首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mitochondrial (mt) DNA depletion syndromes can arise from genetic deficiencies for enzymes of dNTP metabolism, operating either inside or outside mitochondria. MNGIE is caused by the deficiency of cytosolic thymidine phosphorylase that degrades thymidine and deoxyuridine. The extracellular fluid of the patients contains 10-20 microM deoxynucleosides leading to changes in dTTP that may disturb mtDNA replication. In earlier work, we suggested that mt dTTP originates from two distinct pathways: (i) the reduction of ribonucleotides in the cytosol (in cycling cells) and (ii) intra-mt salvage of thymidine (in quiescent cells). In MNGIE and most other mtDNA depletion syndromes, quiescent cells are affected. Here, we demonstrate in quiescent fibroblasts (i) the existence of small mt dNTP pools, each usually 3-4% of the corresponding cytosolic pool; (ii) the rapid metabolic equilibrium between mt and cytosolic pools; and (iii) the intra-mt synthesis and rapid turnover of dTTP in the absence of DNA replication. Between 0.1 and 10 microM extracellular thymidine, intracellular thymidine rapidly approaches the extracellular concentration. We mimic the conditions of MNGIE by maintaining quiescent fibroblasts in 10-40 microM thymidine and/or deoxyuridine. Despite a large increase in intracellular thymidine concentration, cytosolic and mt dTTP increase at most 4-fold, maintaining their concentration for 41 days. Other dNTPs are marginally affected. Deoxyuridine does not increase the normal dNTP pools but gives rise to a small dUTP and a large dUMP pool, both turning over rapidly. We discuss these results in relation to MNGIE.  相似文献   

2.
Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) is an autosomal recessive disorder associated with multiple mutations in mitochondrial DNA, both deletions and point mutations, and mutations in the nuclear gene for thymidine phosphorylase. Spinazzola et al. (Spinazzola, A., Marti, R., Nishino, I., Andreu, A., Naini, A., Tadesse, S., Pela, I., Zammarchi, E., Donati, M., Oliver, J., and Hirano, M. (2001) J. Biol. Chem. 277, 4128-4133) showed that MNGIE patients have elevated circulating thymidine levels and they hypothesized that this generates imbalanced mitochondrial deoxyribonucleoside triphosphate (dNTP) pools, which in turn are responsible for mitochondrial (mt) DNA mutagenesis. We tested this hypothesis by culturing HeLa cells in medium supplemented with 50 microM thymidine. After 8-month growth, mtDNA in the thymidine-treated culture, but not the control, showed multiple deletions, as detected both by Southern blotting and by long extension polymerase chain reaction. After 4-h growth in thymidine-supplemented medium, we found the mitochondrial dTTP and dGTP pools to expand significantly, the dCTP pool to drop significantly, and the dATP pool to drop slightly. In whole-cell extracts, dTTP and dGTP pools also expanded, but somewhat less than in mitochondria. The dCTP pool shrank by about 50%, and the dATP pool was essentially unchanged. These results are discussed in terms of the recent report by Nishigaki et al. (Nishigaki, Y., Marti, R., Copeland, W. C., and Hirano, M. (2003) J. Clin. Invest. 111, 1913-1921) that most mitochondrial point mutations in MNGIE patients involve T --> C transitions in sequences containing two As to the 5' side of a T residue. Our finding of dTTP and dGTP elevations and dATP depletion in mitochondrial dNTP pools are consistent with a mutagenic mechanism involving T-G mispairing followed by a next-nucleotide effect involving T insertion opposite A.  相似文献   

3.
Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) is an autosomal recessive disorder caused by mutations in the gene encoding thymidine phosphorylase (TP). The disease is characterized clinically by impaired eye movements, gastrointestinal dysmotility, cachexia, peripheral neuropathy, myopathy, and leukoencephalopathy. Molecular genetic studies of MNGIE patients' tissues have revealed multiple deletions, depletion, and site-specific point mutations of mitochondrial DNA. TP is a cytosolic enzyme required for nucleoside homeostasis. In MNGIE, TP activity is severely reduced and consequently levels of thymidine and deoxyuridine in plasma are dramatically elevated. We have hypothesized that the increased levels of intracellular thymidine and deoxyuridine cause imbalances of mitochondrial nucleotide pools that, in turn, lead to the mtDNA abnormalities. MNGIE was the first molecularly characterized genetic disorder caused by abnormal mitochondrial nucleoside/nucleotide metabolism. Future studies are likely to reveal further insight into this expanding group of diseases.  相似文献   

4.
Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) is an autosomal recessive disorder caused by mutations in the gene encoding thymidine phosphorylase (TP). The disease is characterized clinically by impaired eye movements, gastrointestinal dysmotility, cachexia, peripheral neuropathy, myopathy, and leukoencephalopathy. Molecular genetic studies of MNGIE patients' tissues have revealed multiple deletions, depletion, and site‐specific point mutations of mitochondrial DNA. TP is a cytosolic enzyme required for nucleoside homeostasis. In MNGIE, TP activity is severely reduced and consequently levels of thymidine and deoxyuridine in plasma are dramatically elevated. We have hypothesized that the increased levels of intracellular thymidine and deoxyuridine cause imbalances of mitochondrial nucleotide pools that, in turn, lead to the mtDNA abnormalities. MNGIE was the first molecularly characterized genetic disorder caused by abnormal mitochondrial nucleoside/nucleotide metabolism. Future studies are likely to reveal further insight into this expanding group of diseases.  相似文献   

5.
We quantify cytosolic and mitochondrial deoxyribonucleoside triphosphates (dNTPs) from four established cell lines using a recently described method for the separation of cytosolic and mitochondrial (mt) dNTPs from as little as 10 million cells in culture (Pontarin, G., Gallinaro, L., Ferraro, P., Reichard, P., and Bianchi, V. (2003) Proc. Natl. Acad. Sci. U. S. A. 100, 12159-12164). In cycling cells the concentrations of the phosphates of thymidine, deoxycytidine, and deoxyadenosine (combining mono-, di-, and triphosphates in each case) did not differ significantly between mitochondria and cytosol, whereas deoxyguanosine phosphates were concentrated to mitochondria. We study the source and regulation of the mt dTTP pool as an example of mt dNTPs. We suggest two pathways as sources for mt dTTP: (i) import from the cytosol of thymidine diphosphate by a deoxynucleotide transporter, predominantly in cells involved in DNA replication with an active synthesis of deoxynucleotides and (ii) import of thymidine followed by phosphorylation by the mt thymidine kinase, predominantly in resting cells. Here we demonstrate that the second pathway is regulated by a mt 5'-deoxyribonucleotidase (mdN). We modify the in situ activity of mdN and measure the transfer of radioactivity from [(3)H]thymidine to mt thymidine phosphates. In cycling cells lacking the cytosolic thymidine kinase, a 30-fold overproduction of mdN decreases the specific radioactivity of mt dTTP to 25%, and an 80% decrease of mdN by RNA interference increases the specific radioactivity 2-fold. These results suggest that mdN modulates the synthesis of mt dTTP by counteracting in a substrate cycle the phosphorylation of thymidine by the mt thymidine kinase.  相似文献   

6.
Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) is an autosomal recessive disease with mitochondrial DNA (mtDNA) alterations and is caused by mutations in the nuclear gene encoding thymidine phosphorylase (TP). The cardinal clinical manifestations are ptosis, ophthalmoparesis, gastrointestinal dysmotility, cachexia, peripheral neuropathy, and leukoencephalopathy. Skeletal muscle shows mitochondrial abnormalities, including ragged-red fibers and cytochrome c oxidase deficiency, together with mtDNA depletion, multiple deletions or both. In MNGIE patients, TP mutations cause a loss-of-function of the cytosolic enzyme, TP. As a direct consequence of the TP defect, thymidine metabolism is altered. High blood levels of this nucleoside are likely to lead to mtDNA defects even in cells that do not express TP, such as skeletal muscle. We hypothesize that high concentrations of thymidine affect dNTP (deoxyribonucleoside triphosphate) metabolism in mitochondria more than in cytosol or nuclei, because mitochondrial dNTPs depend mainly on the thymidine salvage pathway, whereas nuclear dNTPs depend mostly on de novo pathway. The imbalance in the mitochondrial dNTP homeostasis affects mtDNA replication, leading to mitochondrial dysfunction.  相似文献   

7.
Depletion and multiple deletions of mitochondrial DNA (mtDNA) have been associated with a growing number of autosomal diseases that have been classified as defects of intergenomic communication. MNGIE, an autosomal recessive disorder associated with mtDNA alterations is due to mutations in thymidine phosphorylase that may cause imbalance of the mitochondrial nucleotide pool. Subsequently, mutations in the mitochondrial proteins adenine nucleotide translocator 1, Twinkle, and polymerase gamma have been found to cause autosomal dominant progressive external ophthalmoplegia with multiple deletions of mtDNA. Uncovering the molecular bases of intergenomic communication defects will enhance our understanding of the mechanisms responsible for maintaining mtDNA integrity.  相似文献   

8.
In non-proliferating cells mitochondrial (mt) thymidine kinase (TK2) salvages thymidine derived from the extracellular milieu for the synthesis of mt dTTP. TK2 is a synthetic enzyme in a network of cytosolic and mt proteins with either synthetic or catabolic functions regulating the dTTP pool. In proliferating cultured cells the canonical cytosolic ribonucleotide reductase (R1-R2) is the prominent synthetic enzyme that by de novo synthesis provides most of dTTP for mt DNA replication. In non-proliferating cells p53R2 substitutes for R2. Catabolic enzymes safeguard the size of the dTTP pool: thymidine phosphorylase by degradation of thymidine and deoxyribonucleotidases by degradation of dTMP. Genetic deficiencies in three of the participants in the network, TK2, p53R2, or thymidine phosphorylase, result in severe mt DNA pathologies. Here we demonstrate the interdependence of the different enzymes of the network. We quantify changes in the size and turnover of the dTTP pool after inhibition of TK2 by RNA interference, of p53R2 with hydroxyurea, and of thymidine phosphorylase with 5-bromouracil. In proliferating cells the de novo pathway dominates, supporting large cytosolic and mt dTTP pools, whereas TK2 is dispensable, even in cells lacking the cytosolic thymidine kinase. In non-proliferating cells the small dTTP pools depend on the activities of both R1-p53R2 and TK2. The activity of TK2 is curbed by thymidine phosphorylase, which degrades thymidine in the cytoplasm, thus limiting the availability of thymidine for phosphorylation by TK2 in mitochondria. The dTTP pool shows an exquisite sensitivity to variations of thymidine concentrations at the nanomolar level.  相似文献   

9.
The dNTP triphosphohydrolase SAMHD1 is a nuclear antiviral host restriction factor limiting HIV-1 infection in macrophages and a major regulator of dNTP concentrations in human cells. In normal human fibroblasts its expression increases during quiescence, contributing to the small dNTP pool sizes of these cells. Down-regulation of SAMHD1 by siRNA expands all four dNTP pools, with dGTP undergoing the largest relative increase. The deoxyguanosine released by SAMHD1 from dGTP can be phosphorylated inside mitochondria by deoxyguanosine kinase (dGK) or degraded in the cytosol by purine nucleoside phosphorylase. Genetic mutations of dGK cause mitochondrial (mt) DNA depletion in noncycling cells and hepato-cerebral mtDNA depletion syndrome in humans. We studied if SAMHD1 and dGK interact in the regulation of the dGTP pool during quiescence employing dGK-mutated skin fibroblasts derived from three unrelated patients. In the presence of SAMHD1 quiescent mutant fibroblasts manifested mt dNTP pool imbalance and mtDNA depletion. When SAMHD1 was silenced by siRNA transfection the composition of the mt dNTP pool approached that of the controls, and mtDNA copy number increased, compensating the depletion to various degrees in the different mutant fibroblasts. Chemical inhibition of purine nucleoside phosphorylase did not improve deoxyguanosine recycling by dGK in WT cells. We conclude that the activity of SAMHD1 contributes to the pathological phenotype of dGK deficiency. Our results prove the importance of SAMHD1 in the regulation of all dNTP pools and suggest that dGK inside mitochondria has the function of recycling the deoxyguanosine derived from endogenous dGTP degraded by SAMHD1 in the nucleus.  相似文献   

10.
In quiescent fibroblasts, the expression levels of cytosolic enzymes for thymidine triphosphate (dTTP) synthesis are down-regulated, causing a marked reduction in the dTTP pool. In this study, we provide evidence that mitochondrial thymidylate synthesis via thymidine kinase 2 (TK2) is a limiting factor for the repair of ultraviolet (UV) damage in the nuclear compartment in quiescent fibroblasts. We found that TK2 deficiency causes secondary DNA double-strand breaks formation in the nuclear genome of quiescent cells at the late stage of recovery from UV damage. Despite slower repair of quiescent fibroblast deficient in TK2, DNA damage signals eventually disappeared, and these cells were capable of re-entering the S phase after serum stimulation. However, these cells displayed severe genome stress as revealed by the dramatic increase in 53BP1 nuclear body in the G1 phase of the successive cell cycle. Here, we conclude that mitochondrial thymidylate synthesis via TK2 plays a role in facilitating the quality repair of UV damage for the maintenance of genome integrity in the cells that are temporarily arrested in the quiescent state.  相似文献   

11.
Thymidine kinase [ATP: thymidine 5'-phosphotransferase, EC 2.7.1.21] has been purified more than 3,500 fold from microplasmodia of Physarum polycephalum. Properties of the enzyme were determined on preparations purified 1,400 fold. Thymidine was transformed to dTMP while a stoichiometric quantity of ATP was transformed to ADP. 5-Iododeoxyuridine, 5-bromodeoxyuridine, and 5-fluorodeoxyuridine acted as competitive inhibitors for the thymidine substrate while 5-bromodeoxyuridine could be used as a substrate. In contrast uridine did not inhibit the enzymatic activity while deoxyuridine was a very poor competitive inhibitor in agreement with the observation that deoxyuridine could not be used as a substrate. Two apparent Michaelis constants were found for thymidine. Only the highest Michaelis constant could be decreased in the presence of increasing concentrations of ATP. Among the various nucleoside mono, di, or triphosphates studied only ATP and to a less extent dATP could be used as phosphate donors. A non competitive inhibition for thymidine was observed with dTTP. dTMP, dTDP, and dTTP acted as competitive inhibitors for ATP. None of the nucleoside mono, di, or triphosphates studied showed an activatory effect at low concentrations of ATP, even in the presence of dTTP. However, dUTP and dGDP acted as competitive inhibitors for ATP.  相似文献   

12.
Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) is a severe human disease caused by mutations in TYMP, the gene encoding thymidine phosphorylase (TP). It belongs to a broader group of disorders characterized by a pronounced reduction in mitochondrial DNA (mtDNA) copy number in one or more tissues. In most cases, these disorders are caused by mutations in genes involved in deoxyribonucleoside triphosphate (dNTP) metabolism. It is generally accepted that imbalances in mitochondrial dNTP pools resulting from these mutations interfere with mtDNA replication. Nonetheless, the precise mechanistic details of this effect, in particular, how an excess of a given dNTP (e.g., imbalanced dTTP excess observed in TP deficiency) might lead to mtDNA depletion, remain largely unclear. Using an in organello replication experimental model with isolated murine liver mitochondria, we observed that overloads of dATP, dGTP, or dCTP did not reduce the mtDNA replication rate. In contrast, an excess of dTTP decreased mtDNA synthesis, but this effect was due to secondary dCTP depletion rather than to the dTTP excess in itself. This was confirmed in human cultured cells, demonstrating that our conclusions do not depend on the experimental model. Our results demonstrate that the mtDNA replication rate is unaffected by an excess of any of the 4 separate dNTPs and is limited by the availability of the dNTP present at the lowest concentration. Therefore, the availability of dNTP is the key factor that leads to mtDNA depletion rather than dNTP imbalances. These results provide the first test of the mechanism that accounts for mtDNA depletion in MNGIE and provide evidence that limited dNTP availability is the common cause of mtDNA depletion due to impaired anabolic or catabolic dNTP pathways. Thus, therapy approaches focusing on restoring the deficient substrates should be explored.  相似文献   

13.
This paper describes a biological test of the hypothesis that one or more components of the intracellular nucleotide pool represent a significant target for the mutagenic effects of alkylating agents. In other words, we ask whether mutagenesis can occur either through alkylation of susceptible nucleotide residues in DNA, or through alkylation of a free nucleotide, followed by its incorporation into DNA. Our approach is based upon the premise that if a nucleotide pool is a mutagenic target, then transient expansion of that pool should increase the target size and enhance mutagenesis following subsequent treatment with an alkylating target.

Working either with V79 hamster lung fibroblasts or Chinese hamster embryo fibroblasts (CHEF/18), we treated cells for 30 min, under conditions that expanded one or more pools of deoxyribonucleoside triphosphates. This was followed immediately by a 30-min treatment with 0.5 mM N-methyl-N-nitrosourea. After 8 days of additional culture for recovery of cells and expression of mutations, we plated in selective media to determine the abundance of 6-thioguanine-resistant mutants in each culture.

We found that conditions which expand pools of either dATP or dTTP and dGTP stimulate mutagenesis by MNU, with the degree of stimulation varying in different experiments from 2-to 6-fold. Although alternate interpretations can be entertained, the data are consistent with the hypothesis that nucleotide pools represent alkylation targets. A biochemical test of the hypothesus us warranted.

During our studies we made several other noteworthy observations: (1) treatment of V79 cells with mutagen alone does not significantly affect dNTP pools; (2) deoxynucleotide pool perturbations are quite short-lived following transfer of cells to normal medium; (3) deoxyuridine is significantly more effective than thymidine in expanding dTTP pools; (4) deoxyuridine by itself is significantly mutagenic, particularly to CHEF/18 cells.  相似文献   


14.
Mutations in the nuclear gene encoding thymidine phosphorylase (TP) cause mitochondrial neurogastrointestinal encephalomyopathy (MNGIE), an autosomal recessive disease with mitochondrial dysfunction and mitochondrial DNA abnormalities. We have demonstrated alterations of thymidine (dThd) metabolism in MNGIE patients. Here, we report the accumulation of another substrate of TP, deoxyuridine (dUrd), whose circulating levels ranged from 5.5 to 24.4 microM (average 14.2) in MNGIE and were undetectable (<0.05 microM) in both TP mutation carriers and controls. The dramatic accumulation of dUrd may contribute to nucleotide pool imbalances and, together with the increased levels of dThd, is likely to contribute to the pathogenesis of MNGIE.  相似文献   

15.
The levels of the four deoxyribonucleoside triphosphate pools and the distribution of cells in the various phases of the cell cycle have been examined in Chinese hamster cells as thymidine, present as a regular constituent in the growth medium, was removed in stages. The results indicate that: 1. Duration of the DNA synthetic phase was lengthened when thymidine was removed from the growth medium. 2.Temporally correlated with lengthening of the DNA synthetic phase upon thymidine removal was a 7-fold increase in level of the dCTP pool, reduction in the dGTP pools, and little or no change in dATP pool. 3.Radioactive labeling procedures indicated that expansion of the dCTP pool could be completely accounted for by increased ribonucleotide reductase activity and that the dTTP pool switched from a largely exogenous thymidine source to endogenous dTTP synthesis as the extracellular thymidine concentration was reduced. 4.Deoxyuridine and thymidine were apparently transported by the same system in Chinese hamster cells, while deoxycytidine was transported by a different system. Although deoxycytidine transport was unaffected by thymidine, phosphorylation of intracellular deoxycytidine compounds to the triphosphate level was stimulated by thymidine. Cytidine transport was not significantly affected by thymidine.  相似文献   

16.
17.
The presence of mtDNA abnormalities inherited as Mendelian traits indicates the existence of mutations in nuclear genes affecting the integrity of the mitochondrial genome. Two groups of nucleus-driven abnormalities have been described: qualitative alterations of mtDNA, i.e. multiple large-scale deletions of mtDNA, and quantitative decrease of the mtDNA copy number, i.e. tissue-specific depletion of mtDNA. Autosomal dominant or recessive (adPEO), progressive ophthalmoplegia and autosomal-recessive mitochondrial neurogastrointestinal encephalomyopathy (MNGIE), are three neurodegenerative disorders associated with the coexistence of wild-type mtDNA with several deletion-containing mtDNA species. Heterozygous mutations of the genes encoding the muscle-heart isoform of the adenosine diphosphate/adenosine triphosphate mitochondrial translocator (ANT1), the main subunit of polymerase gamma (POLG1), and of the putative mtDNA helicase (Twinkle) have been found in adPEO families linked to three different loci, on chromosomes 4q34-35, 10q24, and 15q25, respectively. Mutations in the gene encoding thymidine phosphorylase have been identified in several MNGIE patients. Severe, tissue-specific depletion of mtDNA is the molecular hallmark of rapidly progressive hepatopathies or myopathies of infancy and childhood. Two genes, deoxyguanosine kinase and thymidine kinase type 2, both involved in the mitochondrion-specific salvage pathways of deoxynucleotide pools, have been associated with depletion syndromes in selected families.  相似文献   

18.
Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) is an autosomal recessive disease due to ECGF1 gene mutations causing thymidine phosphorylase (TP) deficiency. Analysis of post-mortem samples of five MNGIE patients and two controls, revealed TP activity in all control tissues, but not in MNGIE samples. Converse to TP activity, thymidine and deoxyuridine were absent in control samples, but present in all tissues of MNGIE patients. Concentrations of both nucleosides in the tissues were generally higher than those observed in plasma of MNGIE patients. Our observations indicate that in the absence of TP activity, tissues accumulate nucleosides, which are excreted into plasma.  相似文献   

19.
A mutant V79 hamster fibroblast cell line lacking the enzyme dCMP deaminase was used to study the regulation of deoxynucleoside triphosphate pools by substrate cycles between pyrimidine deoxyribosides and their 5'-phosphates. Such cycles were suggested earlier to set the rates of cellular import and export of deoxyribosides, thereby influencing pool sizes (V. Bianchi, E. Pontis, and P. Reichard, Proc. Natl. Acad. Sci. USA 83:986-990, 1986). While normal V79 cells derived more than 80% of their dTTP from CDP reduction via deamination of dCMP, the mutant cells had to rely completely on UDP reduction for de novo synthesis of dTTP, which became limiting for DNA synthesis. Because of the allosteric properties of ribonucleotide reductase, CDP reduction was not diminished, leading to a large expansion of the dCTP pool. The increase of this pool was kept in check by a shift in the balance of the deoxycytidine/dCMP cycle towards the deoxynucleoside, leading to massive excretion of deoxycytidine. In contrast, the balance of the deoxyuridine/dUMP cycle was shifted towards the nucleotide, facilitating import of extracellular deoxynucleosides.  相似文献   

20.
In a Salmonella typhimurium strain made diploid for the thy region by introduction of the Escherichia coli episome, F'15, mutants resistant to trimethoprim in the presence of thymidine were selected. One was shown to be defective in deoxyuridine 5'-phosphate (dUMP) synthesis; it requires deoxyuridine or thymidine for growth and is sensitive to trimethoprim in the presence of deoxyuridine. Genetic studies showed that the mutant is mutated in two genes, dcd and dum, located at 70 and 18 min, respectively, on the Salmonella linkage map. The dcd gene cotransduces 95% with udk, the structural gene for uridine kinase. Both mutations are necessary to create a deoxyuridine requirement, providing evidence for the existence of two independent pathways for dUMP synthesis. Pool studies showed that a dum mutation by itself causes a small decrease in the deoxythymidine 5'-triphosphate (dTTP) pool of the cells, whereas a dcd mutation results in a much more marked decrease. The double mutant dcd dum, when incubated in the absence of deoxyuridine, contains barely detectable levels of dTTP. Enzyme analysis revealed that dcd encodes deoxycytidine 5'-triphosphate deaminase. The gene product of the dum gene has not yet been identified; it does not encode either subunit of ribonucleoside diphosphate reductase or deoxyuridine 5'-triphosphate pyrophosphatase. Mutants deleted for the dcd-udk region of the S. typhimurium chromosome were isolated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号