首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.

Background

CD8+ T cells (Cytotoxic T cells, Tc) are known to play a critical role in the pathogenesis of smoking related airway inflammation including chronic obstructive pulmonary disease (COPD). However, how cigarette smoke directly impacts systematic CD8+ T cell and regulatory T cell (Treg) subsets, especially by modulating muscarinic acetylcholine receptors (MRs), has yet to be well elucidated.

Methods

Circulating CD8+ Tc/Tregs in healthy nonsmokers (n = 15), healthy smokers (n = 15) and COPD patients (n = 18) were evaluated by flow cytometry after incubating with anti-CD3, anti-CD8, anti-CD25, anti-Foxp3 antibodies. Peripheral blood T cells (PBT cells) from healthy nonsmokers were cultured in the presence of cigarette smoke extract (CSE) alone or combined with MRs agonist/antagonist for 5 days. Proliferation and apoptosis were evaluated by flow cytometry using Ki-67/Annexin-V antibodies to measure the effects of CSE on the survival of CD8+ Tc/Tregs.

Results

While COPD patients have elevated circulating percentage of CD8+ T cells, healthy smokers have higher frequency of CD8+ Tregs. Elevated percentages of CD8+ T cells correlated inversely with declined FEV1 in COPD. CSE promoted the proliferation and inhibited the apoptosis of CD8+ T cells, while facilitated both the proliferation and apoptosis of CD8+ Tregs. Notably, the effects of CSE on CD8+ Tc/Tregs can be mostly simulated or attenuated by muscarine and atropine, the MR agonist and antagonist, respectively. However, neither muscarine nor atropine influenced the apoptosis of CD8+ Tregs.

Conclusion

The results imply that cigarette smoking likely facilitates a proinflammatory state in smokers, which is partially mediated by MR dysfunction. The MR antagonist may be a beneficial drug candidate for cigarette smoke-induced chronic airway inflammation.  相似文献   

2.

Background

CD8+ T-lymphocytes, natural killer T-like cells (NKT-like cells, CD56+CD3+) and natural killer cells (NK cells, CD56+CD3) are the three main classes of human killer cells and they are implicated in the pathogenesis of chronic obstructive pulmonary disease (COPD). Activation of these cells can initiate immune responses by virtue of their production of inflammatory cytokines and chemokines that cause lung tissue damage, mucus hypersecretion and emphysema. The objective of the current study was to investigate the activation levels of human killer cells in healthy non-smokers, healthy smokers, ex-smokers with COPD and current smokers with COPD, in both peripheral blood and induced sputum.

Methods/Principal Findings

After informed consent, 124 participants were recruited into the study and peripheral blood or induced sputum was taken. The activation states and receptor expression of killer cells were measured by flow cytometry. In peripheral blood, current smokers, regardless of disease state, have the highest proportion of activated CD8+ T-lymphocytes, NKT-like cells and NK cells compared with ex-smokers with COPD and healthy non-smokers. Furthermore, CD8+ T-lymphocyte and NK cell activation is positively correlated with the number of cigarettes currently smoked. Conversely, in induced sputum, the proportion of activated killer cells was related to disease state rather than current smoking status, with current and ex-smokers with COPD having significantly higher rates of activation than healthy smokers and healthy non-smokers.

Conclusions

A differential effect in systemic and lung activation of killer cells in COPD is evident. Systemic activation appears to be related to current smoking whereas lung activation is related to the presence or absence of COPD, irrespective of current smoking status. These findings suggest that modulating killer cell activation may be a new target for the treatment of COPD.  相似文献   

3.
The generation of robust T-cell-dependent humoral immune responses requires the formation and expansion of germinal center structures within the follicular regions of the secondary lymphoid tissues. B-cell proliferation in the germinal center drives ongoing antigen-dependent selection and the generation of high-affinity class-switched plasma and memory B cells. However, the mechanisms regulating B-cell proliferation within this microenvironment are largely unknown. Here, we report that cyclin D3 is uniquely required for germinal center progression. Ccnd3(-/-) mice exhibit a B-cell-intrinsic defect in germinal center maturation and fail to generate an affinity-matured IgG response. We determined that the defect resulted from failed proliferative expansion of GL7(+) IgD(-) PNA(+) B cells. Mechanistically, sustained expression of cyclin D3 was found to be regulated at the level of protein stability and controlled by glycogen synthase kinase 3 in a cyclic AMP-protein kinase A-dependent manner. The specific defect in proliferative expansion of GL7(+) IgD(-) PNA(+) B cells in Ccnd3(-/-) mice defines an underappreciated step in germinal center progression and solidifies a role for cyclin D3 in the immune response, and as a potential therapeutic target for germinal center-derived B-cell malignancies.  相似文献   

4.
Cigarette smoking results in an oxidant/antioxidant imbalance in the lungs and inflammation, which are considered to be key factors in the pathogenesis of chronic obstructive pulmonary disease (COPD). Glutathione (GSH) is an important protective antioxidant in lung epithelial cells and epithelial lining fluid. De novo GSH synthesis in cells occurs by a two-enzyme process. The rate-limiting enzyme is gamma-glutamylcysteine synthetase (gamma-GCS), in which the heavy subunit (HS) constitutes most of its catalytic activity. The localization and expression of gamma-GCS-HS in specific lung cells as well as possible differences in its expression between smokers with and without COPD have not yet been studied. The purpose of this study was to investigate gamma-GCS-HS expression using messenger RNA in situ hybridization in peripheral lung tissue. We studied 23 current or ex-smokers with similar smoking histories with (n = 11; forced expiratory volume in 1 s [FEV(1)] < 75% predicted) or without COPD (n = 12; FEV(1) < 84% predicted). We assessed the relations between pulmonary gamma-GCS-HS expression, FEV(1) and transforming growth factor-beta1 (TGFbeta(1)), because TGFbeta(1) can modulate gamma-GCS-HS expression in lung epithelial cells. Gamma-GCS-HS is predominantly expressed by airway and alveolar epithelial cells, alveolar CD68+ cells (macrophages), and endothelial cells of both arteries and veins. In subjects with COPD, semiquantitative analysis revealed higher levels of gamma-GCS-HS messenger RNA in alveolar epithelium (1.5 times, p <.04) and a trend for a higher expression in bronchiolar epithelium (1.3 times, p =.075) compared with subjects without COPD. We did not observe a significant correlation between airway and alveolar epithelial gamma-GCS-HS expression and TGFbeta(1) expression (r =.20), FEV(1) percentage predicted (r =.18), or FEV(1)/forced vital capacity ratio (r =.14; p.05). Our results show that gamma-GCS-HS is localized, particularly in lung epithelium, and shows higher expression in smokers with COPD. This suggests a specific role for enhanced GSH synthesis as a mechanism to provide an adaptive response against oxidative stress in patients with COPD.  相似文献   

5.
BackgroundGoblet cell hyperplasia is a classic but variable pathologic finding in COPD. Current literature shows that smoking is a risk factor for chronic bronchitis but the relationship of these clinical features to the presence and magnitude of large airway goblet cell hyperplasia has not been well described. We hypothesized that current smokers and chronic bronchitics would have more goblet cells than nonsmokers or those without chronic bronchitis (CB), independent of airflow obstruction.MethodsWe recruited 15 subjects with moderate to severe COPD, 12 healthy smokers, and 11 healthy nonsmokers. Six endobronchial mucosal biopsies per subject were obtained by bronchoscopy and stained with periodic acid Schiff-Alcian Blue. Goblet cell density (GCD) was quantified as goblet cell number per millimeter of basement membrane. Mucin volume density (MVD) was quantified as volume of mucin per unit area of basement membrane.ResultsHealthy smokers had a greater GCD and MVD than nonsmokers and COPD subjects. COPD subjects had a greater GCD than nonsmokers. When current smokers (healthy smokers and COPD current smokers, n = 19) were compared with all nonsmokers (nonsmoking controls and COPD ex-smokers, n = 19), current smokers had a greater GCD and MVD. When those with CB (n = 12) were compared to those without CB (n = 26), the CB group had greater GCD. This finding was also seen in those with CB in the COPD group alone. In multivariate analysis, current smoking and CB were significant predictors of GCD using demographics, lung function, and smoking pack years as covariates. All other covariates were not significant predictors of GCD or MVD.ConclusionsCurrent smoking is associated with a more goblet cell hyperplasia and number, and CB is associated with more goblet cells, independent of the presence of airflow obstruction. This provides clinical and pathologic correlation for smokers with and without COPD.  相似文献   

6.
Extracellular superoxide dismutase (ECSOD) is the major superoxide-scavenging enzyme in the lung. Certain ECSOD polymorphisms are protective against COPD. We postulated that smokers and COPD subjects would have altered levels of ECSOD in the lung, airway secretions, and/or plasma. Lung tissue ECSOD was evaluated from nonsmokers, smokers, and subjects with mild to very severe COPD by Western blot, immunohistochemistry, and ELISA. ECSOD levels in plasma, bronchoalveolar lavage fluid (BALF), and induced-sputum supernatants were analyzed by ELISA and correlated with smoking history and disease status. Immunohistochemistry identified ECSOD in extracellular matrix around bronchioles, arteries, and alveolar walls, with decreases seen in the interstitium and vessels of severe COPD subjects using digital image analysis. Plasma ECSOD did not differ between COPD subjects and controls nor based on smoking status. ECSOD levels in induced sputum supernatants were elevated in current smokers and especially in COPD subjects compared to nonsmokers, whereas corresponding changes could not be seen in the BALF. ECSOD expression was reduced around vessels and bronchioles in COPD lungs. Substantial increases in sputum ECSOD in smokers and COPD is interpreted as an adaptive response to increased oxidative stress and may be a useful biomarker of disease activity in COPD.  相似文献   

7.
Merkel D  Rist W  Seither P  Weith A  Lenter MC 《Proteomics》2005,5(11):2972-2980
Bronchoalveolar lavage fluid (BALF) is an important diagnostic source to investigate cellular and molecular changes in the course of lung disorders. The pattern of soluble proteins in BALF obtained from patients at different stages of respiratory disorders may provide deeper insights in the molecular mechanisms of the disease. We used surface-enhanced laser desorption/ionization mass spectrometry (MS) for differential protein display combined with reversed-phase chromatography and subsequent matrix-assisted laser desorption/ionization-MS or nanoliquid chromatography MS/MS analysis for protein identification to compare the protein pattern of BALF samples obtained from ten smokers suffering from chronic obstructive pulmonary disease (COPD), eight clinically asymptomatic smokers, and eight nonsmokers without pulmonary disease. In this context, we were able to identify small proteins and peptides, either differentially expressed or secreted in the course of COPD or in a direct response to cigarette smoke. The concentrations of neutrophil defensins 1 and 2, S100A8 (calgranulin A), and S100A9 (calgranulin B) were elevated in BALFs of smokers with COPD when compared to asymptomatic smokers. Increased concentrations in S100A8 (Calgranulin A), salivary proline-rich peptide P-C, and lysozyme C were detected in BALFs of asymptomatic smokers when compared to nonsmokers, whereas salivary proline-rich peptide P-D and Clara cell phospholipid-binding protein (CC10) were reduced in their concentration. The identified proteins and peptides might be useful in the future as diagnostic markers for smoke-induced lung irritations and COPD.  相似文献   

8.
BackgroundConflicting data exist on the role of pulmonary dendritic cells (DCs) and their maturation in patients with chronic obstructive pulmonary disease (COPD). Herein, we investigated whether disease severity and smoking status could affect the distribution and maturation of DCs in lung tissues of patients undergoing elective pneumectomy or lobectomy for suspected primary lung cancer.ResultsCOPD was diagnosed in 43 patients (16 current smokers and 27 former smokers), whereas the remaining 32 subjects were classified as non-COPD (11 current smokers, 13 former smokers, and 8 never smokers). The number and maturation of DCs did not differ significantly between COPD and non-COPD patients. However, the results of flow cytometry indicated that maturation markers CD40 and CD83 of BDCA1-positive mDCs were significantly decreased in smokers than in non-smokers (P = 0.023 and 0.013, respectively). Immunohistochemistry also revealed a lower number of LDCs in COPD patients than in non-COPD subjects.ConclusionsCigarette smoke, rather than airflow limitation, is the main determinant of impaired DCs maturation in the lung.  相似文献   

9.
Epstein-Barr virus (EBV) is a ubiquitous human herpesvirus that persists in the body for life after primary infection. The primary site of EBV persistence is the memory B lymphocyte, but whether the virus initially infects na?ve or memory B cells is still disputed. We have analyzed EBV infection in nine cases of X-linked hyper-immunoglobulin M (hyper-IgM) syndrome who, due to a mutation in CD40 ligand gene, do not have a classical, class-switched memory B-cell population (IgD(-) CD27(+)). We found evidence of EBV infection in 67% of cases, which is similar to the infection rate found in the general United Kingdom population (60 to 70% for the relevant age range). We detected EBV DNA in peripheral blood B cells and showed in one case that the infection was restricted to the small population of nonclassical, germinal center-independent memory B cells (IgD(+) CD27(+)). Detection of EBV small RNAs, latent membrane protein 2, and EBV nuclear antigen 3C expression in peripheral blood suggests full latent viral gene expression in this population. Analysis of EBV DNA in serial samples showed variability over time, suggesting cycles of infection and loss. Our results demonstrate that short-term EBV persistence can occur in the absence of a germinal center reaction and a classical memory B-cell population.  相似文献   

10.
Oxidative stress is a damaging process resulting from an imbalance between excessive generation of oxidant compounds and insufficient antioxidant defence mechanisms. Oxidative stress plays a crucial role in the initiation and progression of cigarette smoke-induced lung injury, deterioration in lung functions, and development of chronic obstructive pulmonary disease (COPD). In smokers and in patients with COPD, the increased oxidant burden derives from cigarette smoke per se, and from activated inflammatory cells releasing enhanced amounts of reactive oxygen and nitrogen species (ROS, RNS, respectively). Although mild oxidative stress resulting from cigarette smoking leads to the upregulation of the antioxidative enzymes synthesis in the lungs, high levels of ROS and RNS observed in patients with COPD overwhelm the antioxidant enzymes capacities, resulting in oxidant-mediated lung injury and cell death. In addition, depletion of antioxidative systems in the systemic circulation was consistently observed in such patients. The imbalance between the generation of ROS/RNS and antioxidant capacities — the state of “oxidative stress” — is one of the major pathophysiologic hallmarks in the development of COPD. Detrimental effects of oxidative stress include impairment of membrane functions, inactivation of membrane-bound receptors and enzymes, and increased tissue permeability. In addition, oxidative stress aggravates the inflammatory processes in the lungs, and contributes to the worsening of the protease-antiprotease imbalance. Several markers of oxidative stress, such as increases in lipid peroxidation products and reductions in glutathione peroxidase activity, have been shown to be related to the reductions in pulmonary functions. In the present article we review the current knowledge about the vicious cycle of cigarette smoking, oxidative stress, and inflammation in the pathogenesis of COPD.  相似文献   

11.

Background

CD4+ T cells in the lung are involved in the pathogenesis of chronic obstructive pulmonary disease (COPD), although CD4+ T cell subsets and the direct effect of smoking on these cells, especially the expression of MRs, have not been comprehensively examined.

Methods

First, circulating CD4+ T cell subsets in healthy nonsmokers, patients with SCOPD and patients with AECOPD were evaluated by flow cytometry. Then, differentiation experiments were carried out using RT-PCR, and Ki-67/Annexin V antibodies were used to measure proliferation and apoptosis. We also explored the impact of CSE on the differentiation and survival of CD4+Th/Tregs and examined the expression of MRs in healthy nonsmokers and patients with SCOPD.

Results

We found the percentages of circulating Th1 and Th17 cells were increased in patients with AECOPD, while the percentage of Th2 cells was decreased in patients with SCOPD. The percentages of Th10 cells were decreased in both patients with SCOPD and patients with AECOPD, while the percentages of Tregs were increased. In addition, the percentages of CD4+α-7+ T cells were decreased in patients with SCOPD and patients with AECOPD. However, only the decrease observed in patients with AECOPD was significant. In vitro studies also revealed MR expression affected the polarization of T cells, with different CD4+ T cell subtypes acquiring different MR expression profiles. The addition of CSE facilitated CD4+ T cell polarization towards pro-inflammatory subsets (Th1 and Th17) and affected the survival of CD4+ T cells and Treg cells by up-regulating the expression of MR3 and 5, resulting in an imbalance of CD4+ T cell subsets.

Conclusions

Our findings suggest an imbalance of circulating CD4+ T cell subsets is involved in COPD pathogenesis in smokers. Cigarette smoking may contribute to this imbalance by affecting the polarization and survival of Th/Tregs through the up-regulation of MR3 and MR5.  相似文献   

12.
ABSTRACT: BACKGROUND: Delayed neutrophil apoptosis may be an important factor in the persistent inflammation associated with chronic obstructive pulmonary disease (COPD). Bcl-2 family proteins are important regulators of neutrophil apoptosis. We determined the mRNA levels of proapoptotic Bak and anti-aptototic Bcl-xl and Mcl-1 members of the Bcl-2 family in unstimulated peripheral blood neutrophils from patients with mild to moderate COPD and compared these to neutrophils from healthy controls. METHODS: Neutrophils were isolated from peripheral blood samples of 47 COPD patients (smokers: N = 24) and 47 healthy controls (smokers: N = 24). Percentages of apoptotic cells were determined at 4, 24, and 36 h for unstimulated neutrophils cultured in vitro. Neutrophil mRNA expression of Bak, Bcl-xl, and Mcl-1 was determined by real-time polymerase chain reaction (PCR). FEV1 (% predicted) and FVC were determined by spirometry and correlations between mRNA levels and lung function parameters were determined. RESULTS: The percentages of apoptotic cells among unstimulated neutrophils from COPD patients were significantly lower compared to cells from controls after 4, 24, and 36 h in culture; smoking history had only a minimal effect on these differences. Unstimulated neutrophils from COPD patients had significantly lower Bak mRNA expression and higher expressions of Bcl-xl and Mcl-1 mRNA than cells from healthy controls. Again, smoking history had only a minimal effect on these trends. Bak mRNA expression was significantly positively correlated with both %predicted FEV1 and the FEV1/FVC ratio, while Bcl-xl and Mcl-1 mRNA expressions were significantly negatively correlated with %predicted FEV1 and the FEV1/FVC ratio. CONCLUSIONS: The genes for pro-apoptotic Bak, and anti-apoptotic Bcl-xl and Mcl-1 may be important in regulating the delayed neutrophil apoptosis observed in COPD, which may contribute to COPD pathogenesis. Virtual Slides The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/1605269445677066.  相似文献   

13.

Background

Little is known about airway remodelling in bronchial biopsies (BB) in smokers and chronic obstructive pulmonary disease (COPD). We conducted an initial pilot study comparing BB from COPD patients with nonsmoking controls. This pilot study suggested the presence of reticular basement membrane (Rbm) fragmentation and altered vessel distribution in COPD.

Methods

To determine whether Rbm fragmentation and altered vessel distribution in BB were specific for COPD we designed a cross-sectional study and stained BB from 19 current smokers and 14 ex-smokers with mild to moderate COPD and compared these to 15 current smokers with normal lung function and 17 healthy and nonsmoking subjects.

Results

Thickness of the Rbm was not significantly different between groups; although in COPD this parameter was quite variable. The Rbm showed fragmentation and splitting in both current smoking groups and ex-smoker COPD compared with healthy nonsmokers (p < 0.02); smoking and COPD seemed to have additive effects. Rbm fragmentation correlated with smoking history in COPD but not with age. There were more vessels in the Rbm and fewer vessels in the lamina propria in current smokers compared to healthy nonsmokers (p < 0.05). The number of vessels staining for vascular endothelial growth factor (VEGF) in the Rbm was higher in both current smoker groups and ex-smoker COPD compared to healthy nonsmokers (p < 0.004). In current smoker COPD VEGF vessel staining correlated with FEV1% predicted (r = 0.61, p < 0.02).

Conclusions

Airway remodelling in smokers and mild to moderate COPD is associated with fragmentation of the Rbm and altered distribution of vessels in the airway wall. Rbm fragmentation was also present to as great an extent in ex-smokers with COPD. These characteristics may have potential physiological consequences.  相似文献   

14.
《Phytomedicine》2014,21(12):1638-1644
Cigarette smoking is the primary cause of chronic obstructive pulmonary disease (COPD), which is mediated by lung infiltration with inflammatory cells, enhanced oxidative stress, and tissue destruction. Anti-malarial drug artesunate has been shown to possess anti-inflammatory and anti-oxidative actions in mouse asthma models. We hypothesized that artesunate can protect against cigarette smoke-induced acute lung injury via its anti-inflammatory and anti-oxidative properties. Artesunate was given by oral gavage to BALB/c mice daily 2 h before 4% cigarette smoke exposure for 1 h over five consecutive days. Bronchoalveolar lavage (BAL) fluid and lungs were collected for analyses of cytokines, oxidative damage and antioxidant activities. Bronchial epithelial cell BEAS-2B was exposed to cigarette smoke extract (CSE) and used to study the mechanisms of action of artesunate. Artesunate suppressed cigarette smoke-induced increases in BAL fluid total and differential cell counts; levels of IL-1β, MCP-1, IP-10 and KC; and levels of oxidative biomarkers 8-isoprostane, 8-OHdG and 3-nitrotyrosine in a dose-dependent manner. Artesunate promoted anti-oxidant catalase activity and reduced NADPH oxidase 2 (NOX2) protein level in the lungs from cigarette smoke-exposed mice. In BEAS-2B cells, artesunate suppressed pro-inflammatory PI3 K/Akt and p44/42 MAPK signaling pathways, and increased nuclear Nrf2 accumulation in response to CSE. Artesunate possesses anti-inflammatory and anti-oxidative properties against cigarette smoke-induced lung injury, probably via inhibition of PI3K and p42/22 MAPK signaling pathways, augmentation of Nrf2 and catalase activities, and reduction of NOX2 level. Our data suggest that artesunate may have therapeutic potential for treating COPD.  相似文献   

15.

Background

Little is known about airway remodelling in bronchial biopsies (BB) in smokers and chronic obstructive pulmonary disease (COPD). We conducted an initial pilot study comparing BB from COPD patients with nonsmoking controls. This pilot study suggested the presence of reticular basement membrane (Rbm) fragmentation and altered vessel distribution in COPD.

Methods

To determine whether Rbm fragmentation and altered vessel distribution in BB were specific for COPD we designed a cross-sectional study and stained BB from 19 current smokers and 14 ex-smokers with mild to moderate COPD and compared these to 15 current smokers with normal lung function and 17 healthy and nonsmoking subjects.

Results

Thickness of the Rbm was not significantly different between groups; although in COPD this parameter was quite variable. The Rbm showed fragmentation and splitting in both current smoking groups and ex-smoker COPD compared with healthy nonsmokers (p < 0.02); smoking and COPD seemed to have additive effects. Rbm fragmentation correlated with smoking history in COPD but not with age. There were more vessels in the Rbm and fewer vessels in the lamina propria in current smokers compared to healthy nonsmokers (p < 0.05). The number of vessels staining for vascular endothelial growth factor (VEGF) in the Rbm was higher in both current smoker groups and ex-smoker COPD compared to healthy nonsmokers (p < 0.004). In current smoker COPD VEGF vessel staining correlated with FEV1% predicted (r = 0.61, p < 0.02).

Conclusions

Airway remodelling in smokers and mild to moderate COPD is associated with fragmentation of the Rbm and altered distribution of vessels in the airway wall. Rbm fragmentation was also present to as great an extent in ex-smokers with COPD. These characteristics may have potential physiological consequences.  相似文献   

16.
Cigarette smoking is a major cause of death worldwide resulting in over six million deaths per year. Cigarette smoke contains complex mixtures of chemicals that are harmful to nearly all organs of the human body, especially the lungs. Cigarette smoking is considered the major risk factor for many lung diseases, particularly chronic obstructive pulmonary diseases (COPD) and lung cancer. However, the underlying molecular mechanisms of smoking-induced lung injury associated with these lung diseases still remain largely unknown. Expression microarray techniques have been widely applied to detect the effects of smoking on gene expression in different human cells in the lungs. These projects have provided a lot of useful information for researchers to understand the potential molecular mechanism(s) of smoke-induced pathogenesis. However, a user-friendly web server that would allow scientists to fast query these data sets and compare the smoking effects on gene expression across different cells had not yet been established. For that reason, we have integrated eight public expression microarray data sets from trachea epithelial cells, large airway epithelial cells, small airway epithelial cells, and alveolar macrophage into an online web server called SEGEL (Smoking Effects on Gene Expression of Lung). Users can query gene expression patterns across these cells from smokers and nonsmokers by gene symbols, and find the effects of smoking on the gene expression of lungs from this web server. Sex difference in response to smoking is also shown. The relationship between the gene expression and cigarette smoking consumption were calculated and are shown in the server. The current version of SEGEL web server contains 42,400 annotated gene probe sets represented on the Affymetrix Human Genome U133 Plus 2.0 platform. SEGEL will be an invaluable resource for researchers interested in the effects of smoking on gene expression in the lungs. The server also provides useful information for drug development against smoking-related diseases. The SEGEL web server is available online at http://www.chengfeng.info/smoking_database.html.  相似文献   

17.
Blood lipids play a major role in the manifestation of cardiovascular diseases. Recent research suggested that there are connections between cholesterol levels and immunological alterations. We investigated whether there is an association between serum cholesterol levels (total, HDL, and LDL) and immune cells (B cell and regulatory T cells [Tregs]). The analysis was based on data from 231 participants of the MEGA study in Augsburg, Germany, recruited between 2018 and 2021. Most participants were examined two different times within a period of 9 months. At every visit, fasting venous blood samples were taken. Immune cells were analyzed immediately afterward using flow cytometry. Using multivariable-adjusted linear regression models, the associations between blood cholesterol concentrations and the relative quantity of several B-cell and Treg subsets were analyzed. We found that particularly HDL cholesterol concentrations were significantly associated to some immune cell subpopulations: HDL cholesterol showed significant positive associations with the relative frequency of CD25++ Tregs (as proportion of all CD4+CD25++ T cells) and conventional Tregs (defined as the proportion of CD25+CD127− cells on all CD45RA−CD4+ T cells). Regarding B cells, HDL cholesterol values were inversely associated with the cell surface expression of IgD and with naïve B cells (CD27−IgD+ B cells). In conclusion, HDL cholesterol levels were associated with modifications in the composition of B-cell and Treg subsets demonstrating an important interconnection between lipid metabolism and immune system. Knowledge about this association might be crucial for a deeper and more comprehensive understanding of the pathophysiology of atherosclerosis.  相似文献   

18.
19.
《Cytokine》2013,61(3):843-848
Measuring T-cell production of intracellular cytokines by flow cytometry enables specific monitoring of airway inflammation and response to therapies in chronic lung diseases including chronic obstructive pulmonary disease (COPD). We have previously shown that T cells in the airways of ex- and current- smoker COPD patients and healthy smokers produce increased T-cell pro-inflammatory cytokines IFNγ and TNFα versus healthy controls. However, we could not differentiate between COPD groups and smokers due to a high degree of inter-patient variability. To address this limitation, we hypothesized that intraepithelial T cells obtained from brushings of trachea may serve as an ideal intra-patient control compared with cells obtained from left and right bronchi. Production of intracellular cytokines by intraepithelial T-cells obtained from trachea and right and left bronchi from 26 individuals with COPD (16 with GOLD I and 10 with GOLD II-III disease), 11 healthy controls and 8 smokers was measured by flow cytometry.There was a significant increase in intraepithelial T-cell IFNγ and TNFα in both right and left bronchi of GOLD II-III COPD patients compared to cells obtained from the trachea. There were no changes in T cell pro-inflammatory cytokines between the bronchi and trachea from control subjects, GOLD I COPD patients or healthy smokers. There was a significant negative correlation between increased intraepithelial IFNγ and TNFα in bronchial brushing T-cells compared with tracheal T-cells, and compared with FEV1. Monitoring intracellular intra-epithelial T-cell cytokine production in bronchial brushings using autologous tracheal brushings as controls provides improves the sensitivity of the technique. Therapeutic targeting of these pro-inflammatory cytokines and assessing the effects of drugs on immune reactivity has the potential to reduce lung inflammation caused by intra-epithelial T cells in COPD.  相似文献   

20.
Chronic obstructive pulmonary disease (COPD) is one of the leading causes of morbidity and mortality around the world. However, the exact mechanisms leading to COPD and its progression are still poorly understood. In this study, induced sputum was analyzed by cysteine-specific two-dimensional difference gel electrophoresis (2D-DIGE) coupled with mass spectrometry to identify proteins involved in COPD pathogenesis. The comparison of nonsmokers, smokers, and smokers with moderate COPD revealed 15 changed proteins with the majority, including polymeric immunoglobulin receptor (PIGR), being elevated in smokers and subjects with COPD. PIGR, which is involved in specific immune defense and inflammation, was further studied in sputum, lung tissue, and plasma by Western blot, immunohistochemistry/image analysis, and/or ELISA. Sputum PIGR was characterized as glycosylated secretory component (SC). Lung PIGR was significantly elevated in the bronchial and alveolar epithelium of smokers and further increased in the alveolar area in mild to moderate COPD. Plasma PIGR was elevated in smokers and smokers with COPD compared to nonsmokers with significant correlation to obstruction. In conclusion, new proteins in smoking-related chronic inflammation and COPD could be identified, with SC/PIGR being one of the most prominent not only in the lung but also in circulating blood.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号