the Bering Land Bridge in the Miocene for disjuncts 2 and 3. Character mapping with a stochastic model in phytools and comparison of ecological niche, morphospace, and rate of evolution indicated differential divergence patterns in morphology, ecological niche, and molecules between disjunct sisters. Although morphological stasis was observed in most of the characters, evolutionary changes in growth habit and some features of leaf, flower, and fruit morphology occurred in one or both sister clades. A significant differentiation of ecological habitats in temperature, precipitation, and elevation between disjunct sisters was observed, suggesting a role of niche divergence in morphological evolution post‐isolation. The patterns of evolutionary rate between morphology and molecules varied among disjunct clades and were not always congruent between morphology and molecules, suggesting cases of non‐neutral morphological evolution driven by ecological selection. Our phylogenetic evidence and comparisons of evolutionary rate among disjunct lineages lend new insights into the formation of the diversity anomaly between EA and ENA, with particular support of an early diversification in EA. These findings, in conjunction with previous studies, again suggest that the EA–ENA disjunct floras are an assembly of lineages descended from the Mesophytic Forests that evolved from the early Paleogene “boreotropical flora” through varied evolutionary pathways across lineages.  相似文献   

12.
The phylum Nematoda includes the genus Longidorus, a remarkable group of invertebrates that are polyphagous root‐ectoparasites of many plants including various agricultural crops and trees. Damage is caused by direct feeding on root cells as well as by transmitting nepoviruses. Species discrimination in Longidorus is complicated by phenotypic plasticity (intraspecific variability and minor interspecific differences) leading to potential misidentification. We conducted nematode surveys in cultivated and natural environments in southern Spain that detected 11 species of Longidorus. We developed a comparative study amongst these related species by considering morphological and morphometric features together with molecular data from nuclear ribosomal RNA genes [D2‐D3 expansion segments of large ribosomal subunit (28S), internal transcribed spacer 1 (ITS1), and partial small ribosomal subunit (18S)]. The results of our molecular and phylogenetic analyses confirmed the morphological hypotheses and allowed the delimitation and discrimination of three new species of the genus, described herein as Longidorus baeticus sp. nov. , Longidorus oleae sp. nov. , and Longidorus andalusicus sp. nov. , and eight known species (Longidorus alvegus, Longidorus crataegi, Longidorus fasciatus, Longidorus intermedius, Longidorus iuglandis, Longidorus magnus, Longidorus rubi, and Longidorus vineacola). Phylogenetic analyses of Longidorus spp. based on the three molecular markers resulted in a general consensus of these species grouping, as lineages were maintained for the majority of species (i.e. species with a conoid‐rounded lip region, amphidial fovea asymmetrically bilobed, female tail bluntly rounded), but not in some others (i.e. positions of L. crataegi, L. intermedius, and L. rubi were quite variable). To date, this is the most complete phylogenetic analysis for Longidorus and Paralongidorus species, with the highest number of species included. No correspondence between phylogenetic trees and morphological characters was found for ribosomal markers, with the exception of amphidial shape. Thus, polyphasic identification, based on integration of molecular analysis with morphology, is a tool beyond doubt in Longidorus identification. © 2013 The Linnean Society of London  相似文献   

13.
The genus Xiphinema constitutes a large group of about 260 species of plant‐ectoparasitic nematodes. The group is polyphagous and distributed almost worldwide. Some of the species of this genus damage agricultural crops by direct feeding on root cells as well as by transmitting nepoviruses. Species discrimination in Xiphinema is complicated by phenotypic plasticity leading to potential misidentification. We conducted nematode surveys in cultivated and natural environments in Spain from 2009 to 2012, from which we identified 20 populations of Xiphinema species morphologically close to the virus‐vector nematode species Xiphinema diversicaudatum, three apomictic populations tentatively identified as species from the complex Xiphinema aceri‐pyrenaicum group, and one population morphologically different from all others that is characterized by a female tail elongate to conical and absence of uterine differentiation. We developed comparative multivariate analyses for these related species by using morphological and morphometrical features together with molecular data from nuclear ribosomal DNA genes [D2‐D3 expansion segments of large ribosomal subunit 28S, internal transcribed spacer 1 (ITS1), and partial small ribosomal subunit (18S)]. The results of multivariate, molecular, and phylogenetic analysis confirmed the morphological hypotheses and allowed the delimitation and discrimination of two new species in the genus described herein as Xiphinema baetica sp. nov. and Xiphinema turdetanensis sp. nov. , and ten known species: Xiphinema adenohystherum, Xiphinema belmontense, Xiphinema cohni, Xiphinema coxi europaeum, Xiphinema gersoni, Xiphinema hispidum, Xiphinema italiae, Xiphinema lupini, Xiphinema nuragicum, and Xiphinema turcicum. Multivariate analyses based on quantitative and qualitative characters and phylogenetic relationships of Xiphinema spp. based on the three molecular ribosomal markers resulted in a partial consensus of these species grouping as nematode populations were maintained for the majority of morphospecies groups (e.g. morphospecies groups 5 and 6), but not in some others (e.g. position of Xiphinema granatum), demonstrating the usefulness of these analyses for helping in the diagnosis and identification of Xiphinema spp. The clade topology of phylogenetic trees of D2‐D3 and partial 18S regions in this study were congruent in supporting the polyphyletic status of some characters, such as the female tail shape and the degree of development of the genital system in species with both genital branches equally developed. This is the most complete phylogenetic study for Xiphinema non‐americanum‐group species. Agreement between phylogenetic trees and some morphological characters (uterine spines, pseudo‐Z organ, and tail shape) was tested by reconstruction of their histories on rDNA‐based trees using parsimony and Bayesian approaches. Thus, integrative taxonomy, based on the combination of multivariate, molecular analyses with morphology, constitutes a new insight into the identification of Xiphinema species. © 2013 The Linnean Society of London  相似文献   

14.
A phylogenetic and systematic study of Orius species (Heteroptera: Anthocoridae) from Korea has been conducted using both morphological and molecular characters. Thirty morphological character states were coded for 10 strains of 9 species. Five molecular markers, partial cytochrome c oxidase I (COI), cytochrome b (CytB), 16S rRNA (16S), 18S rRNA (18S), and 28S rRNA (28S), from mitochondrial and nuclear genes, were tested. Phylogenetic analyses based on molecular data were conducted by minimum evolution, maximum parsimony, maximum likelihood, and Bayesian phylogenetic (BP) analyses. Analysis of morphological data was performed using the parsimony programs NONA, and the combined dataset of morphological and molecular data was analyzed using BP analyses. The results of this study indicate that use of COI and CytB enabled relatively effective identification of species, whereas the sequences of 16S, 18S and 28S did not enable identification of closely related species such as Orius minutus and O. strigicollis. We discuss the usefulness of the five molecular markers for determining phylogenetic relationships and identifying the species.  相似文献   

15.
16.
The deep sea has a high biodiversity and a characteristic bathyal fauna. Earlier evidence suggested that at least some shallow‐water species invaded the ecosystem followed by radiation leading to endemic deep‐sea lineages with a genetic and/or morphological similarity to their shallow‐water counterparts. The nematode Halomonhystera disjuncta has been reported from shallow‐water habitats and the deep sea [Håkon Mosby mud volcano (HMMV)], but the morphological features and the phylogenetic relationships between deep‐sea and shallow‐water representatives remain largely unknown. Furthermore, nothing is known about the genetic structure of the H. disjuncta population within the HMMV. This study is the first integrative approach in which the morphological and phylogenetic relationships between a deep‐sea and shallow‐water free‐living nematode species are investigated. To elucidate the phylogenetic relationships, we analysed the mitochondrial gene Cytochrome oxidase c subunit I (COI) and three nuclear ribosomal genes (Internal Transcribed Spacer region, 18S and the D2D3 region of 28S). Our results show that deep‐sea nematodes comprise an endemic lineage compared to the shallow‐water representatives with different morphometric features. COI genetic divergence between the deep‐sea and shallow‐water specimens ranges between 19.1% and 25.2%. Taking these findings into account, we conclude that the deep‐sea form is a new species. amova revealed no genetic structure across the HMMV, suggesting that nematodes are able to disperse efficiently in the mud volcano.  相似文献   

17.
Kinorhyncha is a group of benthic, microscopic animals distributed worldwide in marine sediments. The phylum is divided into two classes, Cyclorhagida and Allomalorhagida, congruent with the two major clades recovered in recent phylogenetic analyses. Allomalorhagida accommodates more than one‐third of the described species, most of them assigned to the family Pycnophyidae. All previous phylogenetic analyses of the phylum recovered the two genera within Pycnophyidae, Pycnophyes and Kinorhynchus, as paraphyletic and polyphyletic. A major problem in these studies was the lack of molecular data of most pycnophyids, due to the limited and highly localized distribution of most species, often in the Arctic and the deep‐sea. We here overcame the problem by adding a morphological partition with data for 79 Pycnophyidae species, 15 of them also represented by molecular data. Model‐based analyses yielded seven clades, which each was supported by several morphological apomorphies. Accordingly, Kinorhynchus is synonymized with Pycnophyes and six new genera are described for the remaining recovered clades: Leiocanthus gen. nov., Cristaphyes gen. nov., Higginsium gen. nov., Krakenella gen. nov., Setaphyes gen. nov. and Fujuriphyes gen. nov.  相似文献   

18.
The systematics of the viviparid freshwater snail genus Margarya endemic to the ancient lakes of Yunnan, China, is revised based on comparative analyses of morphological features, including shell, operculum, radula, and genital anatomy, and molecular phylogenetic analyses of partial sequences of the mitochondrial 16S rDNA (16S) and cytochrome c oxidase subunit I (COI) genes, as well as the nuclear Internal Transcribed Spacer 2 (ITS2). The taxonomic utility of key anatomical and morphological features in this group is evaluated. The genus Margarya as delimited previously is split into three genera in order to retain monophyletic taxa: (1) Margarya s.s., consisting of four species, i.e. the type species Margarya melanioides plus Margarya francheti, Margarya oxytropoides, and Margarya monodi; (2) the previously introduced subgenus Tchangmargarya is elevated to an independent genus containing two species, Tchangmargarya yangtsunghaiensis and the new species T changmargarya multilabiata sp. nov. ; and (3) a new genus, A nularya gen. nov. , is described, also containing two species, i.e. Anularya mansuyi and Anularya bicostata. Molecular phylogenies based on analyses of three gene fragments have identical topologies, supporting the monophyly of these genera. The sister group of Margarya s.s. is Cipangopaludina, whereas the sister group of Anularya is Sinotaia; Tchangmargarya is sister to a clade containing all the aforementioned groups. Features of the operculum and the right male tentacle (penis) are particularly informative on the generic level, whereas shell and radular characters are especially useful to differentiate species. The phylogenetic relationships recovered here are consistent with orogenic patterns of the Yunnan Mountains. Changes in the river system and water area of ancient lakes caused by tectonic activities probably play an important role in speciation and shaping the current pattern of species distribution in Yunnan. © 2015 The Linnean Society of London  相似文献   

19.
Modern coral taxonomy has begun to resolve many long‐standing problems in traditional systematics stemming from its reliance on skeletal macromorphology. By integrating examinations of colony, corallite, and subcorallite morphology with the molecular sequence data that have proliferated in the last decade, many taxa spread across the scleractinian tree of life have been incorporated into a rigorous classification underpinned by greater phylogenetic understanding. This monograph focuses on one of the most challenging clades recovered to date – its disarray epitomized by the informal name ‘Bigmessidae’. This group of predominantly Indo‐Pacific species previously comprised families Merulinidae, Faviidae, Pectiniidae, and Trachyphylliidae, but in a recent study these have been incorporated within Merulinidae. We studied 84 living merulinid species by examining morphological traits at three different scales of coral skeletal structure ? macromorphology, micromorphology, and microstructure ? to construct a morphological matrix comprising 44 characters. Data were analysed via maximum parsimony and also transformed onto a robust molecular phylogeny under the parsimony and maximum likelihood criteria. Comparisons amongst morphological character types suggest that although many characters at every scale are homoplastic, some to a greater extent than others, several can aid in distinguishing genus‐level clades. Our resulting trees and character analyses form the basis of a revised classification that spans a total of 139 species contained within 24 genera. The tree topologies necessitate the synonymization of Barabattoia as Dipsastraea, and Phymastrea as Favites. Furthermore, Astrea and Coelastrea are resurrected, and one new genus, P aramontastraea Huang & Budd gen. nov. , is described. All the genera in Merulinidae, along with the monotypic Montastraeidae and Diploastraeidae, are diagnosed based on the characters examined. The integrative classification system proposed here will form the framework for more accurate biodiversity estimates and guide the taxonomic placement of extinct species. © 2014 The Linnean Society of London  相似文献   

20.
Robust phylogenetic hypotheses have become key for studies addressing the evolutionary biology and ecology of various groups of organisms. In the species‐rich heteropteran superfamily Pentatomoidea, phylogenies at lower taxonomic levels are still scarce and mostly employ exclusively morphological data. In this study, we conducted a total evidence phylogeny focusing on the tribe Carpocorini (Pentatomidae), using morphological data and four DNA markers (COI, Cytb, 16S and 28S rDNA; ~2330 bp; 32 taxa) in order to investigate the relationships within Euschistus Dallas, one of the most speciose pentatomid genera, and between Euschistus and related genera. Our hypotheses generated by maximum likelihood and Bayesian inference show that the current taxonomic composition and classification of Euschistus and allied genera are in need of revision. Euschistus was recovered as nonmonophyletic, with the subgenera forming four independent lineages: Euschistus (Euschistus) and Euschistus (Lycipta) Stål are sister groups; Euschistus (Euschistomorphus) Jensen‐Haarup is more closely related to Dichelops Spinola and Agroecus Dallas; and Mitripus Rolston is divided into two clades closely related to Sibaria Stål and Ladeaschistus Rolston. We chose not to change the classification of E. (Euschistomorphus) until further data become available, and propose to split Euschistus into three genera with the exclusion of Euschistus (Mitripus) and all of its species. Here we elevate Mitripus to genus rank to include M. acutus comb.n. , M. convergens comb.n. and M. legionarius comb.n. , and propose Adustonotus Bianchi gen.n. to include A. anticus comb.n. , A. latus comb.n. , A. tauricornis comb.n. , A. grandis comb.n. , A. hansi comb.n. , A. paranticus comb.n. , A. irroratus comb.n. and A. saramagoi comb.n. We also provide identification keys to the genera Adustonotus gen.n. , Ladeaschistus, Mitripus n. rank and Sibaria, here defined as the Mitripus genus group, and to the species of Mitripus and Adustonotus gen.n. Our results provide insights into the current status of the classification of the Pentatomidae, suggesting the need for phylogenetic analyses at different taxonomic levels within stink bugs. This published work has been registered in ZooBank, http://zoobank.org/urn:lsid:zoobank.org:pub:E09D2675‐0F2B‐4AAE‐9837‐257E0B18BC52 .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号