首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A transient transfection-fusion assay was established to investigate membrane fusion mediated by pseudorabies virus (PrV) glycoproteins. Plasmids expressing PrV glycoproteins under control of the immediate-early 1 promoter-enhancer of human cytomegalovirus were transfected into rabbit kidney cells, and the extent of cell fusion was quantitated 27 to 42 h after transfection. Cotransfection of plasmids encoding PrV glycoproteins B (gB), gD, gH, and gL resulted in formation of polykaryocytes, as has been shown for homologous proteins of herpes simplex virus type 1 (HSV-1) (A. Turner, B. Bruun, T. Minson, and H. Browne, J. Virol. 72:873-875, 1998). However, in contrast to HSV-1, fusion was also observed when the gD-encoding plasmid was omitted, which indicates that PrV gB, gH, and gL are sufficient to mediate fusion. Fusogenic activity was enhanced when a carboxy-terminally truncated version of gB (gB-008) lacking the C-terminal 29 amino acids was used instead of wild-type gB. With gB-008, only gH was required in addition for fusion. A very rapid and extended fusion was observed after cotransfection of plasmids encoding gB-008 and gDH, a hybrid protein consisting of the N-terminal 271 amino acids of gD fused to the 590 C-terminal amino acids of gH. This protein has been shown to substitute for gH, gD, and gL function in the respective viral mutants (B. G. Klupp and T. C. Mettenleiter, J. Virol. 73:3014-3022, 1999). Cotransfection of plasmids encoding PrV gC, gE, gI, gK, and UL20 with gB-008 and gDH had no effect on fusion. However, inclusion of a gM-expressing plasmid strongly reduced the extent of fusion. An inhibitory effect was also observed after inclusion of plasmids encoding gM homologs of equine herpesvirus 1 or infectious laryngotracheitis virus but only in conjunction with expression of the gM complex partner, the gN homolog. Inhibition by PrV gM was not limited to PrV glycoprotein-mediated fusion but also affected fusion induced by the F protein of bovine respiratory syncytial virus, indicating a general mechanism of fusion inhibition by gM.  相似文献   

2.
In the current perception of the herpesvirus replication cycle, two fusion processes are thought to occur during entry and nuclear egress. For penetration, glycoproteins gB and gH/gL have been shown to be essential, whereas a possible role of these glycoproteins in nuclear egress remains unclear. Viral envelope glycoproteins have been detected by immunolabeling in the nuclear membrane as well as in primary enveloped particles in several herpesviruses, indicating that they might be involved in the fusion process. Moreover, a herpes simplex virus type 1 mutant simultaneously lacking gB and gH was described to be deficient in nuclear egress (A. Farnsworth, T. W. Wisner, M. Webb, R. Roller, G. Cohen, R. Eisenberg, and D. C. Johnson, Proc. Natl. Acad. Sci. USA 104:10187-10192, 2007). To analyze the situation in the related alphaherpesvirus pseudorabies virus (PrV), mutants carrying single and double deletions of glycoproteins gB, gD, gH, and gL were constructed and characterized. We show here that the simultaneous deletion of gB and gD, gB and gH, gD and gH, or gH and gL has no detectable effect on PrV egress, implying that none of these glycoproteins either singly or in the tested combinations is required for nuclear egress. In addition, immunolabeling studies using different mono- or polyclonal sera raised against various PrV glycoproteins did not reveal the presence of viral glycoproteins in the inner nuclear membrane or in primary virions. Thus, our data strongly suggest that different fusion mechanisms are active during virus entry and egress.  相似文献   

3.
Herpesviruses contain a number of envelope glycoproteins which play important roles in the interaction between virions and target cells. Although several glycoproteins are not present in all herpesviruses, others, including glycoproteins H and L (gH and gL), are conserved throughout the Herpesviridae. To elucidate common properties and differences in herpesvirus glycoprotein function, corresponding virus mutants must be constructed and analyzed in different herpesvirus backgrounds. Analysis of gH- mutants of herpes simplex virus type 1 (HSV-1) and pseudorabies virus (PrV) showed that in both viruses gH is essential for penetration and cell-to-cell spread and that its presence is required for virion localization of gL. Since gH homologs are found complexed with gL, it was of interest to assess the phenotype of gL- mutant viruses. By using this approach, HSV-1 gL has been shown to be required for entry and for virion localization of gH (C. Roop, L. Hutchinson, and D. Johnson, J. Virol. 67:2285-2297, 1993). To examine whether a similar phenotype is associated with lack of gL in another alphaherpesvirus, PrV, we constructed two independent gL- PrV mutants by insertion and deletion-insertion mutagenesis. The salient findings are as follows: (i) PrV gL is required for penetration of virions and cell-to-cell spread; (ii) unlike HSV-1, PrV gH is incorporated into the virion in the absence of gL; (iii) virion localization of gH in the absence of gL is not sufficient for infectivity; (iv) in the absence of gL, N-glycans on PrV gH are processed to a greater extent than in the presence of gL, indicating masking of N-glycans by association with gL; and (v) an anti-gL polyclonal antiserum is able to neutralize virion infectivity but did not inhibit cell-to-cell spread. Thus, whereas PrV gL is essential for virus replication, as is HSV-1 gL, gL- PrV mutants exhibit properties strikingly different from those of HSV-1. In conclusion, our data show an important functional role for PrV gL in the viral entry process, which is not explained by a chaperone-type mechanism in gH maturation and processing.  相似文献   

4.
Entry of herpes simplex virus 1 (HSV-1) into cells occurs by fusion with cell membranes; it requires gD as the receptor binding glycoprotein and the trigger of fusion, and the trio of the conserved glycoproteins gB, gH, and gL to execute fusion. Recently, we reported that the ectodomain of HSV-1 gH carries a hydrophobic alpha-helix (residues 377 to 397) with attributes of an internal fusion peptide (T. Gianni, P. L. Martelli, R. Casadio, and G. Campadelli-Fiume, J. Virol. 79:2931-2940, 2005). Downstream of this alpha-helix, a heptad repeat (HR) with a high propensity to form a coiled coil was predicted between residues 443 and 471 and was designated HR-1. The simultaneous substitution of two amino acids in HR-1 (E450G and L453A), predicted to abolish the coiled coil, abolished the ability of gH to complement the infectivity of a gH-null HSV mutant. When coexpressed with gB, gD, and gL, the mutant gH was unable to promote cell-cell fusion. These defects were not attributed to a defect in heterodimer formation with gL, the gH chaperone, or in trafficking to the plasma membrane. A 25-amino-acid synthetic peptide with the sequence of HR-1 (pep-gH(wt25)) inhibited HSV replication if present at the time of virus entry into the cell. A scrambled peptide had no effect. The effect was specific, as pep-gH(wt25) did not reduce HSV-2 and pseudorabies virus infection. The presence of a functional HR in the HSV-1 gH ectodomain strengthens the view that gH has attributes typical of a viral fusion glycoprotein.  相似文献   

5.
Glycoprotein H (gH) is an envelope protein conserved in the Herpesviridae. Together with glycoprotein B (gB), the heterodimeric complex of gH and glycoprotein L (gL) mediates penetration and direct viral cell-to-cell spread. In herpes simplex and pseudorabies virus (PrV), coexpression of gH/gL, gB, and gD induces membrane fusion to form polykaryocytes. The recently determined crystal structure of a core fragment of PrV gH revealed marked structural similarity to other gH proteins (M. Backovic et al., Proc. Natl. Acad. Sci. U. S. A. 107:22635-22640, 2010). Within the membrane-proximal part (domain IV), a conserved negatively charged surface loop (flap) is flanked by intramolecular disulfide bonds. Together with an N-linked carbohydrate moiety, this flap covers an underlying patch of hydrophobic residues. To investigate the functional relevance of these structures, nonconservative amino acid substitutions were introduced by site-directed mutagenesis. The mutated proteins were tested for correct expression, fusion activity, and functional complementation of gH-deleted PrV. Several single amino acid changes within the flap and the hydrophobic patch were tolerated, and deletion of the glycosylation site had only minor effects. However, multiple alanine substitutions within the flap or the hydrophobic patch led to significant defects. gH function was also severely affected by disruption of the disulfide bond at the C terminus of the flap and after introduction of cysteine pairs designed to bridge the central part of the flap with the hydrophobic patch. Interestingly, all mutated gH proteins were able to complement gH-deleted PrV, but fusion-deficient gH mutants resulted in a pronounced delay in virus entry.  相似文献   

6.
Herpesvirus envelope glycoproteins play important roles in the interaction between virions and target cells. In the alphaherpesvirus pseudorabies virus (PrV), seven glycoproteins that all constitute homologs of glycoproteins found in herpes simplex virus type 1 (HSV-1) have been characterized, including a homolog of HSV-1 glycoprotein H (gH). Since HSV-1 gH is found associated with another essential glycoprotein, gL, we analyzed whether PrV also encodes a gL homolog. DNA sequence analysis of a corresponding part of the UL region adjacent to the internal inverted repeat in PrV strains Kaplan and Becker revealed the presence of two open reading frames (ORF). Deduced proteins exhibited homology to uracil-DNA glycosylase encoded by HSV-1 ORF UL2 (54% identity) and gL encoded by HSV-1 ORF UL1 (24% identity), respectively. To identify the PrV UL1 protein, rabbit antisera were prepared against two synthetic oligopeptides that were predicted by computer analysis to encompass antigenic epitopes. Sera against both peptides reacted in Western blots of purified virions with a 20-kDa protein. The specificity of the reaction was demonstrated by peptide competition. Since the PrV UL1 sequence did not reveal the presence of a consensus N-linked glycosylation site, concanavalin A affinity chromatography and enzymatic deglycosylation of virion glycoproteins were used to ascertain that the PrV UL1 product is O glycosylated. Therefore, we designated this protein PrV gL. Analysis of mutant PrV virions lacking gH showed that concomitantly with the absence of gH, gL was also missing in purified virions. In summary, we identified and characterized a novel structural PrV glycoprotein, gL, which represents the eighth PrV glycoprotein described. In addition, we show that virion location of PrV gL is dependent on the presence of PrV gH.  相似文献   

7.
8.
Mutations within the cytoplasmic tail (cytotail) of herpes simplex virus 1 (HSV-1) gH were previously observed to suppress the syncytial phenotype of gB cytoplasmic domain mutant A855V in infected cells. Here, we examined the effects of gH cytotail mutations on virus-free cell-cell fusion in transfected cells to exclude the contributions of viral proteins other than gD, gH/gL, and gB. We show that a truncation at residue 832 coupled with the point mutation V831A within the cytotail of gH reduces fusion regardless of whether the wild type (WT) or a syn gB allele is present. We hypothesize that the gH cytotail mutations either reduce activation of gB by gH/gL or suppress the fusogenicity of gB through another, as yet unknown mechanism. The gB cytodomain and the gH cytotail do not interact in vitro, suggesting that mutations in the gH cytotail may instead affect the function of the gH/gL ectodomain. Nevertheless, we cannot exclude the possibility that the gB cytodomain and the gH cytotail interact in the context of full-length membrane-anchored proteins. The observed fusion suppression in transfected cells is less prominent than what was seen in infected cells, and we propose that gH cytotail mutations may additionally suppress syncytium formation in cells infected with syn HSV-1 by acting on other viral proteins, reinforcing the idea that fusion of HSV-infected cells is a complex phenomenon. Although fusion suppression by the gH cytotail mutant in transfected cells was evident when syncytia were visualized and counted, it was not detected by the luciferase assay, highlighting the differences between the two assays.  相似文献   

9.
The gD, gB, and gH/gL glycoprotein quartet constitutes the basic apparatus for herpes simplex virus (HSV) entry into the cell and fusion. gD serves as a receptor binding glycoprotein and trigger of fusion. The conserved gB and gH/gL execute fusion. Central to understanding HSV entry/fusion has become the dissection of how the four glycoproteins engage in cross talk. While the independent interactions of gD with gB and gD with gH/gL have been documented, less is known of the interaction of gB with gH/gL. So far, this interaction has been detected only in the presence of gD by means of a split green fluorescent protein complementation assay. Here, we show that gB interacts with gH/gL in the absence of gD. The gB-gH/gL complex was best detected with a form of gB in which the endocytosis and phosphorylation motif have been deleted; this form of gB persists in the membranes of the exocytic pathway and is not endocytosed. The gB-gH/gL interaction was detected both in whole transfected cells by means of a split yellow fluorescent protein complementation assay and, biochemically, by a pull-down assay. Results with a panel of chimeric forms of gB, in which portions of the glycoprotein bracketed by consecutive cysteines were replaced with the corresponding portions from human herpesvirus 8 gB, favor the view that gB carries multiple sites for interaction with gH/gL, and one of these sites is located in the pleckstrin-like domain 1 carrying the bipartite fusion loop.Entry of herpes simplex virus (HSV) into the cell requires a multipartite apparatus made of a quartet of viral glycoproteins, gD, gB, and the heterodimer gH/gL, and a multistep process that culminates in the fusion of the virion envelope with cell membranes (5, 6, 10, 25, 36, 41). gD serves as the receptor-binding glycoprotein, able to interact with alternative receptors, nectin1, herpesvirus entry mediator (HVEM) and, in some cells, modified heparan sulfate (9, 13, 30, 39). It can also be engineered to accept heterologous ligands able to interact with selected receptors present on tumor cells and thus represents a tool to redirect HSV tropism (21, 28, 29, 42). The heterodimer gH/gL and gB execute fusion and constitute the conserved fusion apparatus across the Herpesviridae family. gB structure in the postfusion conformation shows a trimer with a central coiled coil (19). gH shows elements typical of type 1 fusion glycoproteins, in particular, helices able to interact with membranes, and two heptad repeats potentially able to form a coiled coil (12, 15-18). The discovery that a soluble form of gD enables entry of gD-null virions revealed that gD serves the additional function of triggering fusion and led to the view that the major roles of gD are to sense that virus has reached a receptor-positive cell and to signal to gB and gH/gL that fusion is to be executed (8). Biochemical and structural analyses showed that the C-terminal region of the gD ectodomain, containing the profusion domain required for fusion but not for receptor binding, can undergo major conformational changes (11, 24). Specifically, it binds the gD core and masks or hinders the receptor binding sites, conferring upon the molecule a closed, auto-inhibited conformation (24). Alternatively, it may unfold, conferring upon gD an open conformation. It was proposed that the C terminus of gD unfolds from gD core at receptor binding and recruits gH/gL and gB to a quaternary complex. A key feature of the model was that complexes among the glycoprotein quartet were not preformed, but, rather, they would assemble at the onset of or at fusion execution.Central to understanding HSV entry/fusion has become the dissection of the interactions that occur among the members of the glycoprotein quartet and their significance to the process. A first evidence of a gD-gH/gL interaction was provided in coimmunoprecipitation studies (35). Interactions between gD and gH/gL and between gD and gB were subsequently detected by split green fluorescence protein (GFP) complementation assays, implying that gD can recruit gB and gH/gL independently of one another, a result that argues against a stepwise recruitment of the glycoproteins to gD. In agreement with the proposed model, the interaction between gH/gL and gB was detected in the presence of transfected or soluble gD (1, 2). However, further studies highlighted levels of complexity not foreseen in the initial model. Thus, pull-down analyses showed that the interaction sites in gD with gB and with gH/gL lie in part outside the C-terminal portion of the gD ectodomain, that resting virions contain small amounts of gD in complex with gB and with gH/gL prior to encountering cells, and that de novo gD-gB complexes were not detected at virus entry into the cell (14).A major objective of current studies was to analyze the interaction of gB with gH/gL. We documented the interaction by two independent assays, i.e., by a complementation assay of split yellow fluorescent protein Venus (herein indicated as YFP) (31) in whole cells and, biochemically, by a pull-down assay. The latter was applied recently in our laboratory and is based on the ability of One-Strep-tagged proteins (e.g., gH) to specifically absorb to Strep-Tactin resin and thus retain any protein in complex (14). To preliminarily search for gB regions critical for the interaction with gH/gL, we engineered chimeric forms of HSV-1 and human herpesvirus 8 (HHV-8) gB in which the cysteines were preserved. While none of the chimeras was completely defective in the interaction, the interactions in the chimeras carrying substitutions in the pleckstrin-like domain 1—the domain that carries the bipartite fusion loops—were hampered. Altogether, the results underscore the ability of gB to interact with gH/gL in the absence of gD and favor the view that sites in gB for interaction with gH/gL involve multiple contacts, one of which is located in the domain that carries the fusion loops.  相似文献   

10.
Envelope glycoproteins gH and gL, which form a complex, are conserved throughout the family Herpesviridae. The gH-gL complex is essential for the fusion between the virion envelope and the cellular cytoplasmic membrane during penetration and is also required for direct viral cell-to-cell spread from infected to adjacent noninfected cells. It has been proposed for several herpesviruses that gL is required for proper folding, intracellular transport, and virion localization of gH. In pseudorabies virus (PrV), glycoprotein gL is necessary for infectivity but is dispensable for virion localization of gH. A virus mutant lacking gL, PrV-DeltagLbeta, is defective in entry into target cells, and direct cell-to-cell spread is drastically reduced, resulting in only single or small foci of infected cells (B. G. Klupp, W. Fuchs, E. Weiland, and T. C. Mettenleiter, J. Virol. 71:7687-7695, 1997). We used this limited cell-to-cell spreading ability of PrV-DeltagLbeta for serial passaging of cells infected with transcomplemented virus by coseeding with noninfected cells. After repeated passaging, plaque formation was restored and infectivity in the supernatant was observed. One single-plaque isolate, designated PrV-DeltagLPass, was further characterized. To identify the mutation leading to this gL-independent infectious phenotype, Southern and Western blot analyses, radioimmunoprecipitations, and DNA sequencing were performed. The results showed that rearrangement of a genomic region comprising part of the gH gene into a duplicated copy of part of the unique short region resulted in a fusion fragment predicted to encode a protein consisting of the N-terminal 271 amino acids of gD fused to the C-terminal 590 residues of gH. Western blotting and radioimmunoprecipitation with gD- and gH-specific antibodies verified the presence of a gDH fusion protein. To prove that this fusion protein mediates infectivity of PrV-DeltagLPass, cotransfection of PrV-DeltagLbeta DNA with the cloned fusion fragment was performed, and a cell line, Nde-67, carrying the fusion gene was established. After cotransfection, infectious gL-negative PrV was recovered, and propagation of PrV-DeltagLbeta on Nde-67 cells produced infectious virions. Thus, a gDH fusion polypeptide can compensate for function of the essential gL in entry and cell-to-cell spread of PrV.  相似文献   

11.
To investigate the requirements of herpesvirus entry and fusion, the four homologous glycoproteins necessary for herpes simplex virus (HSV) fusion were cloned from herpes B virus (BV) (or macacine herpesvirus 1, previously known as cercopithecine herpesvirus 1) and cercopithecine herpesvirus 2 (CeHV-2), both related simian simplexviruses belonging to the alphaherpesvirus subfamily. Western blots and cell-based enzyme-linked immunosorbent assay (ELISA) showed that glycoproteins gB, gD, and gH/gL were expressed in whole-cell lysates and on the cell surface. Cell-cell fusion assays indicated that nectin-1, an HSV-1 gD receptor, mediated fusion of cells expressing glycoproteins from both BV and CeHV-2. However, herpesvirus entry mediator (HVEM), another HSV-1 gD receptor, did not facilitate BV- and CeHV-2-induced cell-cell fusion. Paired immunoglobulin-like type 2 receptor alpha (PILRα), an HSV-1 gB fusion receptor, did not mediate fusion of cells expressing glycoproteins from either simian virus. Productive infection with BV was possible only with nectin-1-expressing cells, indicating that nectin-1 mediated entry while HVEM and PILRα did not function as entry receptors. These results indicate that these alphaherpesviruses have differing preferences for entry receptors. The usage of the HSV-1 gD receptor nectin-1 may explain interspecies transfer of the viruses, and altered receptor usage may result in altered virulence, tropism, or pathogenesis in the new host. A heterotypic cell fusion assay resulting in productive fusion may provide insight into interactions that occur to trigger fusion. These findings may be of therapeutic significance for control of deadly BV infections.  相似文献   

12.
The gH/gL complex plays an essential role in virus entry and cell-cell spread of herpes simplex virus (HSV). Very few immunologic reagents were previously available to either identify important functional regions or gain information about structural features of this complex. Therefore, we generated and characterized a panel of 31 monoclonal antibodies (MAbs) against HSV type 2 (HSV-2) gH/gL. Fourteen MAbs bound to a conformation-dependent epitope of the gH2/gL2 complex, and all blocked virus spread. The other 17 MAbs recognized linear epitopes of gH (12) or gL (5). Interestingly, two of the gL MAbs and six of the gH MAbs were type common. Overlapping synthetic peptides were used to map MAbs against linear epitopes. These data, along with results of competition analyses and functional assays, assigned the MAbs to groups representing eight distinct antigenic sites on gH (I to VIII) and three sites on gL (A, B, and C). Of most importance, the MAbs with biological activity mapped either to site I of gH2 (amino acids 19 to 38) or to sites B and C of gL2 (residues 191 to 210). Thus, these MAbs constitute a novel set of reagents, including the first such reagents against gH2 and gL2 as well as some that recognize both serotypes of each protein. Several recognize important functional domains of gH2, gL2, or the complex. We suggest a common grouping scheme for all of the known MAbs against gH/gL of both HSV-1 and HSV-2.  相似文献   

13.
Glycoprotein D (gD) of bovine herpesvirus 1 (BHV-1) has been shown to be an essential component of virions involved in virus entry. gD expression in infected cells is also required for direct cell-to-cell spread. Therefore, BHV-1 gD functions are identical in these aspects to those of herpes simplex virus 1 (HSV-1) gD. In contrast, the gD homolog of pseudorabies virus (PrV), although essential for penetration, is not necessary for direct cell-to-cell spread. Cocultivation of cells infected with phenotypically gD-complemented gD- mutant BHV-1/80-221 with noncomplementing cells resulted in the isolation of the cell-to-cell-spreading gD-negative mutant ctcs+BHV-1/80-221, which was present in the gD-null BIV-1 stocks. ctcs+BHV-1/80-221 could be propagated only by mixing infected with uninfected cells, and virions released into the culture medium were noninfectious. Marker rescue experiments revealed that a single point mutation in the first position of codon 450 of the glycoprotein H open reading frame, resulting in a glycine-to-tryptophan exchange, enabled complementation of the gD function for cell-to-cell spread. After about 40 continuous passages of ctcs+BHV-1/80-221-infected cells with noninfected cells, the plaque morphology in the cultures started to change from roundish to comet shaped. Cells from such plaques produced infectious gD- virus, named gD-infBHV-1, which entered cells much more slowly than wild-type BHV-1. In contrast, integration of the gD gene into the genomes of gD-infBHV-1 and ctcs+BHV-1/80-221 resulted in recombinants with accelerated penetration in comparison to wild-type virions. In summary, our results demonstrate that under selective conditions, the function of BHV-1 gD for direct cell-to-cell spread and entry into cells can be compensated for by mutations in other viral (glyco)proteins, leading to the hypothesis that gD is involved in formation of penetration-mediating complexes in the viral envelope of which gH is a component. Together with results for PrV, varicella-zoster virus, which lacks a gD homolog, and Marek's disease virus, whose gD homolog is not essential for infectivity, our data may open new insights into the evolution of alphaherpesviruses.  相似文献   

14.
Herpes simplex virus (HSV) entry requires the core fusion machinery of gH/gL and gB as well as gD and a gD receptor. When gD binds receptor, it undergoes conformational changes that presumably activate gH/gL, which then activates gB to carry out fusion. gB is a class III viral fusion protein, while gH/gL does not resemble any known viral fusion protein. One hallmark of fusion proteins is their ability to bind lipid membranes. We previously used a liposome coflotation assay to show that truncated soluble gB, but not gH/gL or gD, can associate with liposomes at neutral pH. Here, we show that gH/gL cofloats with liposomes but only when it is incubated with gB at pH 5. When gB mutants with single amino acid changes in the fusion loops (known to inhibit the binding of soluble gB to liposomes) were mixed with gH/gL and liposomes at pH 5, gH/gL failed to cofloat with liposomes. These data suggest that gH/gL does not directly associate with liposomes but instead binds to gB, which then binds to liposomes via its fusion loops. Using monoclonal antibodies, we found that many gH and gL epitopes were altered by low pH, whereas the effect on gB epitopes was more limited. Our liposome data support the concept that low pH triggers conformational changes to both proteins that allow gH/gL to physically interact with gB.  相似文献   

15.
Human herpesviruses enter cells by fusion with target membranes, a process that requires three conserved glycoproteins: gB, gH, and gL. How these glycoproteins execute fusion is unknown. Neural network bioinformatics predicted a membrane alpha-helix contained within the ectodomain of herpes simplex virus (HSV) gH, positionally conserved in the gH of all examined herpesviruses. Evidence that it has attributes of an internal fusion peptide rests on the following lines of evidence. (i) The predicted membrane alpha-helix has the attribute of a membrane segment, since it transformed a soluble form of gD into a membrane-bound gD. (ii) It represents a critical domain of gH. Its partial or entire deletion, or substitution of critical residues inhibited HSV infectivity and fusion in the cell-cell fusion assay. (iii) Its replacement with the fusion peptide from human immunodeficiency virus gp41 or from vesicular stomatitis virus G partially rescued HSV infectivity and cell-cell fusion. The corresponding antisense sequences did not. (iv) The predicted alpha-helix located in the varicella-zoster virus gH ectodomain can functionally substitute the native HSV gH membrane alpha-helix, suggesting a conserved function in the human herpesviruses. We conclude that HSV gH exhibits features typical of viral fusion glycoproteins and that this property is likely conserved in the Herpesviridae family.  相似文献   

16.
Membrane fusion induced by enveloped viruses proceeds through the actions of viral fusion proteins. Once activated, viral fusion proteins undergo large protein conformational changes to execute membrane fusion. Fusion is thought to proceed through a “hemifusion” intermediate in which the outer membrane leaflets of target and viral membranes mix (lipid mixing) prior to fusion pore formation, enlargement, and completion of fusion. Herpes simplex virus type 1 (HSV-1) requires four glycoproteins—glycoprotein D (gD), glycoprotein B (gB), and a heterodimer of glycoprotein H and L (gH/gL)—to accomplish fusion. gD is primarily thought of as a receptor-binding protein and gB as a fusion protein. The role of gH/gL in fusion has remained enigmatic. Despite experimental evidence that gH/gL may be a fusion protein capable of inducing hemifusion in the absence of gB, the recently solved crystal structure of HSV-2 gH/gL has no structural homology to any known viral fusion protein. We found that in our hands, all HSV entry proteins—gD, gB, and gH/gL—were required to observe lipid mixing in both cell-cell- and virus-cell-based hemifusion assays. To verify that our hemifusion assay was capable of detecting hemifusion, we used glycosylphosphatidylinositol (GPI)-linked hemagglutinin (HA), a variant of the influenza virus fusion protein, HA, known to stall the fusion process before productive fusion pores are formed. Additionally, we found that a mutant carrying an insertion within the short gH cytoplasmic tail, 824L gH, is incapable of executing hemifusion despite normal cell surface expression. Collectively, our findings suggest that HSV gH/gL may not function as a fusion protein and that all HSV entry glycoproteins are required for both hemifusion and fusion. The previously described gH 824L mutation blocks gH/gL function prior to HSV-induced lipid mixing.Membrane fusion is an essential step during the entry process of enveloped viruses, such as herpes simplex virus (HSV), into target cells. The general pathway by which enveloped viruses fuse with target membranes through the action of fusion proteins is fairly well understood. Viral fusion proteins use the free energy liberated during their own protein conformational changes to draw the two membranes—viral and target—together. Fusion is thought to proceed through a “hemifusion” intermediate, in which the proximal leaflets of the two bilayers have merged but a viral pore has not yet formed and viral contents have not yet mixed with the cell cytoplasm (10, 38). Fusion proteins then drive the completion of fusion, which includes fusion pore formation, pore enlargement, and complete content mixing.HSV, an enveloped neurotropic virus, requires four glycoproteins—glycoprotein B (gB), glycoprotein D (gD), glycoprotein H (gH), and glycoprotein L (gL)—to execute fusion (9, 57, 60). gB, gD, and gH are membrane bound; gL is a soluble protein which complexes with gH to form a heterodimer (gH/gL). HSV-1 gH is not trafficked to the cell or virion surface in the absence of gL (32, 52). The requirement of four entry glycoproteins sets HSV apart from other enveloped viruses, most of which induce fusion through the activity of a single fusion protein. Although the specific mode of HSV entry is cell type dependent—fusion with neurons and Vero cells occurs at the plasma membrane at neutral pH; fusion with HeLa and CHO cells involves pH-dependent endocytosis, and fusion with C10 cells involves pH-independent endocytosis (42, 45)—all routes of entry require gD, gB, and gH/gL. Furthermore, although some discrepancies between virus-cell and cell-cell fusion have been observed (8, 44, 55, 58), both generally require the actions of gD, gB, and gH/gL.Much work has gone toward the understanding of how the required HSV entry glycoproteins work together to accomplish fusion, and many questions remain. After viral attachment, mediated by glycoprotein C and/or gB (54), the first step in HSV fusion is thought to be gD binding a host cell receptor (either herpesvirus entry mediator [HVEM], nectin-1, nectin-2, or heparan sulfate modified by specific 3-O-sulfotransferases) (56). The gD-receptor interaction induces a conformational change in gD (39) that is thought to trigger gD-gB and/or gD-gH/gL interactions that are required for the progression of fusion (1-4, 13, 18, 23, 49).gB and gH/gL are considered the core fusion machinery of most herpesviruses. The HSV-1 gB structure revealed surprising structural homology to the postfusion structures of two known viral fusion proteins (31, 35, 51). This structural homology indicates that despite not being sufficient for HSV fusion, gB is likely a fusion protein. Although the gB cytoplasmic tail (CT) is not included in the solved structure, it acts as a regulator of fusion, as CT truncations can cause either hyperfusion or fusion-null phenotypes (5, 17). The gB CT has been proposed to bind stably to lipid membranes and negatively regulate membrane fusion (12). Another proposed regulator of gB function is gH/gL. Despite conflicting accounts of whether gD and a gD receptor are required for the interaction of gH/gL and gB (1, 3, 4), a recent study indicates that gH/gL and gB interact prior to fusion and that gB may interact with target membranes prior to an interaction with gH/gL (2). The gB-gH/gL interaction seems to be required for the progression of fusion.Compared to the other required HSV entry glycoproteins, the role of gH/gL during fusion remains enigmatic. Mutational studies have revealed several regions of the gH ectodomain, transmembrane domain (TM), and CT that are required for its function (19, 25, 26, 30, 33). gH/gL of another herpesvirus, Epstein-Barr virus (EBV), have been shown to bind integrins during epithelial cell fusion, and soluble forms of HSV gH/gL have been shown to bind cells and inhibit viral entry in vitro (24, 46). However, the role of gH/gL binding to target cells in regard to the fusion process remains to be determined.There are some lines of evidence that suggest that gH/gL is a fusion protein. The gH/gL complexes of VZV and CMV have been reported to independently execute some level of cell-cell fusion (14, 37). HSV-1 gH/gL has been reported to independently mediate membrane fusion during nuclear egress (15). In silico analyses and studies of synthetic HSV gH peptides have proposed that gH has fusogenic properties (20, 21, 25-28). Finally, of most importance to the work we report here, gH/gL has been shown to be sufficient for induction of hemifusion in the presence of gD and a gD receptor, further promoting the premise that gH/gL is a fusion protein (59). However, the recently solved crystal structure of HSV-2 gH/gL revealed a tight complex of gH/gL in a “boot-like” structure, which bears no structural homology to any known fusion proteins (11). The HSV-2 gH/gL structure and research demonstrating that gH/gL and gB interactions are critical to fusion (2) have together prompted a new model of HSV fusion in which gH/gL is required to either negatively or positively regulate the activity of gB through direct binding.We wanted to investigate the ability of a previously reported gH CT mutant, 824L, to execute hemifusion. 824L gH contains a five-residue insertion at gH residue 824, just C-terminal of the TM domain. 824L is expressed on cell surfaces and incorporated into virions at levels indistinguishable from those of wild-type gH by either cell-based ELISA or immunoblotting, yet it is nonfunctional (33). We relied on a fusion assay capable of detecting hemifusion, developed by Subramanian et al. (59), which we modified to include an additional control for hemifusion or nonenlarging pore formation, glycosylphosphatidylinositol (GPI)-linked hemagglutinin (GPI-HA). GPI-HA is a variant of the influenza virus fusion protein, HA, that is known to stall the fusion process before enlarging fusion pores are formed.We were surprised to find that in our hands, gD, a gD receptor, and gH/gL were insufficient for the induction of hemifusion or lipid mixing in both cell-based and virus-based fusion assays. We found that gD, gB, and gH/gL are all required to observe lipid mixing. Further, we found that gB, gD, gL, and 824L gH are insufficient for lipid mixing. Our findings support the emerging view, based on gH/gL structure, that the gH/gL complex does not function as a fusion protein and does not insert into target membranes to initiate the process of fusion through a hemifusion intermediate. Our findings also further demonstrate that mutations in the CT of gH can have a dramatic effect on the ability of gH/gL to function in fusion.  相似文献   

17.
Penetration and propagation of herpesviruses in the nervous system require the action of several glycoproteins. To assay for a function of glycoproteins gC, gK, and gL in the neuroinvasiveness of pseudorabies virus (PrV), deletion mutants lacking one of these glycoproteins and corresponding rescuants were inoculated in the nasal cavity of adult mice. We demonstrate that the lack of gL almost prevented the virus from penetrating and propagating in trigeminal, sympathetic, and parasympathetic tracks innervating the nasal cavity, while the lack of gC and gK only slowed the invasion of the nervous system. The conclusion of this and previous studies is that only gB, gD, gH, and gL are indispensable for penetration into neurons, while gB, gH, and gL (and, in some categories of neurons, also gE and gI) are necessary for transneuronal transfer in the mouse model. The deletion of other glycoprotein genes has little effect on PrV neuroinvasiveness although it may affect the dissemination of the virus.  相似文献   

18.
Glycoprotein D (gD) is the receptor binding protein of herpes simplex virus (HSV) and binds to at least two distinct protein receptors, herpesvirus entry mediator (HVEM) and nectin-1. While both receptor binding regions are found within the first 234 amino acids, a crystal structure shows that the C terminus of the gD ectodomain normally occludes the receptor binding sites. Receptor binding must therefore displace the C terminus, and this conformational change is postulated to be required for inducing fusion via gB and gH/gL. When cysteine residues are introduced at positions 37 and 302 of gD, a disulfide bond is formed that stabilizes the C terminus and prevents binding to either receptor. We speculated that if disulfide bonds were engineered further upstream, receptor binding might be separated from the induction of fusion. To test this, we made five additional double cysteine mutants, each potentially introducing a disulfide bond between the ectodomain C terminus and the core of the gD ectodomain. The two mutants predicted to impose the greatest constraint were unable to bind receptors or mediate cell-cell fusion. However, the three mutants with the most flexible C terminus bound well to both HVEM and nectin-1. Two of these mutants were impaired in cell-cell fusion and null-virus complementation. Importantly, a third mutant in this group was nonfunctional in both assays. This mutant clearly separates the role of gD in triggering fusion from its role in receptor binding. Based upon the properties of the panel of mutants we conclude that fusion requires greater flexibility of the gD ectodomain C terminus than does receptor binding.  相似文献   

19.
Herpes simplex virus 1 (HSV-1) entry into cells and cell-cell fusion mediated by HSV-1 glycoproteins require four glycoproteins, gD, gB, gH, gL. Of these, gH is the only one that so far exhibits structural-functional features typical of viral fusion glycoproteins, i.e., a candidate fusion peptide and, downstream of it, a heptad repeat (HR) segment able to form a coiled coil, named HR-1. Here, we show that gH carries a functional HR-2 capable of physical interaction with HR-1. Specifically, mutational analysis of gH aimed at increasing or decreasing the ability of HR-2 to form a coiled coil resulted in an increase or decrease of fusion activity, respectively. HSV infection was modified accordingly. A mimetic peptide with the HR-2 sequence inhibited HSV-1 infection in a specific and dose-dependent manner. Circular dichroism spectroscopy showed that both HR-2 and HR-1 mimetic peptides adopt mainly random conformation in aqueous solution, while a decrease in peptide environmental polarity determines a conformational change, with a significant increase of the alpha-helical conformation content, in particular, for the HR-1 peptide. Furthermore, HR-1 and HR-2 mimetic peptides formed a stable complex, as revealed in nondenaturing electrophoresis and by circular dichroism. The mixture of HR-1 and HR-2 peptides reversed the inhibition of HSV infection exerted by the single peptides. Complex formation between HR-1 and HR-2 was independent of the presence of adjacent gH sequences and of additional glycoproteins involved in entry and fusion. Altogether, HR-2 adds to the features typical of class 1 fusion glycoproteins exhibited by HSV-1 gH.  相似文献   

20.
Varicella-zoster virus (VZV) is distinguished from herpes simplex virus type 1 (HSV-1) by the fact that cell-to-cell fusion and syncytium formation require only gH and gL within a transient-expression system. In the HSV system, four glycoproteins, namely, gH, gL, gB, and gD, are required to induce a similar fusogenic event. VZV lacks a gD homologous protein. In this report, the role of VZV gB as a fusogen was investigated and compared to the gH-gL complex. First of all, the VZV gH-gL experiment was repeated under a different set of conditions; namely, gH and gL were cloned into the same vaccinia virus (VV) genome. Surprisingly, the new expression system demonstrated that a recombinant VV-gH+gL construct was even more fusogenic than seen in the prior experiment with two individual expression plasmids containing gH and gL (K. M. Duus and C. Grose, J. Virol. 70:8961-8971, 1996). Recombinant VV expressing VZV gB by itself, however, effected the formation of only small syncytia. When VZV gE and gB genes were cloned into one recombinant VV genome and another fusion assay was performed, extensive syncytium formation was observed. The degree of fusion with VZV gE-gB coexpression was comparable to that observed with VZV gH-gL: in both cases, >80% of the cells in a monolayer were fused. Thus, these studies established that VZV gE-gB coexpression greatly enhanced the fusogenic properties of gB. Control experiments documented that the fusion assay required a balance between the fusogenic potential of the VZV glycoproteins and the fusion-inhibitory effect of the VV infection itself.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号