首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 458 毫秒
1.
Here we report proof-of-principle for a microsphere-based genotyping assay that detects single nucleotide polymorphisms (SNPs) directly from human genomic DNA samples. This assay is based on a structure-specific cleavage reaction that achieves single base discrimination with a 5′-nuclease which recognizes a tripartite substrate formed upon hybridization of target DNA with probe and upstream oligonucleotides. The assay is simple with two easy steps: a cleavage reaction, which generates fluorescent signal on microsphere surfaces, followed by flow cytometry analysis of the microspheres. Genomic DNA samples were genotyped for the SNP in the Apolipoprotein E gene at amino acid position 158. The assay successfully scored wild type, heterozygous and homozygous mutants. To our knowledge, this is the first report of a solid-support assay for detection of SNPs directly from genomic DNA without PCR amplification of the target.  相似文献   

2.
We have developed a locus-specific DNA target preparation method for highly multiplexed single nucleotide polymorphism (SNP) genotyping called MARA (Multiplexed Anchored Runoff Amplification). The approach uses a single primer per SNP in conjunction with restriction enzyme digested, adapter-ligated human genomic DNA. Each primer is composed of common sequence at the 5′ end followed by locus-specific sequence at the 3′ end. Following a primary reaction in which locus-specific products are generated, a secondary universal amplification is carried out using a generic primer pair corresponding to the oligonucleotide and genomic DNA adapter sequences. Allele discrimination is achieved by hybridization to high-density DNA oligonucleotide arrays. Initial multiplex reactions containing either 250 primers or 750 primers across nine DNA samples demonstrated an average sample call rate of ~95% for 250- and 750-plex MARA. We have also evaluated >1000- and 4000-primer plex MARA to genotype SNPs from human chromosome 21. We have identified a subset of SNPs corresponding to a primer conversion rate of ~75%, which show an average call rate over 95% and concordance >99% across seven DNA samples. Thus, MARA may potentially improve the throughput of SNP genotyping when coupled with allele discrimination on high-density arrays by allowing levels of multiplexing during target generation that far exceed the capacity of traditional multiplex PCR.  相似文献   

3.
Due to the surge in interest in using single nucleotide polymorphisms (SNPs) for genotyping a facile and affordable method for this is an absolute necessity. Here we introduce a procedure that combines an easily automatable single tube sample preparation with an efficient high throughput mass spectrometric analysis technique. Known point mutations or single nucleotide polymorphisms are easily analysed by this procedure. It starts with PCR amplification of a short stretch of genomic DNA, for example an exon of a gene containing a SNP. By shrimp alkaline phosphatase digest residual dNTPs are destroyed. Allele-specific products are generated using a special primer, a conditioned set of α-S-dNTPs and α-S-ddNTPs and a fresh DNA polymerase in a primer extension reaction. Unmodified DNA is removed by 5′-phosphodiesterase digestion and the modified products are alkylated to increase the detection sensitivity in the mass spectrometric analysis. All steps of the preparation are simple additions of solutions and incubations. The procedure operates at the lowest practical sample volumes and in contrast to other genotyping protocols with mass spectrometric detection requires no purification. This reduces the cost and makes it easy to implement. Here it is demonstrated in a version using positive ion detection on described mutations in exon 17 of the amyloid precursor protein gene and in a version using negative ion detection on three SNPs of the granulocyte-macrophage colony stimulating factor gene. Preparation and analysis of SNPs is shown separately and simultaneously, thus demonstrating the multiplexibility of this genotyping procedure. The preparation protocol for genotyping is adapted to the conditions used for the SNP discovery method by denaturing HPLC, thus demonstrating a facile link between protocols for SNP discovery and SNP genotyping. Results corresponded unanimously with the control sequencing. The procedure is useful for high throughput genotyping as it is required for gene identification and pharmacogenomics where large numbers of DNA samples have to be analysed. We have named this procedure the ‘GOOD Assay’ for SNP analysis.  相似文献   

4.
5.
Several whole genome amplification strategies have been developed to preamplify the entire genome from minimal amounts of DNA for subsequent molecular genetic analysis. However, none of these techniques has proven to amplify long products from very low (nanogram or picogram) quantities of genomic DNA. Here we report a new whole genome amplification protocol using a degenerate primer (DOP-PCR) that generates products up to about 10 kb in length from less than 1 ng genomic template DNA. This new protocol (LL-DOP-PCR) allows in the subsequent PCR the specific amplification, with high fidelity, of DNA fragments that are more than 1 kb in length. LL-DOP-PCR provides significantly better coverage for microsatellites and unique sequences in comparison to a conventional DOP-PCR method.  相似文献   

6.
Successful PCR starts with proper priming between an oligonucleotide primer and the template DNA. However, the inevitable risk of mismatched priming cannot be avoided in the currently used primer system, even though considerable time and effort are devoted to primer design and optimization of reaction conditions. Here, we report a novel dual priming oligonucleotide (DPO) which contains two separate priming regions joined by a polydeoxyinosine linker. The linker assumes a bubble-like structure which itself is not involved in priming, but rather delineates the boundary between the two parts of the primer. This structure results in two primer segments with distinct annealing properties: a longer 5′-segment that initiates stable priming, and a short 3′-segment that determines target-specific extension. This DPO-based system is a fundamental tool for blocking extension of non-specifically primed templates, and thereby generates consistently high PCR specificity even under less than optimal PCR conditions. The strength and utility of the DPO system are demonstrated here using multiplex PCR and SNP genotyping PCR.  相似文献   

7.
GABRB3 encoding the β3 subunit of GABAA receptor has been implicated in multiple neuropsychiatric disorders, including substance abuse. Previous studies reported that SNPs at the 5′ regulatory region of GABRB3 could regulate GABRB3 gene expression and associated with childhood absence epilepsy (CAE). The study aimed to investigate whether SNPs at the 5′ regulatory region of GABRB3 were associated with heroin dependence in our population. We first re-sequenced 1.5 kb of the 5′regulatory region of GABRB3 gene to examine the SNP profile in the genomic DNA of 365 control subjects. Then, we conducted a case-control association analysis between 576 subjects with heroin dependence (549 males, 27 females) and 886 controls (472 males, 414 females) by genotyping the rs4906902 as a tag SNP. We also conducted a reporter gene assay to assess the promoter activity of two major haplotypes derived from SNPs at this region. We detected 3 common SNPs (rs4906902, rs8179184 and rs20317) at this region that had strong pair-wise linkage disequilibrium. The C allele of rs4906902 was found to be associated with increased risk of heroin dependence (odds ratio:1.27, p = 0.002). Two major haplotypes (C-A-G and T-G-C) derived from these 3 SNPs accounted for 99% of this sample, and reporter gene activity assay showed that haplotype C-A-G that contained the C allele of the tag SNP rs4906902 had higher activity than haplotype T-G-C. Our data suggest that GABRB3 might be associated with heroin dependence, and increased expression of GABRB3 might contribute to the pathogenesis of heroin dependence.  相似文献   

8.
Thermotoga neapolitana (Tne) DNA polymerase belongs to the DNA polymerase I (Pol I) family. The O-helix region of these polymerases is involved in dNTP binding and also plays a role in binding primer–template during DNA synthesis. Here we report that mutations in the O-helix region of Tne DNA polymerase (Arg722 to His, Tyr or Lys) almost completely abolished the enzyme’s ability to catalyze the template-independent addition of a single base at the 3′-end of newly synthesized DNA in vitro. The mutations did not significantly affect the DNA polymerase catalytic activity and reduced base misinsertions 5- to 50-fold. The same Arg722 mutations dramatically increased the ability of the enzyme’s 3′→5′ exonuclease to remove mispaired 3′ bases in a primer extension assay. These mutant DNA polymerases can be used to accurately amplify target DNA in vitro for gene cloning and genotyping analysis.  相似文献   

9.
The norovirus genome consists of a single positive-stranded RNA. The mechanism by which this single-stranded RNA genome is replicated is not well understood. To reveal the mechanism underlying the initiation of the norovirus genomic RNA synthesis by its RNA-dependent RNA polymerase (RdRp), we used an in vitro assay to detect the complementary RNA synthesis activity. Results showed that the purified recombinant RdRp was able to synthesize the complementary positive-sense RNA from a 100-nt template corresponding to the 3′-end of the viral antisense genome sequence, but that the RdRp could not synthesize the antisense genomic RNA from the template corresponding to the 5′-end of the positive-sense genome sequence. We also predicted that the 31 nt region at the 3′-end of the RNA antisense template forms a stem-loop structure. Deletion of this sequence resulted in the loss of complementary RNA synthesis by the RdRp, and connection of the 31 nt to the 3′-end of the inactive positive-sense RNA template resulted in the gain of complementary RNA synthesis by the RdRp. Similarly, an electrophoretic mobility shift assay further revealed that the RdRp bound to the antisense RNA specifically, but was dependent on the 31 nt at the 3′-end. Therefore, based on this observation and further deletion and mutation analyses, we concluded that the predicted stem-loop structure in the 31 nt end and the region close to the antisense viral genomic stem sequences are both important for initiating the positive-sense human norovirus genomic RNA synthesis by its RdRp.  相似文献   

10.
The application of molecular DNA technologies to anthropological questions has meant that rare or archival samples of human remains, including blood, hair, and bone, can now be used as a source of material for genetic analysis. Often, these samples are irreplaceable, and/or yield very small quantities of DNA, so methods for preamplifying as much of the whole genome as possible would greatly enhance their usefulness. DOP-PCR (degenerate oligonucleotide-primed polymerase chain reaction) is an amplification method that uses a degenerate primer and very low initial annealing temperatures to amplify the whole genome. We adapted a published DOP-PCR protocol to long PCR enzyme and amplification conditions. The effectiveness of these modifications was tested by PCR amplification of DOP-PCR products at a mixture of genomic targets including 66 different microsatellites, 11 Alu insertion polymorphisms, and variable-length segments of the human lipoprotein lipase gene (LPL). The selected microsatellite markers were chosen to represent every chromosome, with expected product sizes ranging from 150 base pairs to 8,000 base pairs in length, while the 22 Alu insertion polymorphisms were selected to reveal biases in the recovery of alleles of different sizes. To determine nucleotide sequence variation, 2 kilobases (kb) of the LPL gene in 30 Mongolian individuals were sequenced. All gene-specific targets from DOP-PCR product template were amplified. No unexpected polymorphisms in the sequence results attributable to the DOP-PCR step were found, and 93% to 95% of Alu genotypes that have been amplified from total genomic DNA were replicated. The incorrect typings were all due to the preferential amplification of the shorter of two possible alleles in individuals heterozygous for an Alu insertion and were all correctly typed on subsequent reamplification of the gene-specific PCR products. This method of whole-genome amplification promises to be an efficient way to maximize the genetic use of rare anthropological samples.  相似文献   

11.
Whole-genome microarrays with large-insert clones designed to determine DNA copy number often show variation in hybridization intensity that is related to the genomic position of the clones. We found these ‘genomic waves’ to be present in Illumina and Affymetrix SNP genotyping arrays, confirming that they are not platform-specific. The causes of genomic waves are not well-understood, and they may prevent accurate inference of copy number variations (CNVs). By measuring DNA concentration for 1444 samples and by genotyping the same sample multiple times with varying DNA quantity, we demonstrated that DNA quantity correlates with the magnitude of waves. We further showed that wavy signal patterns correlate best with GC content, among multiple genomic features considered. To measure the magnitude of waves, we proposed a GC-wave factor (GCWF) measure, which is a reliable predictor of DNA quantity (correlation coefficient = 0.994 based on samples with serial dilution). Finally, we developed a computational approach by fitting regression models with GC content included as a predictor variable, and we show that this approach improves the accuracy of CNV detection. With the wide application of whole-genome SNP genotyping techniques, our wave adjustment method will be important for taking full advantage of genotyped samples for CNV analysis.  相似文献   

12.
Prediction of genomic breeding values is of major practical relevance in dairy cattle breeding. Deterministic equations have been suggested to predict the accuracy of genomic breeding values in a given design which are based on training set size, reliability of phenotypes, and the number of independent chromosome segments (). The aim of our study was to find a general deterministic equation for the average accuracy of genomic breeding values that also accounts for marker density and can be fitted empirically. Two data sets of 5′698 Holstein Friesian bulls genotyped with 50 K SNPs and 1′332 Brown Swiss bulls genotyped with 50 K SNPs and imputed to ∼600 K SNPs were available. Different k-fold (k = 2–10, 15, 20) cross-validation scenarios (50 replicates, random assignment) were performed using a genomic BLUP approach. A maximum likelihood approach was used to estimate the parameters of different prediction equations. The highest likelihood was obtained when using a modified form of the deterministic equation of Daetwyler et al. (2010), augmented by a weighting factor (w) based on the assumption that the maximum achievable accuracy is . The proportion of genetic variance captured by the complete SNP sets () was 0.76 to 0.82 for Holstein Friesian and 0.72 to 0.75 for Brown Swiss. When modifying the number of SNPs, w was found to be proportional to the log of the marker density up to a limit which is population and trait specific and was found to be reached with ∼20′000 SNPs in the Brown Swiss population studied.  相似文献   

13.
High-throughput SNP genotyping   总被引:5,自引:0,他引:5  
Whole genome approaches using single nucleotide polymorphism (SNP) markers have the potential to transform complex disease genetics and expedite pharmacogenetics research. This has led to a requirement for high-throughput SNP genotyping platforms. Development of a successful high-throughput genotyping platform depends on coupling reliable assay chemistry with an appropriate detection system to maximise efficiency with respect to accuracy, speed and cost. Current technology platforms are able to deliver throughputs in excess of 100 000 genotypes per day, with an accuracy of >99%, at a cost of 20-30 cents per genotype. In order to meet the demands of the coming years, however, genotyping platforms need to deliver throughputs in the order of one million genotypes per day at a cost of only a few cents per genotype. In addition, DNA template requirements must be minimised such that hundreds of thousands of SNPs can be interrogated using a relatively small amount of genomic DNA. As such, it is predicted that the next generation of high-throughput genotyping platforms will exploit large-scale multiplex reactions and solid phase assay detection systems.  相似文献   

14.
Recently a facile method for genotyping single nucleotide polymorphisms (SNPs) using MALDI mass spectrometry, termed the GOOD assay, was developed. It does not require any purification and is performed with simple liquid handling, thermal incubation and cycling steps. Although this method is well suited to automation and high-throughput analysis of SNPs, it did not allow full flexibility due to lack of certain reagents. A complete set of β-cyanoethyl phosphoramidites is presented herein that give this SNP genotyping method full sequence and multiplex capabilities. Applications to SNP genotyping in the prion protein gene, the β-2-adrenergic receptor gene and the angiotensin converting enzyme gene using the GOOD assay are demonstrated. Because SNP genotyping technologies are generally very sensitive to varying DNA quality, the GOOD assay has been stabilised and optimised for low quality DNA. A template extraction method is introduced that allows genotyping from tissue that was taken while placing an ear tag on an animal. This dramatically facilitates the application of genotyping to animal agricultural applications, as it demonstrates that expensive and cumbersome DNA extraction procedures prior to genotyping can be avoided.  相似文献   

15.
We investigated if any change in spatial resolution of comparative genomic hybridization analysis could be detected when using DNA amplified by degenerate oligonucleotide primed PCR (DOP-PCR) as opposed to the use of unamplified DNA. Five DNA samples from B-cell leukemias with small 11q deletions were amplified by DOP-PCR and analysed by means of high resolution comparative genomic hybridization (HR-CGH) for the evaluation of aberration size detection limit. By means of HR-CGH, we found the detection limit of DOP-PCR CGH for deletions to be between 3 Mbp and 7-8 Mbp.  相似文献   

16.
A new approach to SNP genotyping with fluorescently labeled mononucleotides   总被引:4,自引:1,他引:3  
Fluorescence resonance energy transfer (FRET) is one of the most powerful and promising tools for single nucleotide polymorphism (SNP) genotyping. However, the present methods using FRET require expensive reagents such as fluorescently labeled oligonucleotides. Here, we describe a novel and cost-effective method for SNP genotyping using FRET. The technique is based on allele-specific primer extension using mononucleotides labeled with a green dye and a red dye. When the target DNA contains the sequence complementary to the primer, extension of the primer incorporates the green and red dye-labeled nucleotides into the strand, and red fluorescence is emitted by FRET. In contrast, when the 3′ end nucleotide of the primer is not complementary to the target DNA, there is no extension of the primer, or FRET signal. Therefore, discrimination among genotypes is achieved by measuring the intensity of red fluorescence after the extension reaction. We have validated this method with 11 SNPs, which were successfully determined by end-point measurements of fluorescence intensity. The new strategy is simple and cost-effective, because all steps of the preparation consist of simple additions of solutions and incubation, and the dye-labeled mononucleotides are applicable to all SNP analyses. This method will be suitable for large-scale genotyping.  相似文献   

17.
We describe a method for the efficient genotyping of SNPs, involving sequencing of ordered and catenated sequence-tagged sites (OCS). In OCS, short genomic segments, each containing an SNP, are amplified by PCR using primers that carry specially designed extra nucleotides at their 5′-ends. Amplification products are then combined and converted to a concatamer in a defined order by a second round of thermal cycling. The concatenation takes place because the 5′-ends of each amplicon are designed to be complementary to the ends of the presumptive neighboring amplicons. The primer sequences for OCS are chosen using newly developed dedicated software, OCS Optimizer. Using sets of SNPs, we show that at least 10 STSs can be concatenated in a predefined order and all SNPs in the STSs are accurately genotyped by one two-way sequencing reaction.  相似文献   

18.
We selected 125 candidate single nucleotide polymorphisms (SNPs) in genes belonging to the human type 1 interferon (IFN) gene family and the genes coding for proteins in the main type 1 IFN signalling pathway by screening databases and by in silico comparison of DNA sequences. Using quantitative analysis of pooled DNA samples by solid-phase mini-sequencing, we found that only 20% of the candidate SNPs were polymorphic in the Finnish and Swedish populations. To allow more effective validation of candidate SNPs, we developed a four-colour microarray-based mini-sequencing assay for multiplex, quantitative allele frequency determination in pooled DNA samples. We used cyclic mini-sequencing reactions with primers carrying 5′-tag sequences, followed by capture of the products on microarrays by hybridisation to complementary tag oligonucleotides. Standard curves prepared from mixtures of known amounts of SNP alleles demonstrate the applicability of the system to quantitative analysis, and showed that for about half of the tested SNPs the limit of detection for the minority allele was below 5%. The microarray-based genotyping system established here is universally applicable for genotyping and quantification of any SNP, and the validated system for SNPs in type 1 IFN-related genes should find many applications in genetic studies of this important immunoregulatory pathway.  相似文献   

19.
Specific probes for DNA molecules of high molecular weight can be efficiently and rapidly prepared by the combination of pulsed-field gel electrophoresis (PFGE) with degenerate oligonucleotide-primed PCR (DOP-PCR). More than 10 mg of a specific probe were amplified from only 1 ng of a PFGE-separated DNA fragment of a red alga, Cyanidioschyzon merolae. The probe hybridized specifically to the fragment which was used as a template for DOP-PCR.  相似文献   

20.
A multiplex single-nucleotide polymorphism (SNP) typing platform using ‘bioluminometric assay coupled with terminator [2′,3′-dideoxynucleoside triphosphates (ddNTPs)] incorporation’ (named ‘BATI’ for short) was developed. All of the reactions are carried out in a single reaction chamber containing target DNAs, DNA polymerase, reagents necessary for converting PPi into ATP and reagents for luciferase reaction. Each of the four ddNTPs is dispensed into the reaction chamber in turn. PPi is released by a nucleotide incorporation reaction and is used to produce ATP when the ddNTP dispensed is complementary to the base in a template. The ATP is used in a luciferase reaction to release visible light. Only 1 nt is incorporated into a template at a time because ddNTPs do not have a 3′ hydroxyl group. This feature greatly simplifies a sequencing spectrum. The luminescence is proportional to the amount of template incorporated. Only one peak appears in the spectrum of a homozygote sample, and two peaks at the same intensity appear for a heterozygote sample. In comparison with pyrosequencing using dNTP, the spectrum obtained by BATI is very simple, and it is very easy to determine SNPs accurately from it. As only one base is extended at a time and the extension signals are quantitative, the observed spectrum pattern is uniquely determined even for a sample containing multiplex SNPs. We have successfully used BATI to type various samples containing plural target sequence areas. The measurements can be carried out with an inexpensive and small luminometer using a photodiode array as the detector. It takes only a few minutes to determine multiplex SNPs. These results indicate that this novel multiplexed approach can significantly decrease the cost of SNP typing and increase the typing throughput with an inexpensive and small luminometer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号