首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 106 毫秒
1.
A mutated allele of the essential gene TAH18 was previously identified in our laboratory in a genetic screen for new proteins interacting with the DNA polymerase delta in yeast [1]. The present work shows that Tah18 plays a role in response to oxidative stress. After exposure to lethal doses of H2O2, GFP-Tah18 relocalizes to the mitochondria and controls mitochondria integrity and cell death. Dre2, an essential Fe/S cluster protein and homologue of human anti-apoptotic Ciapin1, was identified as a molecular partner of Tah18 in the absence of stress. Moreover, Ciapin1 is able to replace yeast Dre2 in vivo and physically interacts with Tah18. Our results are in favour of an oxidative stress-induced cell death in yeast that involves mitochondria and is controlled by the newly identified Dre2-Tah18 complex.  相似文献   

2.
The cellular chaperone machinery plays key role in the de novo formation and propagation of yeast prions (infectious protein). Though the role of Hsp70s in the prion maintenance is well studied, how Hsp90 chaperone machinery affects yeast prions remains unclear. In the current study, we examined the role of Hsp90 and its co-chaperones on yeast prions [PSI+] and [URE3]. We show that the overproduction of Hsp90 co-chaperone Tah1, cures [URE3] which is a prion form of native protein Ure2 in yeast. The Hsp90 co-chaperone Tah1 is involved in the assembly of small nucleolar ribonucleoproteins (snoRNP) and chromatin remodelling complexes. We found that Tah1 deletion improves the frequency of de novo appearance of [URE3]. The Tah1 was found to interact with Hsp70. The lack of Tah1 not only represses antagonizing effect of Ssa1 Hsp70 on [URE3] but also improves the prion strength suggesting role of Tah1 in both fibril growth and replication. We show that the N-terminal tetratricopeptide repeat domain of Tah1 is indispensable for [URE3] curing. Tah1 interacts with Ure2, improves its solubility in [URE3] strains, and affects the kinetics of Ure2 fibrillation in vitro. Its inhibitory role on Ure2 fibrillation is proposed to influence [URE3] propagation. The present study shows a novel role of Tah1 in yeast prion propagation, and that Hsp90 not only promotes its role in ribosomal RNA processing but also in the prion maintenance.SummaryPrions are self-perpetuating infectious proteins. What initiates the misfolding of a protein into its prion form is still not clear. The understanding of cellular factors that facilitate or antagonize prions is crucial to gain insight into the mechanism of prion formation and propagation. In the current study, we reveal that Tah1 is a novel modulator of yeast prion [URE3]. The Hsp90 co-chaperone Tah1, is required for the formation of small nucleolar ribonucleoprotein complex. We show that the absence of Tah1 improves the induction of [URE3] prion. The overexpressed Tah1 cures [URE3], and this function is promoted by Hsp90 chaperones. The current study thus provides a novel cellular factor and the underlying mechanism, involved in the prion formation and propagation  相似文献   

3.
Tah18-Dre2 is a recently identified yeast protein complex, which is highly conserved in human and has been implicated in the regulation of oxidative stress induced cell death and in cytosolic Fe-S proteins synthesis. Tah18 is a diflavin oxido-reductase with binding sites for flavin mononucleotide, flavin adenine dinucleotide and nicotinamide adenine dinucleotide phosphate, which is able to transfer electrons to Dre2 Fe-S clusters. In this work we characterized in details the interaction between Tah18 and Dre2, and analysed how it conditions yeast viability. We show that Dre2 C-terminus interacts in vivo and in vitro with the flavin mononucleotide- and flavin adenine dinucleotide-binding sites of Tah18. Neither the absence of the electron donor nicotinamide adenine dinucleotide phosphate-binding domain in purified Tah18 nor the absence of Fe-S in aerobically purified Dre2 prevents the binding in vitro. In vivo, when this interaction is affected in a dre2 mutant, yeast viability is reduced. Conversely, enhancing artificially the interaction between mutated Dre2 and Tah18 restores cellular viability despite still reduced cytosolic Fe-S cluster biosynthesis. We conclude that Tah18-Dre2 interaction in vivo is essential for yeast viability. Our study may provide new insight into the survival/death switch involving this complex in yeast and in human cells.  相似文献   

4.
As a cellular signaling molecule, nitric oxide (NO) is widely conserved from microorganisms, such as bacteria, yeasts, and fungi, to higher eukaryotes including plants and mammals. NO is mainly produced by NO synthase (NOS) or nitrite reductase (NIR) activity. There are several NO detoxification systems, including NO dioxygenase (NOD) and S-nitrosoglutathione reductase (GSNOR). NO homeostasis based on the balance between NO synthesis and degradation is important for the regulation of its physiological functions because an excess level of NO causes nitrosative stress due to the high reactivity of NO and NO-derived compounds. In yeast, NO may be involved in stress responses, but NO and its signaling have been poorly understood due to the lack of mammalian NOS orthologs in the genome. Even though the activities of NOS and NIR have been observed in yeast cells, the gene encoding NOS and the NO production mechanism catalyzed by NIR remain unclear. On the other hand, yeast cells employ NOD and GSNOR to maintain an intracellular redox balance following endogenous NO production, exogenous NO treatment, or environmental stresses. This article reviews NO metabolism (synthesis, degradation) and its regulation in yeast. The physiological roles of NO in yeast, including the oxidative stress response, are also discussed here. Such investigations into NO signaling are essential for understanding the NO-dependent genetic and physiological modulations. In addition to being responsible for the pathology and pharmacology of various degenerative diseases, NO signaling may be a potential target for the construction and engineering of industrial yeast strains.  相似文献   

5.
l-Arginine is substrate for nitric oxide (NO) synthesis and produces pulmonary vasodilatory effects in patients with pulmonary hypertension and in hypoxic animals. We hypothesized that l-arginine would attenuate the increase in oxidative stress and the pulmonary hypertension observed during acute pulmonary embolism (APE). Using an isolated lung perfusion rat model of APE, we examined whether l-arginine (0, 0.1, 0.5, 3, and 10 mmol/L) attenuates the pulmonary hypertension induced by the injection of 6.6 mg/kg of 300 microm Sephadex microspheres into the pulmonary artery. Thiobarbituric acid reactive species (TBA-RS) and nitrite/nitrate (NO(x)) concentrations were measured in lung perfusate to assess oxidative stress and NO production. l-Arginine (0.5, 3, and 10 mmol/L) attenuated (all P<0.05) APE-induced pulmonary hypertension by about 50%. The protective effect of l-arginine was completely reversed by inhibition of NO synthesis with l-NAME (4 mmol/L). In addition, l-arginine (0.5-10 mmol/L) blunted the increase in TBA-RS observed after APE. NO(x) tended to increase only when l-arginine (10 mmol/L) was added to the lung perfusate of non-embolized lungs. Taken together, these findings suggest that l-arginine attenuates APE-induced pulmonary hypertension through antioxidant mechanisms involving increased NO synthesis.  相似文献   

6.
Insulin stimulates endothelial NO synthesis, at least in part mediated by phosphorylation and activation of endothelial NO synthase at Ser1177 and Ser615 by Akt. We have previously demonstrated that insulin-stimulated NO synthesis is inhibited under high culture glucose conditions, without altering Ca2+-stimulated NO synthesis or insulin-stimulated phosphorylation of eNOS. This indicates that stimulation of endothelial NO synthase phosphorylation may be required, yet not sufficient, for insulin-stimulated nitric oxide synthesis. In the current study we investigated the role of supply of the eNOS substrate, l-arginine as a candidate parallel mechanism underlying insulin-stimulated NO synthesis in cultured human aortic endothelial cells. Insulin rapidly stimulated l-arginine transport, an effect abrogated by incubation with inhibitors of phosphatidylinositol-3′-kinase or infection with adenoviruses expressing a dominant negative mutant Akt. Furthermore, supplementation of endothelial cells with extracellular l-arginine enhanced insulin-stimulated NO synthesis, an effect reversed by co-incubation with the l-arginine transport inhibitor, l-lysine. Basal l-arginine transport was significantly increased under high glucose culture conditions, yet insulin-stimulated l-arginine transport remained unaltered. The increase in l-arginine transport elicited by high glucose was independent of the expression of the cationic amino acid transporters, hCAT1 and hCAT2 and not associated with any changes in the activity of ERK1/2, Akt or protein kinase C (PKC). We propose that rapid stimulation of L-arginine transport contributes to insulin-stimulated NO synthesis in human endothelial cells, yet attenuation of this is unlikely to underlie the inhibition of insulin-stimulated NO synthesis under high glucose conditions.  相似文献   

7.
8.
9.
Pih1 is an unstable protein and a subunit of the R2TP complex that, in yeast Saccharomyces cerevisiae, also contains the helicases Rvb1, Rvb2, and the Hsp90 cofactor Tah1. Pih1 and the R2TP complex are required for the box C/D small nucleolar ribonucleoprotein (snoRNP) assembly and ribosomal RNA processing. Purified Pih1 tends to aggregate in vitro. Molecular chaperone Hsp90 and its cochaperone Tah1 are required for the stability of Pih1 in vivo. We had shown earlier that the C terminus of Pih1 destabilizes the protein and that the C terminus of Tah1 binds to the Pih1 C terminus to form a stable complex. Here, we analyzed the secondary structure of the Pih1 C terminus and identified two intrinsically disordered regions and five hydrophobic clusters. Site-directed mutagenesis indicated that one predicted intrinsically disordered region IDR2 is involved in Tah1 binding, and that the C terminus of Pih1 contains multiple destabilization or degron elements. Additionally, the Pih1 N-terminal domain, Pih11–230, was found to be able to complement the physiological role of full-length Pih1 at 37 °C. Pih11–230 as well as a shorter Pih1 N-terminal fragment Pih11–195 is able to bind Rvb1/Rvb2 heterocomplex. However, the sequence between the two disordered regions in Pih1 significantly enhances the Pih1 N-terminal domain binding to Rvb1/Rvb2. Based on these data, a model of protein-protein interactions within the R2TP complex is proposed.  相似文献   

10.
Tah1 [TPR (tetratricopeptide repeat)-containing protein associated with Hsp (heat-shock protein) 90] has been identified as a TPR-domain protein. TPR-domain proteins are involved in protein-protein interactions and a number have been characterized that interact either with Hsp70 or Hsp90, but a few can bind both chaperones. Independent studies suggest that Tah1 interacts with Hsp90, but whether it can also interact with Hsp70/Ssa1 has not been investigated. Amino-acid-sequence alignments suggest that Tah1 is most similar to the TPR2b domain of Hop (Hsp-organizing protein) which when mutated reduces binding to both Hsp90 and Hsp70. Our alignments suggest that there are three TPR-domain motifs in Tah1, which is consistent with the architecture of the TPR2b domain. In the present study we find that Tah1 is specific for Hsp90, and is able to bind tightly the yeast Hsp90, and the human Hsp90alpha and Hsp90beta proteins, but not the yeast Hsp70 Ssa1 isoform. Tah1 acheives ligand discrimination by favourably binding the methionine residue in the conserved MEEVD motif (Hsp90) and positively discriminating against the first valine residue in the VEEVD motif (Ssa1). In the present study we also show that Tah1 can affect the ATPase activity of Hsp90, in common with some other TPR-domain proteins.  相似文献   

11.
Under conditions of oxidative stress it is well known that the bioavailability of nitric oxide (NO) is known to be significantly reduced. This process is in part due to the combination of NO with superoxide radicals to form peroxynitrite (ONOO?). While this process inactivates NO per se, it is not certain to which extent this process may also further impair ongoing NO production. Given the pivotal role of arginine availability for NO synthesis we determined the impact of ONOO? on endothelial arginine transport and intracellular arginine metabolism. Peroxynitrite reduced endothelial [3H]-l-arginine transport and increased the rate of arginine efflux in a concentration-dependent manner (both p < 0.05). In conjunction, exposure to ONOO? significantly reduced the intracellular concentration of l-arginine, NG-hydroxy-l-arginine (an intermediate of NO biosynthesis) and citrulline by 46%, 45% and 60% respectively (all p < 0.05), while asymmetric dimethyl arginine (ADMA) levels rose by 180% (p < 0.05). ONOO? exposure did not alter the cellular distribution of the principal l-arginine transporter, CAT1, rather the effect on CAT1 activity appeared to be mediated by protein nitrosation. Conclusion Peroxynitrite negatively influences NO production by combined effects on arginine uptake and efflux, most likely due to a nitrosative action of ONOO? on CAT-1.  相似文献   

12.
Nitric oxide (NO) is synthesized from l-arginine by the Ca(2+)/calmodulin-sensitive endothelial NO synthase (NOS) isoform (eNOS). The present study assesses the role of Ca(2+)/calmodulin-dependent protein kinase II (CaMK II) in endothelium-dependent relaxation and NO synthesis. The effects of three CaMK II inhibitors were investigated in endothelium-intact aortic rings of normotensive rats. NO synthesis was assessed by a NO sensor and chemiluminescence in culture medium of cultured porcine aortic endothelial cells stimulated with the Ca(2+) ionophore A23187 and thapsigargin. Rat aortic endothelial NOS activity was measured by the conversion of l-[(3)H]arginine to l-[(3)H]citrulline. Three CaMK II inhibitors, polypeptide 281-302, KN-93, and lavendustin C, attenuated the endothelium-dependent relaxation of endothelium-intact rat aortic rings in response to acetylcholine, A23187, and thapsigargin. None of the CaMK II inhibitors affected the relaxation induced by NO donors. In a porcine aortic endothelial cell line, KN-93 decreased NO synthesis and caused a rightward shift of the concentration-response curves to A23187 and thapsigargin. In rat aortic endothelial cells, KN-93 significantly decreased bradykinin-induced eNOS activity. These results suggest that CaMK II was involved in NO synthesis as a result of Ca(2+)-dependent activation of eNOS.  相似文献   

13.
We investigated here the effect of l-arginine on asymmetric dimethylarginine (ADMA) or homocysteine-accelerated endothelial aging. Endothelial cells were cultured in medium containing 70micromol/L arginine until fourteenth passage. ADMA, dl-homocysteine, and l-arginine were replaced every 48h starting at the fourth passage. ADMA or homocysteine inhibited significantly the population doublings (PD) and accelerated the process of aging. Co-incubation with l-arginine enhanced PD, inhibited senescence associated beta-galactosidase activity, and increased telomerase activity. This effect was associated with an increase in NO synthesis and NO synthase protein expression. Furthermore, l-arginine-induced NO formation was accompanied by a reduction in oxidative stress and an increase in protein expression and enzyme activity of heme oxygenase (HO)-1. The NO synthase inhibitor l-NAME completely abolished the effect of l-arginine on ADMA or homocysteine-accelerated aging. These findings demonstrate that l-arginine prevents the onset of endothelial aging in ADMA or homocysteine-treated cells by increasing NO formation and consequently the induction of HO-1. This might provide a new strategy to delay ADMA or homocysteine-accelerated aging.  相似文献   

14.
Cytosolic and nuclear iron‐sulphur (Fe/S) proteins include essential components involved in protein translation, DNA synthesis and DNA repair. In yeast and human cells, assembly of their Fe/S cofactor is accomplished by the CIA (cytosolic iron‐sulphur protein assembly) machinery comprised of some 10 proteins. To investigate the extent of conservation of the CIA pathway, we examined its importance in the early‐branching eukaryote Trypanosoma brucei that encodes all known CIA factors. Upon RNAi‐mediated ablation of individual, early‐acting CIA proteins, no major defects were observed in both procyclic and bloodstream stages. In contrast, parallel depletion of two CIA components was lethal, and severely diminished cytosolic aconitase activity lending support for a direct role of the CIA proteins in cytosolic Fe/S protein biogenesis. In support of this conclusion, the T. brucei CIA proteins complemented the growth defects of their respective yeast CIA depletion mutants. Finally, the T. brucei CIA factor Tah18 was characterized as a flavoprotein, while its binding partner Dre2 functions as a Fe/S protein. Together, our results demonstrate the essential and conserved function of the CIA pathway in cytosolic Fe/S protein assembly in both developmental stages of this representative of supergroup Excavata.  相似文献   

15.
In cultured endothelial cells, 70-95% of extracellular l-arginine uptake has been attributed to the cationic amino acid transporter-1 protein (CAT-1). We tested the hypothesis that extracellular l-arginine entry into endothelial cells via CAT-1 plays a crucial role in endothelial nitric oxide (NO) production during in vivo conditions. Using l-lysine, the preferred amino acid transported by CAT-1, we competitively inhibited extracellular l-arginine transport into endothelial cells during conditions of NaCl hyperosmolarity, low oxygen, and flow increase. Our prior studies indicate that each of these perturbations causes NO-dependent vasodilation. The perivascular NO concentration ([NO]) and blood flow were determined in the in vivo rat intestinal microvasculature. Suppression of extracellular l-arginine transport significantly and strongly inhibited increases in vascular [NO] and intestinal blood flow during NaCl hyperosmolarity, lowered oxygen tension, and increased flow. These results suggest that l-arginine from the extracellular space is accumulated by CAT-1. When CAT-1-mediated transport of extracellular l-arginine into endothelial cells was suppressed, the endothelial cell NO response to a wide range of physiological stimuli was strongly depressed.  相似文献   

16.
17.
Choopani S  Moosavi M  Naghdi N 《Peptides》2008,29(6):898-903
Although brain was considered as an insulin-insensitive organ, recently it has appeared that insulin has some interesting effects on some brain regions like hippocampus. It has been known that intra-hippocampally administered insulin can improve learning and memory. Knowing that insulin can stimulate nitric oxide (NO) synthesis via eNOS activation and also that NO synthase (NOS) inhibitors can affect learning and memory, the aim of this study was to assess if NO is involved in insulin induced memory improvement. Wistar male rats were intra-CA1 cannulated and the effect of post-training and pre-probe trial intra-hippocampal administration of N-nitro-l-arginine methyl ester (l-NAME) (5, 10, 30 μg), insulin + l-NAME ± l-arginine were assessed in a single-day testing version of Morris water maze (MWM) task. Our results show that, l-NAME can prevent insulin induced memory improvement. This drug had no effect on escape latency of a non-spatial visual discrimination task. Therefore, it seems that endogenous nitric oxide has a role in spatial learning and memory improvement caused by insulin.  相似文献   

18.
19.
20.
Nitric oxide (NO) is a signaling molecule that mediates many plant responses to biotic and abiotic stresses, including salt stress. Interestingly, salinity increases NO production selectively in mesophyll cells of sorghum leaves, where photosynthetic C4 phosphoenolpyruvate carboxylase (C4 PEPCase) is located. PEPCase is regulated by a phosphoenolpyruvate carboxylase-kinase (PEPCase-k), which levels are greatly enhanced by salinity in sorghum. This work investigated whether NO is involved in this effect. NO donors (SNP, SNAP), the inhibitor of NO synthesis NNA, and the NO scavenger cPTIO were used for long- and short-term treatments. Long-term treatments had multifaceted consequences on both PPCK gene expression and PEPCase-k activity, and they also decreased photosynthetic gas-exchange parameters and plant growth. Nonetheless, it could be observed that SNP increased PEPCase-k activity, resembling salinity effect. Short-term treatments with NO donors, which did not change photosynthetic gas-exchange parameters and PPCK gene expression, increased PEPCase-k activity both in illuminated leaves and in leaves kept at dark. At least in part, these effects were independent on protein synthesis. PEPCase-k activity was not decreased by short-term treatment with cycloheximide in NaCl-treated plants; on the contrary, it was decreased by cPTIO. In summary, NO donors mimicked salt effect on PEPCase-k activity, and scavenging of NO abolished it. Collectively, these results indicate that NO is involved in the complex control of PEPCase-k activity, and it may mediate some of the plant responses to salinity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号