首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 311 毫秒
1.
Background aimsBone marrow (BM) mesenchymal stromal/stem cells (MSC) are therapeutic tools in regenerative medicine and oncology. MSC isolation is often performed starting from a separation step based on research-grade 1.077 g/mL density gradient media (DGM). However, MSC clinical application should require the introduction of good manufacturing practice (GMP) reagents. We took advantage of two novel GMP DGM with densities of 1.077 and 1.073 g/mL (Ficoll-Paque? PREMIUM and Ficoll-Paque PREMIUM 1.073, respectively) to test whether these reagents could isolate MSC efficiently while simultaneously comparing their performance.MethodsBM samples were processed using either 1.077 or 1.073 g/mL GMP DGM. BM mononucleated cell (MNC) fractions were analyzed for viability, immunophenotype, clonogenic potential, ex vivo expansion and differentiation potential.ResultsNo differences were noticed in cell recovery and viability between the groups. Fluorescence-activated cell-sorting (FACS) analyzes on freshly isolated cells indicated that the 1.073 g/mL GMP DGM more efficiently depleted the CD45+ fraction in comparison with 1.077 GMP DGM. Moreover, in the 1.073 group, fibroblastic colony-forming units (CFU-F) were 1.5 times higher and the final MSC yield 1.8 times increased after four passages. Both reagents isolated MSC with the expected phenotype; however, 1.073-isolated MSC showed a higher expression of CD90, CD146 and GD2. Additionally, MSC from both groups were capable of fully differentiating into bone, adipose cells and cartilage.ConclusionsBoth GMP DGM enriched MSC from BM samples, suggesting that these reagents would be suitable for clinical-grade expansions. In addition, the density of 1.073 g/mL provides a significant advantage over 1.077 g/mL GMP DGM, impacting the quantity of MSC obtained and reducing the ex vivo expansion time for optimized cell-based clinical applications.  相似文献   

2.
Background aimsAlloreactive natural killer (NK) cells are potent effectors of innate anti-tumor defense. The introduction of NK cell-based immunotherapy to current treatment options in acute myeloid leukemia (AML) requires NK cell products with high anti-leukemic efficacy optimized for clinical use.MethodsWe describe a good manufacturing practice (GMP)-compliant protocol of large-scale ex vivo expansion of alloreactive NK cells suitable for multiple donor lymphocyte infusions (NK-DLI) in AML. CliniMACS-purified NK cells were cultured in closed air-permeable culture bags with certified culture medium and components approved for human use [human serum, interleukin (IL)-2, IL-15 and anti-CD3 antibody] and with autologous irradiated feeder cells.ResultsNK cells (6.0 ± 1.2 × 108) were purified from leukaphereses (8.1 ± 0.8 L) of six healthy donors and cultured under GMP conditions. NK cell numbers increased 117.0 ± 20.0-fold in 19 days. To reduce the culture volume associated with expansion of bulk NK cells and to expand selectively the alloreactive NK cell subsets, GMP-certified cell sorting was introduced to obtain cells with single killer immunoglobulin-like receptor (KIR) specificities. The subsequent GMP-compliant expansion of single KIR+ cells was 268.3 ± 66.8-fold, with a contaminating T-cell content of only 0.006 ± 0.002%. The single KIR-expressing NK cells were cytotoxic against HLA-mismatched primary AML blasts in vitro and effectively reduced tumor cell load in vivo in NOD/SCID mice transplanted with human AML.ConclusionsThe approach to generating large numbers of GMP-grade alloreactive NK cells described here provides the basis for clinical efficacy trials of NK-DLI to complement and advance therapeutic strategies against human AML.  相似文献   

3.
A potent regulator of bone anabolism is physical loading. However, it is currently unclear whether physical stimuli such as fluid shear within the marrow cavity is sufficient to directly drive the osteogenic lineage commitment of resident mesenchymal stem cells (MSC). Therefore, the objective of the study is to employ a systematic analysis of oscillatory fluid flow (OFF) parameters predicted to occur in vivo on early MSC osteogenic responses and late stage lineage commitment. MSCs were exposed to OFF of 1 Pa, 2 Pa and 5 Pa magnitudes at frequencies of 0.5 Hz, 1 Hz and 2 Hz for 1 h, 2 h and 4 h of stimulation. Our findings demonstrate that OFF elicits a positive osteogenic response in MSCs in a shear stress magnitude, frequency, and duration dependent manner that is gene specific. Based on the mRNA expression of osteogenic markers Cox2, Runx2 and Opn after short-term fluid flow stimulation, we identified that a regime of 2 Pa shear magnitude and 2 Hz frequency induces the most robust and reliable upregulation in osteogenic gene expression. Furthermore, long-term mechanical stimulation utilising this regime, elicits a significant increase in collagen and mineral deposition when compared to static control demonstrating that mechanical stimuli predicted within the marrow is sufficient to directly drive osteogenesis.  相似文献   

4.
5.
Background aimsMesenchymal stromal cells (MSC) are gaining in popularity as an experimental therapy for a number of conditions that often require expansion ex vivo prior to use. Data comparing clinical-grade MSC from various ages of donors are scant. We hypothesized that MSC from older donors may display differences in cellular fitness when expanded for clinical use.MethodsWe evaluated the expression of several markers of aging, oxidative stress and growth kinetics, and telomere length, in MSC obtained from a wide age range (8 months to 58 years).ResultsTo evaluate cellular fitness we compared MSC expanded from younger (8 months–6 years) versus older (38–58 years) donors in terms of selected cell-surface markers, lipofuscin, migration ability, telomere length and expression of iNOS, PGE2, p16INK and SOD. Results did not differ between these groups. Neither SOD activity (0.025 versus 0.028 U/mL) nor death after oxidative challenge was significantly different (1% versus 1.5%, P = 0.14). We did find that, although MSC from older individuals produced slightly fewer cells over a 28-day culture period and had a slightly longer doubling time (54 h versus 42 hr, a satisfactory clinical product could still be obtained regardless of age cohort.ConclusionsCollectively, these data show that MSC can be expanded without significant alterations in expansile properties or obvious changes in parameters associated with senescence. Because cellular fitness was equivalent in these cohorts, MSC from donors up to age 58 years can be used as a source of cells for cellular therapy.  相似文献   

6.
Autologous bone grafting and ilizarov technique are the preferred mode of treatment for bone nonunion, studies suggest that bone marrow derived mesenchymal stem cells can be effective in treatment of tibial non-union where there is length of bone defect. The current study investigates the beneficial clinical outcome of combining the ilizarov procedure with intraosseous injection of autologous mesenchymal stem cells. The open-label study enrolled 25 patients with infected tibial non-union at the Shanghai Fengxian District Central Hospital, Shanghai, China between April 2010 and July 2014. Patients were randomised to undergo the ilizarov procedure with (n = 11) or without (n = 13) intraosseous injection of bone marrow derived mesenchymal stem cells. All participants were followed prospectively until union was achieved (primary end point). The mean length of the bone defect in the Ilizarov group and Ilizarov group plus MSC group was 6.09 and 5.84 cm respectively. The mean time from the original injury to the time of the treatment for tibial non-union was 5–22 months (mean 13.5 months) for the Ilizarov group and 6–21 months (mean 13.5 months) for Ilizarov plus MSc group. All 24 patients were followed up for 12–34 months (mean 16 months). Both groups achieved the primary endpoint of stable union of the tibial fracture. No adverse events were observed in any of the group. Our study demonstrates that using autologous bone marrow derived mesenchymal stem cell as an add-on therapy to the ilizarov procedure shows significant clinical benefit in fixation of tibial non-union.  相似文献   

7.
The applicability of hollow fiber liquid phase microextraction (HF-LPME) for extraction and preconcentration of trace amounts of pioglitazone (PGL) as an anti-diabetic drug in biological fluids, prior to determination by high-performance liquid chromatography (HPLC), was evaluated. In this technique, the target drug was extracted into di-n-hexyl ether immobilized in the wall pores of a porous hollow fiber from 10 mL of the aqueous sample (source phase, SP) with pH 8.0, and then back extracted into the receiving phase (RP) with pH 2.2 located in the lumen of the hollow fiber. The extraction occurred due to a pH gradient between the two sides of the hollow fiber. After extracting for a prescribed time, 24 μL of the RP solution was taken back into the syringe and injected directly into a HPLC instrument for quantification. The Taguchi orthogonal array (OAD) experimental design with an OA16 (45) matrix was employed to optimize the HF-LPME conditions. Different factors affecting the HF-LPME efficiency such as the nature of organic solvent used to impregnate the membrane, pH of the SP and RP, stirring speed, extraction time and ionic strength were studied and optimized. Under the optimum conditions (di-n-hexyl ether as membrane impregnation solvent, pHs of the SP and RP equal to 8.0 and 2.2, respectively, extraction time of 30 min, stirring speed of 500 rpm and 10% (w/v) NaCl for adjusting the ionic strength), preconcentration factor of 180, linear dynamic range (LDR) of 2.5–250 μg L?1 with good correlation of determination (r2 > 0.998) and limit of detection (LOD) of 1.0 μg L?1 were obtained for the target drug. The percent relative intra-day and inter-day standard deviations (RSDs%) based on five replicate determinations were 4.7 and 15%, respectively. Once LPME was optimized, the performance of the proposed technique was evaluated for the determination of PGL in different types of biological fluids such as plasma and urine samples. The results showed that the proposed HF-LPME method could be successfully applied to determine trace amounts of PGL in biological samples.  相似文献   

8.
Background aimsBecause of the inflammatory nature and extensive stromal compartment in pancreatic tumors, we investigated the role of mesenchymal stromal cells (MSC) to engraft selectively in pancreatic carcinomas and serve as anti-tumor drug delivery vehicles to control pancreatic cancer progression.MethodsHuman pancreatic carcinoma cells, PANC-1, expressing renilla luciferase were orthotopically implanted into SCID mice and allowed to develop for 10 days. Firefly luciferase-transduced MSC or MSC expressing interferon (IFN)-β were then injected intraperitoneally weekly for 3 weeks. Mice were monitored by bioluminescent imaging for expression of renilla (PANC-1) and firefly (MSC) luciferase.ResultsMSC selectively homed to sites of primary and metastatic pancreatic tumors and inhibited tumor growth (P = 0.032). The production of IFN-β within the tumor site by MSC–IFN-β further suppressed tumor growth (P = 0.0000083). Prior studies indicated that MSC home to sites of inflammation; therefore, we sought to alter the tumor microenvironment through treatment with a potent anti-inflammatory agent. After treatment, inflammation-associated mediators were effectively down-regulated, including NFκB, vascular endothelial growth factor (VEGF) and interleukin (IL)-6 as well as chemokines involved in MSC migration (CCL3 and CCL25). Treatment with the anti-inflammatory agent CDDO-Me before and after MSC–IFN-β injections resulted in reduction of MSC in the tumors and reversed the positive effect of tumor inhibition by MSC–IFN-β alone (P = 0.041).ConclusionsThese results suggest that MSC exhibit innate anti-tumor effects against PANC-1 cells and can serve as delivery vehicles for IFN-β for the treatment of pancreatic cancer. However, these beneficial effects may be lost in therapies combining MSC with anti-inflammatory agents.  相似文献   

9.
Bone marrow mesenchymal stem cells (MSCs) have multi-differentiation capability. Their endothelial cell (EC) oriented differentiation is the key to vasculogenesis, in which both mechanical and chemical stimulations play important roles. Most previous studies reported individual effects of VEGF or fluid shear stress (SS), when MSCs were subjected to shear stress of 10–15 dyn/cm2 over 24 hr. In this paper, we investigated responses of MSCs from young Sprague Dawley rats to shear stress, VEGF and the combination of the two stimuli. Our study showed that the combined stimulation of shear stress and VEGF resulted in more profound EC oriented differentiation of MSCs in comparison to any individual stimulation. Furthermore, we subjected MSCs to prolonged period of fluid shear stimulation, i.e. 48 hr rather than 24 hr, and increased the magnitude of the shear stress from 10 dyn/cm2 to 15, 20 and 25 dyn/cm2. We found that without VEGF, the endothelium oriented differentiation of MSCs that was seen following 24 hr of shear stimulation was largely abolished if we extended the shear stimulation to 48 hr. A similar sharp decrease in MSC differentiation was also observed when the magnitude of the shear stress was increased from 10–15 dyn/cm2 to 20–25 dyn/cm2 in 24 hr shear stimulation studies. However, with combined VEGF and fluid shear stimulation, most of the endothelial differentiation was retained following an extended period, i.e. at 48 hr, of shear stimulation. Our study demonstrates that chemical and mechanical stimulations work together in determining MSC differentiation dynamics.  相似文献   

10.
In the present work, a simple and high sensitive method based on hollow fiber liquid phase microextraction (HF-LPME) was developed followed by high performance liquid chromatography (HPLC) for determination of ultra-trace amounts of Se(IV) after derivatization in biological and natural water samples. Se(IV) was complexed with o-phenylenediamine to form piazselenol. The formed piazselenol was extracted into 20 μL of 1-octanol located in the lumen of a hollow fiber and the solution was injected into HPLC-UV for analysis. Using the Taguchi method, an orthogonal array design (OAD), OA16 (45) was employed to optimize the HF-LPME of piazselenol. The effect of five experimental factors (each factor at four levels) including the volume of the organic phase, extraction time, pH of the solution, stirring rate and ionic strength on the extraction efficiency of piazselenol was studied and optimized. The maximum extraction efficiency of piazselenol was obtained at 20 μL of 1-octanol as the extracting solvent, 30 min extraction time, pH 2, stirring rate of 500 rpm and 30% (w/v) NaCl. Under the optimum conditions, preconcentration factors up to 130 were achieved and the relative standard deviation (%RSD) of the method was <3.7% for different concentrations of Se(IV). The calibration curves were obtained in the ranges of 0.2–100 and 0.05–10 μg L?1 for the 11 and 50 mL of the sample volumes with reasonable linearity, respectively (r2 > 0.995). The limits of detection (LOD) were 0.1 and 0.02 μg L?1 for the 11 and 50 mL sample volumes, respectively (S/N = 3). Finally, the applicability of the proposed method was evaluated by the extraction and determination of Se(IV) in the plasma, urine and water samples.  相似文献   

11.
Chin SP  Poey AC  Wong CY  Chang SK  Tan CS  Ng MT  Chew KH  Lam KH  Cheong SK 《Cytotherapy》2011,13(7):814-821
Background aimsMesenchymal stromal cells (MSC) may improve cardiac function following myocardial infarction. MSC can differentiate into cardiomyocytes and endothelial cells while exerting additional paracrine effects. There is limited information regarding the efficacy of route for MSC treatment of severe dilated cardiomyopathy (DCM). The aim of this study was to demonstrate the clinical safety, feasibility and efficacy of direct intramyocardial and intracoronary administration of autologous bone marrow-derived MSC treatment for no-option patients with chronic severe refractory DCM.MethodsTen symptomatic patients with DCM and refractory cardiac function, despite maximum medical therapy, were selected. Five had ischemic DCM deemed unlikely to benefit from revascularization alone and underwent bypass operations with concurrent intramyocardial MSC injection (group A). Two patients had previous revascularization and three had non-ischemic DCM and received intracoronary MSC injection (group B).ResultsGroup A and B patients received 0.5–1.0 × 106 and 2.0–3.0 × 106 MSC/kg body weight, respectively. All patients remained alive at 1 year. There were significant improvements from baseline to 6 and 12 months in left ventricular ejection fraction and other left ventricular parameters. Scar reduction was noted in six patients by 12 months.ConclusionsAutologous bone marrow MSC treatment is safe and feasible for treating chronic severe refractory DCM effectively, via intracoronary or direct intramyocardial administration at prescribed doses.  相似文献   

12.
Background aimsWe explored the potential therapeutic value of transplanting bone marrow (BM)-derived mesenchymal stromal cells (MSC) into utrophin/dystrophin-deficient double knock-out (dko) mice, a murine model of Duchenne muscular dystrophyMethodsMSC from male rats were isolated and transplanted into female dko mice via the caudal vein. Behavior and locomotor function were later evaluated, along with the expression of dystrophin and utrophin in the sarcolemma of myofiber tissues. The presence of grafted cells was confirmed via polymerase chain reaction for the sex-determining region of the Y-chromosomeResultsLocomotor activity improved significantly (P < 0.05) from 5 to 15 weeks after cell transplantation, as measured by traction, rotating rod and running wheel tests. We also found that the expression of dystrophin and utrophin increased significantly (P < 0.05) and progressively in the sarcolemma from 5 to 15 weeks after transplantation. The median lifespan of mice in the normal group (74.1 weeks) was significantly (P < 0.001) higher than those in the control (22.0 weeks) and transplantation (35.0 weeks) groups, and the median lifespan of mice in the transplantation group was significantly (P < 0.001) higher than that in the control groupConclusionsResults of this study demonstrate that BM MSC have potential value in xenogeneic transplantation therapy for muscular dystrophy.  相似文献   

13.
A long-term hepatocyte model in vitro is preferable for chronic hepatotoxicity research because hepatocytes in this model of culture can preserve liver-specific functions for long period. Micro-hollow fiber reactors (MHFR), composed of polysulphone (PS) hollow fibers with a molecular weight cut-off 100 kDa, were applied to test the hepatotoxicity of acetaminophen, isoniazid and rifampicin, respectively. Monolayer culture was used as a control model for hepatocyte culture. It was found that hepatocytes within MHFR were more sensitive to toxicity of acetaminophen (0.38–1.51 g/L) than those in monolayer cultures. Furthermore, significant hepatotoxicity of isoniazid (15 mg/L) and rifampicin (10 mg/L) were detected in hepatocytes cultured in MHFR but not detected in hepatocyte monolayer, which could be due to well-preserved drug metabolizing enzymes in MHFR. These results indicate that the MHFR may be an effective model for long-term hepatotoxicity research in vitro.  相似文献   

14.
Background aimsMesenchymal stromal cells (MSC) are the most popular cells used in regenerative medicine and biotechnology. The clonogenic potential of these cells is defined by colony-forming unit-fibroblasts (CFU-F). It is well known that there is an interaction between hematopoietic cells and stromal cells in disease formation pathogenesis. Therefore we hypothesized that there should be a quantitative and qualitative relationship between MSC colonies (CFU-F) and hematopoietic stem cell colonies (colony-forming unit-granulocyte-macrophages; CFU-GM) among patients with and without hematologic diseases.MethodsForty-two patients were included in this study. Patients were divided into three groups: group A, patients with hematologic malignancies (n = 20); group B, patients with bone marrow (BM) failure (n = 11); group C, patients without hematologic diseases (n = 11). BM aspirates were plated in different densities for CFU-F culture. The plating density was the same for CFU-GM culture.ResultsCFU-GM colonies grew in 90% of group A cells and all of group B and C cells (P = 0.0001). CFU-F colonies became visible on the ninth day of plating in group A and on the eight day in groups B and C. There was no statistically significant difference between the groups for the duration of CFU-F colony formation (P = 0.12). There were differences in the morphology of the colonies among the groups.ConclusionsThis is the first study that has compared the clonogenic potential of stromal cells and hematopoietic stem cells in the same subjects with and without hematologic diseases. No correlation was shown between the clonogenic potential of stromal cells and hematopoietic cells.  相似文献   

15.
The effects of different levels of dietary fiber on feed intake, digestibility, mean retention times of solute and particle and heat production were studied in twelve male lesser mouse deer (Tragulus javanicus). The animals were randomly assigned into four groups of three mouse deer each and fed on individual basis. Four diets, namely A, B, C and D were prepared in pellet forms. Each diet contained ~14% crude protein and ~18 kJ/g gross energy. The crude fiber contents of diet A, B, C and D were 4.2, 11.3, 16.8 and 22.5%, respectively. The results showed that the crude fiber intake of mouse deer was 1.4 ± 0.04, 3.8 ± 0.4, 5.8 ± 0.7 and 6.0 ± 0.6 g/kg W0.75/d fed diet A, B, C and D, respectively. Mouse deer fed diet D had significantly lower DM intake than those fed lower levels of fiber. The digestibility values of DM decreased gradually with increasing levels of fiber in the diet. The mean retention times (MRTs) of particles (~1.5 mm) in the reticulorumen were in the range of (19.0–22.9 h), with the shortest time for mouse deer fed diet D. However mouse deer fed diet C and D showed significant shorter solute MRT in the reticulorumen (17.1–18.5 h) when compared to mouse deer fed lower fiber diets (21.4–21.9 h). The selectivity factor in the reticulorumen was in the range of 1.04–1.18, indicating the mouse deer to be a ‘moose-type’ ruminant. Fiber levels had no significant effect on water intake of mouse deer. Heat production tended to decrease with increasing levels of fiber (448.3–435.7 kJ/kg W0.75/d) but differences among the mouse deer fed the four diets were not significant.  相似文献   

16.
Otosclerosis is a complex disease characterized by an abnormal bone turnover of the otic capsule resulting in conductive hearing loss. Recent findings have shown that angiotensin II (Ang II), a major effector peptide of the renin–angiotensin system, plays an important role in the pathophysiology of otosclerosis, most likely by its proinflammatory effects on the bone cells. Because reactive oxygen species play a role both in inflammation and in the cellular signaling pathway of Ang II, the appearance of protein adducts of the “second messenger of free radicals,” the aldehyde 4-hydroxynonenal (HNE), in otosclerotic bone has been analyzed. Immunohistochemical analysis of HNE-modified proteins in tissue samples of the stapedial bones performed on 15 otosclerotic patients and 6 controls revealed regular HNE–protein adducts present in the subperiosteal parts of control bone specimens, whereas irregular areas of a pronounced HNE–protein adduct presence were found within stapedial bone in cases of otosclerosis. To study possible interference by HNE and Ang II in human bone cell proliferation, differentiation, and induction of apoptosis we used an in vitro model of osteoblast-like cells. HNE interacted with Ang II in a dose-dependent manner, both by forming HNE–Ang II adducts, as revealed by immunoblotting, and by modifying its effects on cultured cells. Namely, treatment with 0.1 nM Ang II and 2.5 μM HNE stimulated proliferation, whereas treatment with 10 μM HNE or in combination with Ang II (0.1, 0.5, and 1 nM) decreased cell proliferation. Moreover, 10 μM HNE alone and with Ang II (except if 1 nM Ang II was used) increased cellular differentiation and apoptosis. HNE at 5 μM did not affect differentiation nor significantly change apoptosis. On the other hand, when cells were treated with lower concentrations of HNE and Ang II we observed a decrease in cellular differentiation (combination of 1.0 or 2.5 μM HNE with 0.1 nM Ang II) and decrease in apoptosis (0.1 and 0.5 nM Ang II). Cellular necrosis was increased with 5 and 10 μM HNE if given alone or combined with Ang II, whereas 0.5 nM Ang II and combination of 1 μM HNE with Ang II (0.1 and 0.5 nM) reduced necrosis. These results indicate that HNE and Ang II might act mutually dependently in the regulation of bone cell growth and in the pathophysiology of otosclerosis.  相似文献   

17.
Background aimsMesenchymal stromal cells (MSC) have recently been identified as a therapeutic option in several clinical conditions. Whereas bone marrow (BM) is considered the main source of MSC (BM-MSC), the invasive technique required for collection and the decline in allogeneic donations call for alternative sources. Human umbilical cord (UC) represents an easily available source of MSC (UC-MSC).MethodsSections of full-term UC were transferred to cell culture flasks and cultured in 5% human platelet lysate (PL)-enriched medium. Neither enzymatic digestion nor blood vessel removal was performed. After 2 weeks, the adherent cells were harvested (P1), replated at low density and expanded for two consecutive rounds (P2 and P3).ResultsWe isolated and expanded MSC from 9/9 UC. UC-MSC expanded with a mean fold increase (FI) of 42 735 ± 16 195 from P1 to P3 in a mean of 29 ± 2 days. By processing the entire cord unit, we theoretically could have reached a median of 9.5 × 1010 cells (ranging from 1.0 × 1010 to 29.0 × 1010). UC-MSC expressed standard surface markers; they contained more colony-forming unit (CFU)-fibroblast (F) and seemed less committed towards osteogenic, chondrogenic and adipogenic lineages than BM-MSC. They showed immunosuppressive properties both in vitro and in an in vivo chronic Graft versus Host disease (cGvHD) mouse model. Both array-Comparative Genomic Hybridization (CGH) analysis and karyotyping revealed no chromosome alterations at the end of the expansion. Animal studies revealed no tumorigenicity in vivo.ConclusionsUC constitute a convenient and very rich source of MSC for the production of third-party ‘clinical doses’ of cells under good manufacturing practice (GMP) conditions.  相似文献   

18.
Neural progenitor cells have been proposed as a therapy for central nervous system disorders, including neurodegenerative diseases and trauma injuries, however their accessibility is a major limitation. We recently isolated Tuj1 + cells from skeletal muscle culture of Nestin–GFP transgenic mice however whether they form functional neurons in the brain is not yet known. Additionally, their isolation from nontransgenic species and identification of their ancestors is unknown. This gap of knowledge precludes us from studying their role as a valuable alternative to neural progenitors. Here, we identified two pericyte subtypes, type-1 and type-2, using a double transgenic Nestin–GFP/NG2–DsRed mouse and demonstrated that Nestin–GFP +/Tuj1 + cells derive from type-2 Nestin–GFP +/NG2–DsRed +/CD146 + pericytes located in the skeletal muscle interstitium. These cells are bipotential as they generate either Tuj1 + cells when cultured with muscle cells or become “classical” α-SMA + pericytes when cultured alone. In contrast, type-1 Nestin–GFP ?/NG2–DsRed +/CD146 + pericytes generate α-SMA + pericytes but not Tuj1 + cells. Interestingly, type-2 pericyte derived Tuj1 + cells retain some pericytic markers (CD146 +/PDGFRβ +/NG2 +). Given the potential application of Nestin–GFP +/NG2–DsRed +/Tuj1 + cells for cell therapy, we found a surface marker, the nerve growth factor receptor, which is expressed exclusively in these cells and can be used to identify and isolate them from mixed cell populations in nontransgenic species for clinical purposes.  相似文献   

19.
Successful antral formation in vitro from bovine preantral follicles (145–170 μm) has been described previously, but antrum formation from the primary follicle (50–70 μm) has not yet been achieved in vitro. The aim of the study was to establish an optimal culture system supporting the growth and maturation of bovine primary follicles (50–70 μm) in vitro. Bovine primary follicles were cultured in a three-dimensional culture system for 13 or 21 days in alpha-minimum essential medium. Various treatments including follicle stimulating hormone (FSH), luteinizing hormone (LH), 17β-estradiol (E2), basic fibroblast growth factor (bFGF) and epidermal growth factor (EGF) were tested. The follicular diameter and antrum formation rate were recorded, and follicular maturation markers (P450 aromatase, CYP19A1; anti-Mullerian hormone, AMH; growth differentiation factor-9, GDF9; bone morphogenetic protein-15, BMP15; and type III transforming growth factor β receptor, TGFβR3) were analyzed by real-time RT-PCR. After 21 days of culture under each treatment condition, the follicular diameter was significantly enlarged in the presence of FSH + LH + E2 + bFGF or FSH + LH + E2 + bFGF + EGF (p < 0.05). An addition of 50 ng/ml bFGF or bFGF + 25 ng/ml EGF initiated antrum formation by day 19 and day 17 of culture, and the antral cavity formation rate was 16.7% and 33.3% by 21 days of culture, respectively. The expression of follicular maturation markers (CYP19A1, AMH, GDF9, BMP15 and TGFβR3) was significantly altered. We conclude that addition of 50 ng/ml bFGF + 25 ng/ml EGF to media containing FSH + LH + E2 turned out to be the most effective optimized culture conditions to support the growth and maturation of bovine primary follicles in vitro.  相似文献   

20.
A critical stage in the optimization of in vitro maturation (IVM) is the selection of good quality oocytes. There exists a relationship between the size of the cumulus investment and the in vitro developmental ability of the cumulus–oocyte complex (COC), which provides a basis for the selection of the COCs. This study was designed to evaluate the effect of the number of cumulus cell layers which enclose the oocytes, on the in vitro maturation, cytoplasm quality and cumulus expansion of the ovine oocytes. Ovaries were obtained from an abattoir and transported to the laboratory within 1–2 h, at 37 °C. Oocytes (n = 535) were recovered by means of an aspiration pump (set at a flow rate of 10 mL H2O/min), with a disposable 20 G needle attached. Oocytes were divided into four classes (classes I to IV – with more than 5, 3–4, 1–2 and no cumulus cell layers, respectively) and separately cultured in a TCM199 medium for 24 h. The morphology of oocytes was evaluated following in vitro culture (IVC) to assess cumulus expansion, cytoplasm quality (score I with a homogenous cytoplasm and II with granulated cytoplasm) and nuclear maturation stage. The percentage of maximum cumulus expansion for classes I to III oocytes were 53.0 ± 1.0, 36.3 ± 2.2 and 16.3 ± 1.8% respectively. The rate of meiotic resumption of oocytes in classes I to IV were 77.0 ± 2.7, 77.2 ± 1.9, 53.0 ± 2.1 and 2.7 ± 1.1% respectively. The proportion of oocytes with a cytoplasm quality I in oocyte classes I to IV were 62.8 ± 1.5, 59.4 ± 1.2, 36.4 ± 2.1 and 0.5 ± 1.1%, respectively. Results showed that the presence of ≥3 cumulus cell layers in the COC prior to IVM led to a better (p < 0.05) cumulus expansion, meiotic resumption and cytoplasmic maturation rate. Thus the morphological grading of immature ovine oocytes may be an appropriate selection criterion regarding their developmental ability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号