首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
《朊病毒》2013,7(5):453-460
The cellular prion protein (PrPC) is subjected to various processing under physiological and pathological conditions, of which the α-cleavage within the central hydrophobic domain not only disrupts a region critical for both PrP toxicity and PrPC to PrPSc conversion but also produces the N1 fragment that is neuroprotective and the C1 fragment that enhances the pro-apoptotic effect of staurosporine in one report and inhibits prion in another. The proteases responsible for the α-cleavage of PrPC are controversial. The effect of ADAM10, ADAM17, and ADAM9 on N1 secretion clearly indicates their involvement in the α-cleavage of PrPC, but there has been no report of direct PrPC α-cleavage activity with any of the three ADAMs in a purified protein form. We demonstrated that, in muscle cells, ADAM8 is the primary protease for the α-cleavage of PrPC, but another unidentified protease(s) must also play a minor role. We also found that PrPC regulates ADAM8 expression, suggesting that a close examination on the relationships between PrPC and its processing enzymes may reveal novel roles and underlying mechanisms for PrPC in non-prion diseases such as asthma and cancer.  相似文献   

2.
3.
The cellular prion protein (PrPC) is subjected to various processing under physiological and pathological conditions, of which the α-cleavage within the central hydrophobic domain not only disrupts a region critical for both PrP toxicity and PrPC to PrPSc conversion but also produces the N1 fragment that is neuroprotective and the C1 fragment that enhances the pro-apoptotic effect of staurosporine in one report and inhibits prion in another. The proteases responsible for the α-cleavage of PrPC are controversial. The effect of ADAM10, ADAM17, and ADAM9 on N1 secretion clearly indicates their involvement in the α-cleavage of PrPC, but there has been no report of direct PrPC α-cleavage activity with any of the three ADAMs in a purified protein form. We demonstrated that, in muscle cells, ADAM8 is the primary protease for the α-cleavage of PrPC, but another unidentified protease(s) must also play a minor role. We also found that PrPC regulates ADAM8 expression, suggesting that a close examination on the relationships between PrPC and its processing enzymes may reveal novel roles and underlying mechanisms for PrPC in non-prion diseases such as asthma and cancer.  相似文献   

4.
5.
Are network motifs the spandrels of cellular complexity?   总被引:1,自引:0,他引:1  
Cellular networks display modular organization at different levels, from small sets of genes exchanging signals in morphogenesis to large groups of proteins involved in cell death. At the smallest scale, minute groups of interacting proteins or genes, so-called 'network motifs', have been suggested to be the functional building blocks of network biology. In this context, the relative abundance of a network motif would reflect its adaptive value. However, although the overabundance of motifs is non-random, recent studies by Mazurie et al. and by Kuo et al. show that motif abundance does not reflect their true adaptive value. Just as some architectural components emerge as a byproduct of a prior decision, common motifs might be a side effect of inevitable rules of genome growth and change.  相似文献   

6.
7.
Li XJ 《Molecular neurobiology》1999,20(2-3):111-124
Huntington's disease (HD) is an inherited neurodegenerative disorder that affects about one in 10,000 individuals in North America. The genetic defect responsible for the disease is an expansion of a CAG repeat that encodes a polyglutamine tract in the expressed protein, huntingtin. The disease is characterized by involuntary movements, cognitive impairment, and emotional disturbance. Despite the widespread expression of huntingtin, the brains of HD patients show selective neuronal loss in the striatum and the deep layers of the cerebral cortex. Recent studies have shown that polyglutamine expansion causes huntingtin to aggregate, to accumulate in the nucleus, and to interact abnormally with other proteins. Several cellular and animal models for HD have revealed that intranuclear accumulation of mutant huntingtin and the formation of neuropil aggregates precede neurological symptoms and neurodegeneration. Intranuclear huntingtin may affect nuclear function and the expression of genes important for neuronal function, whereas neuropil aggregates may interfere with neuritic transport and function. These early pathological events, which occur in the absence of neurodegeneration, may contribute to the neurological symptoms of HD and ultimately lead to neuronal cell death.  相似文献   

8.
It is generally accepted that the permanent arrest of cell division known as cellular senescence contributes to aging by an antagonistic pleiotropy mechanism: cellular senescence would act beneficially early in life by suppressing cancer, but detrimentally later on by causing frailty and, paradoxically, cancer. In this review, we show that there is room to rethink this common view. We propose a critical appraisal of the arguments commonly brought in support of it, and we qualitatively analyse published results that are of relevance to understand whether or not cellular senescence-associated genes really act in an antagonistic-pleiotropic manner in humans.  相似文献   

9.
Seven polyamine conjugates of a tri(p-carboranylmethylthio)tetrafluorophenylporphyrin were prepared in high yields by sequential substitution of the p-phenyl fluoride of tetrakis(pentafluorophenyl)porphyrin (TPPF), and investigated as boron delivery agents for boron neutron capture therapy (BNCT). The polyamines used were derivatives of the natural-occurring spermine with different lengths of the carbon chains, terminal primary amine groups and, in two of the conjugates, additional aminoethyl moieties. A tri(polyethylene glycol) conjugate was also synthesized for comparison purposes. The polyamine conjugates showed low dark cytotoxicity (IC50 >400 μM) and low phototoxicity (IC50 >40 μM at 1.5 J/cm2). All polyamine conjugates, with one exception, showed higher uptake into human glioma T98G cells (up to 12-fold) than the PEG conjugate, and localized preferentially in the cell ER, Golgi and the lysosomes. Our results show that spermine derivatives can serve as effective carriers of boronated porphyrins for the BNCT of tumors.  相似文献   

10.
11.
A spin-label method is described for the quantitative assay of lipid incorporation into biological membranes, using computer difference spectroscopy. The incorporation of spin-labeled sphingomyelin into synaptic plasma membranes from calf brain has been studied as a function of sonication time. The spin-label ESR spectra are able to distinguish labeled sphingomyelin which is integrated into the membrane, from the unincorporated label, even if the latter cosediments with the membranes. Spectral subtraction has been used to quantitate the degree of incorporation. The percentage of incorporation increases with increasing sonication time and also with incubation after sonication. The extent of degradation of tritium-labeled sphingomyelin by the neutral sphingomyelinase present in the membrane closely correlates with the dependence of the incorporation of the spin-labeled sphingomyelin on sonication time. This illustrates the utility of the method in the study of membrane-bound, lipid-metabolizing enzymes.  相似文献   

12.
13.
It has been a decade since the discovery of human DNA polymerase ι (polι). Since that time, the enzyme has been characterized extensively at the biochemical level, but the cellular function of polι remains enigmatic. Recent studies on polι have, however, provided much needed insights into its biological role(s) and suggest that the enzyme plays important functions in protecting humans from the deleterious consequences of exposure to both oxidative- and ultraviolet light-induced DNA damage.  相似文献   

14.
β-Lactoglobulin (BLG) is a member of the lipocalin protein family and a major food-borne allergen in humans. Numerous in vitro studies have suggested a role for BLG in molecular transport processes; however, its physiological role remains enigmatic. A cellular receptor for BLG has been proposed, but has not yet been identified. Here we show that human LIMR, known to act as an endocytic receptor for lipocalin-1, also binds bovine BLG and mediates its cellular uptake. The specificity of this interaction is corroborated by a complete block of cellular uptake of BLG in the presence of LIMR antibodies or LIMR downregulation by antisense RNA. Furthermore, heterologous expression of human LIMR in insect cells mediates cellular internalization of FITC-BLG. Since LIMR is highly expressed in the human intestine, it might also function in the uptake of food-borne BLG.  相似文献   

15.
Why do cells age? Recent advances show that the cytoplasm is organized into many membrane‐less compartments via a process known as phase separation, which ensures spatiotemporal control over diffusion‐limited biochemical reactions. Although phase separation is a powerful mechanism to organize biochemical reactions, it comes with the trade‐off that it is extremely sensitive to changes in physical‐chemical parameters, such as protein concentration, pH, or cellular energy levels. Here, we highlight recent findings showing that age‐related neurodegenerative diseases are linked to aberrant phase transitions in neurons. We discuss how these aberrant phase transitions could be tied to a failure to maintain physiological physical‐chemical conditions. We generalize this idea to suggest that the process of cellular aging involves a progressive loss of the organization of phase‐separated compartments in the cytoplasm.
  相似文献   

16.
A recently developed dose-survival assay using human G0 T lymphocytes from peripheral blood was employed to assess possible interindividual variation of cellular radiosensitivity by comparing variability between a single test for different individuals and repeated tests for a single donor. The surviving fraction at each X-ray dose level fluctuated similarly between the two groups, and the X-ray dose required to kill 90% of the cells (D10) was 3.59 +/- 0.18 Gy (mean +/- SD) for 31 different individuals and 3.66 +/- 0.21 Gy for 28 repeated tests of one individual. Analysis of variance to compare the two sets of data showed that variation in the D10 value was not significantly greater in the former group. Analysis of D50 and D90 showed similar results. These results support the hypothesis that interindividual variation in cellular radiosensitivity is quite small, if it exists at all, as far as can be determined by the loss of colony-forming ability of irradiated G0 lymphocytes.  相似文献   

17.
Classically, Parkinson's disease (PD) is linked to dopamine neuron death in the substantia nigra pars compacta. Intracytoplasmic protein inclusions named Lewy bodies, and corresponding Lewy neurites found in neuronal processes, are also key features of the degenerative process in the substantia nigra. The molecular mechanisms by which substantia nigra dopamine neurons die and whether the Lewy pathology is directly involved in the cell death pathway are open questions. More recently, it has become apparent that Lewy pathology gradually involves greater parts of the PD brain and is widespread in late stages. In this review, we first discuss the role of misfolded α-synuclein protein, which is the main constituent of Lewy bodies, in the pathogenesis of PD. We then describe recent evidence that α-synuclein might transfer between cells in PD brains. We discuss in detail the possible molecular mechanisms underlying the proposed propagation and the likely consequences for cells that take up α-synuclein. Finally, we focus on aspects of the pathogenic process that could be targeted with new pharmaceutical therapies or used to develop biomarkers for early PD detection.  相似文献   

18.
19.
Aggresomes and Russell bodies. Symptoms of cellular indigestion?   总被引:10,自引:0,他引:10  
Kopito RR  Sitia R 《EMBO reports》2000,1(3):225-231
All cells are equipped with a proteolytic apparatus that eliminates damaged, misfolded and incorrectly assembled proteins. The principal engine of cytoplasmic proteolysis, the 26S proteasome, requires that substrates be unfolded to gain access to the active site; consequently, it is relatively ineffective at degrading aggregated proteins. Cellular indigestion occurs when the production of aggregation-prone proteins exceeds the cell’s (or organelle’s) capacity to eliminate them. Cellular pathways that resolve this indigestion exist, but appear to have limited capacities. Russell bodies and aggresomes are manifestations of cellular indigestion in the endoplasmic reticulum and cytoplasmic compartments, respectively, and are often associated with disease.  相似文献   

20.
Mass spectrometry(MS)-based omics technologies are now widely used to profile small molecules in multiple matrices to confer comprehensive snapshots of cellular metabolic phenotypes.The metabolomes of cells,tissues,and organisms comprise a variety of molecules including lipids,amino acids,sugars,organic acids,and so on.Metabolomics mainly focus on the hydrophilic classes,while lipidomics has emerged as an independent omics owing to the complexities of the organismal lipidomes.The potential roles of lipids and small metabolites in disease pathogenesis have been widely investigated in various human diseases,but system-level understanding is largely lacking,which could be partly attributed to the insufficiency in terms of metabolite coverage and quantitation accuracy in current analytical technologies.While scientists are continuously striving to develop high-coverage omics approaches,integration of metabolomics and lipidomics is becoming an emerging approach to mechanistic investigation.Integration of metabolome and lipidome offers a complete atlas of the metabolic landscape,enabling comprehensive network analysis to identify critical metabolic drivers in disease pathology,facilitating the study of interconnection between lipids and other metabolites in disease progression.In this review,we summarize omics-based findings on the roles of lipids and metabolites in the pathogenesis of selected major diseases threatening public health.We also discuss the advantages of integrating lipidomics and metabolomics for in-depth understanding of molecular mechanism in disease pathogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号