首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.

Introduction

The repair capability of traumatized articular cartilage is highly limited so that joint injuries often lead to osteoarthritis. Migratory chondrogenic progenitor cells (CPC) might represent a target cell population for in situ regeneration. This study aims to clarify, whether 1) CPC are present in regions of macroscopically intact cartilage from human osteoarthritic joints, 2) CPC migration is stimulated by single growth factors and the cocktail of factors released from traumatized cartilage and 3) CPC migration is influenced by cytokines present in traumatized joints.

Methods

We characterized the cells growing out from macroscopically intact human osteoarthritic cartilage using a panel of positive and negative surface markers and analyzed their differentiation capacity. The migratory response to platelet-derived growth factor (PDGF)-BB, insulin-like growth factor 1 (IGF-1), supernatants obtained from in vitro traumatized cartilage and interleukin-1 beta (IL-1β) as well as tumor necrosis factor alpha (TNF-α) were tested with a modified Boyden chamber assay. The influence of IL-1β and TNF-α was additionally examined by scratch assays and outgrowth experiments.

Results

A comparison of 25 quadruplicate marker combinations in CPC and bone-marrow derived mesenchymal stromal cells showed a similar expression profile. CPC cultures had the potential for adipogenic, osteogenic and chondrogenic differentiation. PDGF-BB and IGF-1, such as the supernatant from traumatized cartilage, induced a significant site-directed migratory response. IL-1β and TNF-α significantly reduced basal cell migration and abrogated the stimulative effect of the growth factors and the trauma supernatant. Both cytokines also inhibited cell migration in the scratch assay and primary outgrowth of CPC from cartilage tissue. In contrast, the cytokine IL-6, which is present in trauma supernatant, did not affect growth factor induced migration of CPC.

Conclusion

These results indicate that traumatized cartilage releases chemoattractive factors for CPC but IL-1β and TNF-α inhibit their migratory activity which might contribute to the low regenerative potential of cartilage in vivo.  相似文献   

2.

Background

IL-9 is a growth factor for T- and mast-cells that is secreted by human Th2 cells. We recently reported that IL-4+TGF-β directs mouse CD4+CD25CD62L+ T cells to commit to inflammatory IL-9 producing CD4+ T cells.

Methodology/Principal Findings

Here we show that human inducible regulatory T cells (iTregs) also express IL-9. IL-4+TGF-β induced higher levels of IL-9 expression in plate bound-anti-CD3 mAb (pbCD3)/soluble-anti-CD28 mAb (sCD28) activated human resting memory CD4+CD25CD45RO+ T cells as compared to naïve CD4+CD25CD45RA+ T cells. In addition, as compared to pbCD3/sCD28 plus TGF-β stimulation, IL-4+TGF-β stimulated memory CD4+CD25CD45RO+ T cells expressed reduced FOXP3 protein. As analyzed by pre-amplification boosted single-cell real-time PCR, human CD4+IL-9+ T cells expressed GATA3 and RORC, but not IL-10, IL-13, IFNγ or IL-17A/F. Attempts to optimize IL-9 production by pbCD3/sCD28 and IL-4+TGF-β stimulated resting memory CD4+ T cells demonstrated that the addition of IL-1β, IL-12, and IL-21 further enhance IL-9 production.

Conclusions/Significance

Taken together these data show both the differences and similarities between mouse and human CD4+IL9+ T cells and reaffirm the powerful influence of inflammatory cytokines to shape the response of activated CD4+ T cells to antigen.  相似文献   

3.

Background/Objective

Phosphatidylserine (PS) exposed on apoptotic cells has been shown to stimulate production of transforming growth factor-β (TGF-β) and promote anti-inflammatory responses. However, the PS receptor(s) responsible for this induction has not been clearly determined.

Methodology/Principal Findings

In the present study, using RAWTβRII cells in which a truncated dominant negative TGF-β receptor II was stably transfected in order to avoid auto-feedback induction of TGF-β, we show that TGF-β1 synthesis is initiated via activation of the scavenger receptor, CD36. The response requires exposure of PS on the apoptotic cell surface and was absent in macrophages lacking CD36. Direct activation of CD36 with an anti-CD36 antibody initiated TGF-β1 production, and signaling pathways involving both Lyn kinase and ERK1/2 were shown to participate in CD36-driven TGF-β1 expression.

Conclusion/Significance

Since CD36 has been previously implicated in activation of secreted latent TGF-β, the present study indicates its role in the multiple steps to generation of this important biological mediator.  相似文献   

4.

Background

Hepatitis C Virus (HCV) is remarkably efficient at establishing persistent infection and is associated with the development of chronic liver disease. Impaired T cell responses facilitate and maintain persistent HCV infection. Importantly, CD4+ regulatory T cells (Tregs) act by dampening antiviral T cell responses in HCV infection. The mechanism for induction and/or expansion of Tregs in HCV is unknown.

Methodology/Principal Findings

HCV-expressing hepatocytes were used to determine if hepatocytes are able to induce Tregs. The infected liver environment was modeled by establishing the co-culture of the human hepatoma cell line, Huh7.5, containing the full-length genome of HCV genotype 1a (Huh7.5-FL) with activated CD4+ T cells. The production of IFN-γ was diminished following co-culture with Huh7.5-FL as compared to controls. Notably, CD4+ T cells in contact with Huh7.5-FL expressed an increased level of the Treg markers, CD25, Foxp3, CTLA-4 and LAP, and were able to suppress the proliferation of effector T cells. Importantly, HCV+ hepatocytes upregulated the production of TGF-β and blockade of TGF-β abrogated Treg phenotype and function.

Conclusions/Significance

These results demonstrate that HCV infected hepatocytes are capable of directly inducing Tregs development and may contribute to impaired host T cell responses.  相似文献   

5.

Background

Pulmonary hypertension (PH) is a disease of multiple etiologies with several common pathological features, including inflammation and pulmonary vascular remodeling. Recent evidence has suggested a potential role for the recruitment of bone marrow-derived (BMD) progenitor cells to this remodeling process. We recently demonstrated that hypoxia-induced mitogenic factor (HIMF/FIZZ1/RELMα) is chemotactic to murine bone marrow cells in vitro and involved in pulmonary vascular remodeling in vivo.

Methodology/Principal Findings

We used a mouse bone marrow transplant model in which lethally irradiated mice were rescued with bone marrow transplanted from green fluorescent protein (GFP)+ transgenic mice to determine the role of HIMF in recruiting BMD cells to the lung vasculature during PH development. Exposure to chronic hypoxia and pulmonary gene transfer of HIMF were used to induce PH. Both models resulted in markedly increased numbers of BMD cells in and around the pulmonary vasculature; in several neomuscularized small (∼20 µm) capillary-like vessels, an entirely new medial wall was made up of these cells. We found these GFP+ BMD cells to be positive for stem cell antigen-1 and c-kit, but negative for CD31 and CD34. Several of the GFP+ cells that localized to the pulmonary vasculature were α-smooth muscle actin+ and localized to the media layer of the vessels. This finding suggests that these cells are of mesenchymal origin and differentiate toward myofibroblast and vascular smooth muscle. Structural location in the media of small vessels suggests a functional role in the lung vasculature. To examine a potential mechanism for HIMF-dependent recruitment of mesenchymal stem cells to the pulmonary vasculature, we performed a cell migration assay using cultured human mesenchymal stem cells (HMSCs). The addition of recombinant HIMF induced migration of HMSCs in a phosphoinosotide-3-kinase-dependent manner.

Conclusions/Significance

These results demonstrate HIMF-dependent recruitment of BMD mesenchymal-like cells to the remodeling pulmonary vasculature.  相似文献   

6.

Background

Mesenchymal stem cells (MSCs) promote tumor growth by differentiating into carcinoma-associated fibroblasts (CAFs) and composing the tumor microenvironment. However, the mechanisms responsible for the transition of MSCs to CAFs are not well understood. Exosomes regulate cellular activities by mediating cell-cell communication. In this study, we aimed to investigate whether cancer cell-derived exosomes were involved in regulating the differentiation of human umbilical cord-derived MSCs (hucMSCs) to CAFs.

Methodology/Principal Findings

We first showed that gastric cancer cell-derived exosomes induced the expression of CAF markers in hucMSCs. We then demonstrated that gastric cancer cell-derived exosomes stimulated the phosphorylation of Smad-2 in hucMSCs. We further confirmed that TGF-β receptor 1 kinase inhibitor attenuated Smad-2 phosphorylation and CAF marker expression in hucMSCs after exposure to gastric cancer cell-derived exosomes.

Conclusion/Significance

Our results suggest that gastric cancer cells triggered the differentiation of hucMSCs to CAFs by exosomes-mediated TGF-β transfer and TGF-β/Smad pathway activation, which may represent a novel mechanism for MSCs to CAFs transition in cancer.  相似文献   

7.
8.

Background

Chronic hepatitis C virus (HCV) infection and associated liver cirrhosis represent a major risk factor for hepatocellular carcinoma (HCC) development. TGF-β is an important driver of liver fibrogenesis and cancer; however, its actual impact in human cancer progression is still poorly known. The aim of this study was to investigate the role of HCC-derived HCV core natural variants on cancer progression through their impact on TGF-β signaling.

Principal Findings

We provide evidence that HCC-derived core protein expression in primary human or mouse hepatocyte alleviates TGF-β responses in terms or growth inhibition or apoptosis. Instead, in these hepatocytes TGF-β was still able to induce an epithelial to mesenchymal transition (EMT), a process that contributes to the promotion of cell invasion and metastasis. Moreover, we demonstrate that different thresholds of Smad3 activation dictate the TGF-β responses in hepatic cells and that HCV core protein, by decreasing Smad3 activation, may switch TGF-β growth inhibitory effects to tumor promoting responses.

Conclusion/Significance

Our data illustrate the capacity of hepatocytes to develop EMT and plasticity under TGF-β, emphasize the role of HCV core protein in the dynamic of these effects and provide evidence for a paradigm whereby a viral protein implicated in oncogenesis is capable to shift TGF-β responses from cytostatic effects to EMT development.  相似文献   

9.

Background

Transforming growth factor (TGF)-β is involved in many physiologic processes, it often promotes metastasis, and its high expression is correlated with poor prognosis. In the present study, we analyzed the correlation between transforming growth factor beta 1 (TGF-β1) expression and prognosis in intrahepatic cholangiocarcinoma.

Results

We examined the expression of TGF-β1 in 78 intrahepatic cholangiocarcinomas by immunohistochemistry and correlated the expression with clinicopathological parameters. TGF-β1 was expressed in 37 of 78 (47.4 %) intrahepatic cholangiocarcinomas. The expression of TGF-β1 was significantly correlated with lymph node metastasis, distant metastasis, and tumour recurrence. Patients with TGF-β1-positive tumours had significantly shorter survival time. In a multivariant analysis, the expression of TGF-β1 and the tumour stage were independent prognostic factors.

Conclusions

Our data suggest that expression of TGF-β1 is a novel prognostic marker for intrahepatic cholangiocarcinoma.  相似文献   

10.

Background:

The multifunctional transforming growth factor beta (TGF-β) is a glycoprotein that exists in three isoforms. TGF-β3 expression increases in fetal wound healing and reduces fibronectin and collagen I and III deposition, and also improves the architecture of the neodermis which is a combination of blood vessels and connective tissue during wound healing. Fibroblasts are key cells in the wound healing process. TGF-β3 plays a critical role in scar-free wound healing and fibroblast actions in the wound healing process. The aim of this study was to express the TGF-β3 gene (tgf-b3) in human foreskin fibroblasts (HFF’s).

Methods:

We obtained HFF’s from a newborn and a primary fibroblast culture was prepared. The cells were transfected with TGF-β3-pCMV6-XL5 plasmid DNA by both lipofection and electroporation. Expression of TGF-β3 was measured by enzyme-linked immunosorbent assay (ELISA).

Results:

The highest TGF-β3 expression (8.3-fold greater than control) was obtained by lipofection after 72 hours using 3 µl of transfection reagent. Expression was 1.4-fold greater than control by electroporation.

Conclusions:

In this study, we successfully increased TGF-β3 expression in primary fibroblast cells. In the future, grafting these transfected fibroblasts onto wounds can help the healing process without scarring.Key Words: Fibroblasts, Gene expression, TGF-β3  相似文献   

11.

Rationale

TGF-β, a mediator of pulmonary fibrosis, is a genetic modifier of CF respiratory deterioration. The mechanistic relationship between TGF-β signaling and CF lung disease has not been determined.

Objective

To investigate myofibroblast differentiation in CF lung tissue as a novel pathway by which TGF-β signaling may contribute to pulmonary decline, airway remodeling and tissue fibrosis.

Methods

Lung samples from CF and non-CF subjects were analyzed morphometrically for total TGF-β1, TGF-β signaling (Smad2 phosphorylation), myofibroblast differentiation (α-smooth muscle actin), and collagen deposition (Masson trichrome stain).

Results

TGF-β signaling and fibrosis are markedly increased in CF (p<0.01), and the presence of myofibroblasts is four-fold higher in CF vs. normal lung tissue (p<0.005). In lung tissue with prominent TGF-β signaling, both myofibroblast differentiation and tissue fibrosis are significantly augmented (p<0.005).

Conclusions

These studies establish for the first time that a pathogenic mechanism described previously in pulmonary fibrosis is also prominent in cystic fibrosis lung disease. The presence of TGF-β dependent signaling in areas of prominent myofibroblast proliferation and fibrosis in CF suggests that strategies under development for other pro-fibrotic lung conditions may also be evaluated for use in CF.  相似文献   

12.

Background

We have previously reported that repeated treatment of human periodontal ligament cells and murine pre-osteoblast MC3T3-E1 cells with transforming growth factor-beta 1 (TGF-β1) inhibited their osteoblastic differentiation because of decreased insulin-like growth factor-1 (IGF-1) secretion. We also found that IGF-1/PI3K signaling plays an important role in osteoblast differentiation induced by TGF-β1 treatment; however, the downstream signaling controlling this remains unknown. The aim of this current study is to investigate whether Akt activation is required for osteoblast differentiation.

Methodology/Principal Findings

MC3T3-E1 cells were cultured in osteoblast differentiation medium (OBM) with or without 0.1 ng/mL TGF-β1. OBM containing TGF-β1 was changed every 12 h to provide repeated TGF-β1 administration. MC3T3-E1 cells were infected with retroviral vectors expressing constitutively active (CA) or dominant-negative (DN)-Akt. Alkaline phosphatase (ALP) activity and osteoblastic marker mRNA levels were substantially decreased by repeated TGF-β1 treatment compared with a single TGF-β1 treatment. However, expression of CA-Akt restored ALP activity following TGF-β1 treatment. Surprisingly, ALP activity increased following multiple TGF-β1 treatments as the number of administrations of TGF-β1 increased. Activation of Akt significantly enhanced expression of osteocalcin, but TGF-β1 treatment inhibited this. Mineralization of MC3T3-E1 cells was markedly enhanced by CA-Akt expression under all medium conditions. Exogenous IGF-1 restored the down-regulation of osteoblast-related gene expression by repeated TGF-β1 administration. However, in cells expressing DN-Akt, these levels remained inhibited regardless of IGF-1 treatment. These findings indicate that Akt activation is required for the early phase of osteoblast differentiation of MC3T3-E1 cells induced by TGF-β1. However, Akt activation is insufficient to reverse the inhibitory effects of TGF-β1 in the late stages of osteoblast differentiation.

Conclusions

TGF-β1 could be an inducer or an inhibitor of osteoblastic differentiation of MC3T3-E1 cells depending on the state of Akt phosphorylation. Our results indicate that Akt is the molecular switch for TGF-β1-induced osteoblastic differentiation of MC3T3-E1 cells.  相似文献   

13.
14.
15.

Background

Multiple myeloma (MM) expands almost exclusively in the bone marrow and generates devastating bone lesions, in which bone formation is impaired and osteoclastic bone resorption is enhanced. TGF-β, a potent inhibitor of terminal osteoblast (OB) differentiation, is abundantly deposited in the bone matrix, and released and activated by the enhanced bone resorption in MM. The present study was therefore undertaken to clarify the role of TGF-β and its inhibition in bone formation and tumor growth in MM.

Methodology/Principal Findings

TGF-β suppressed OB differentiation from bone marrow stromal cells and MC3T3-E1 preosteoblastic cells, and also inhibited adipogenesis from C3H10T1/2 immature mesenchymal cells, suggesting differentiation arrest by TGF-β. Inhibitors for a TGF-β type I receptor kinase, SB431542 and Ki26894, potently enhanced OB differentiation from bone marrow stromal cells as well as MC3T3-E1 cells. The TGF-β inhibition was able to restore OB differentiation suppressed by MM cell conditioned medium as well as bone marrow plasma from MM patients. Interestingly, TGF-β inhibition expedited OB differentiation in parallel with suppression of MM cell growth. The anti-MM activity was elaborated exclusively by terminally differentiated OBs, which potentiated the cytotoxic effects of melphalan and dexamethasone on MM cells. Furthermore, TGF-β inhibition was able to suppress MM cell growth within the bone marrow while preventing bone destruction in MM-bearing animal models.

Conclusions/Significance

The present study demonstrates that TGF-β inhibition releases stromal cells from their differentiation arrest by MM and facilitates the formation of terminally differentiated OBs, and that terminally differentiated OBs inhibit MM cell growth and survival and enhance the susceptibility of MM cells to anti-MM agents to overcome the drug resistance mediated by stromal cells. Therefore, TGF-β appears to be an important therapeutic target in MM bone lesions.  相似文献   

16.

Background

Renal fibrosis is the final common pathway of chronic kidney disease (CKD). Moesin is a member of Ezrin/Radixin/Moesin (ERM) protein family but its role in renal fibrosis is not clear.

Method

Human proximal tubular cells (HK-2) were stimulated with or without TGF-β1. Moesin and downstream target genes were examined by real-time PCR and western blot. Phosphorylation of moesin and related signaling pathway was investigated as well. Rat model of unilateral ureteral obstruction (UUO) was established and renal moesin was examined by immunohistochemistry. Moesin in HK-2 cells were knocked down by siRNA and change of downstream genes in transfected HK-2 cells was studied. All animal experiments were reviewed and approved by the Ethics Committee for animal care of Ruijin Hospital.

Result

HK-2 cells stimulated with TGF-β1 showed up-regulated level of α-SMA and down-regulated level of E-Cadherin as well as elevated mRNA and protein level of moesin. In rat model of UUO, renal moesin expression increased in accordance with severity of tubulointerestital fibrosis in the kidneys with ureteral ligation while the contralateral kidneys were normal. Further study showed that TGF-β1 could induce phosphorylation of moesin which depended on Erk signaling pathway and Erk inhibitor PD98059 could block moesin phosphorylation. Effects of TGF-β1 on moesin phosphorylation was prior to its activation to total moesin. RNA silencing studies showed that knocking down of moesin could attenuate decrease of E-Cadherin induced by TGF-β1.

Conclusion

We find that moesin might be involved in renal fibrosis and its effects could be related to interacting with E-Cadherin.  相似文献   

17.

Background

Bone marrow-derived endothelial progenitor cells (EPCs) are critical for neovascularization. We hypothesized that microparticles (MPs), small fragments generated from the plasma membrane, can activate angiogenic programming of EPCs.

Methodology/Principal Findings

We studied the effects of MPs obtained from wild type (MPsPPARα+/+) and knock-out (MPsPPARα−/−) mice on EPC differentiation and angiogenesis. Bone marrow-derived cells were isolated from WT or KO mice and were cultured in the presence of MPsPPARα+/+ or MPsPPARα−/− obtained from blood of mice. Only MPsPPARα+/+ harboring PPARα significantly increased EPC, but not monocytic, differentiation. Bone marrow-derived cells treated with MPsPPARα+/+ displayed increased expression of pro-angiogenic genes and increased in vivo angiogenesis. MPsPPARα+/+ increased capillary-like tube formation of endothelial cells that was associated with enhanced expressions of endothelial cell-specific markers. Finally, the effects of MPsPPARα+/+ were mediated by NF-κB-dependent mechanisms.

Conclusions/Significance

Our results underscore the obligatory role of PPARα carried by MPs for EPC differentiation and angiogenesis. PPARα-NF-κB-Akt pathways may play a pivotal stimulatory role for neovascularization, which may, at least in part, be mediated by bone marrow-derived EPCs. Improvement of EPC differentiation may represent a useful strategy during reparative neovascularization.  相似文献   

18.

Background

There is a major discrepancy between the in vitro and in vivo results regarding the role of β1 integrins in the maintenance of epidermal stem/progenitor cells. Studies of mice with skin-specific ablation of β1 integrins suggested that epidermis can form and be maintained in their absence, while in vitro data have shown a fundamental role for these adhesion receptors in stem/progenitor cell expansion and differentiation.

Methodology/Principal Findings

To elucidate this discrepancy we generated hypomorphic mice expressing reduced β1 integrin levels on keratinocytes that developed similar, but less severe defects than mice with β1-deficient keratinocytes. Surprisingly we found that upon aging these abnormalities attenuated due to a rapid expansion of cells, which escaped or compensated for the down-regulation of β1 integrin expression. A similar phenomenon was observed in aged mice with a complete, skin-specific ablation of the β1 integrin gene, where cells that escaped Cre-mediated recombination repopulated the mutant skin in a very short time period. The expansion of β1 integrin expressing keratinocytes was even further accelerated in situations of increased keratinocyte proliferation such as wound healing.

Conclusions/Significance

These data demonstrate that expression of β1 integrins is critically important for the expansion of epidermal progenitor cells to maintain epidermal homeostasis.  相似文献   

19.
20.

Background

Tumor-derived microvesicles (TMV) or exosomes are present in body fluids of patients with cancer and might be involved in tumor progression. The frequency and suppressor functions of peripheral blood CD4+CD25highFOXP3+ Treg are higher in patients with cancer than normal controls. The hypothesis is tested that TMV contribute to induction/expansion/and activation of human Treg.

Methodology/Principal Findings

TMV isolated from supernatants of tumor cells but not normal cells induced the generation and enhanced expansion of human Treg. TMV also mediated conversion of CD4+CD25neg T cells into CD4+CD25highFOXP3+ Treg. Upon co-incubation with TMV, Treg showed an increased FasL, IL-10, TGF-β1, CTLA-4, granzyme B and perforin expression (p<0.05) and mediated stronger suppression of responder cell (RC) proliferation (p<0.01). Purified Treg were resistant to TMV-mediated apoptosis relative to other T cells. TMV also increased phospho-SMAD2/3 and phospho-STAT3 expression in Treg. Neutralizing Abs specific for TGF-β1 and/or IL-10 significantly inhibited TMV ability to expand Treg.

Conclusions/Significance

This study suggests that TMV have immunoregulatory properties. They induce Treg, promote Treg expansion, up-regulate Treg suppressor function and enhance Treg resistance to apoptosis. Interactions of TMV with Treg represent a newly-defined mechanism that might be involved in regulating peripheral tolerance by tumors and in supporting immune evasion of human cancers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号